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1. Basic notation and auxiliary results

Let D = {z € C/ |zl < 1 } be the unit disk in the complex space. O(D) denotes the space of
functions that are analytic in D and H (D) denotes the Banach space of bounded analytic functions on
D with the norm || f||, = sup|f(z)|. For analytic self-mapping ¢ € S(D) = {¢ € O(D) : ¢(D) c D)} and

zeD
analytic function u : D — C, the pair (u, ¢) induces the linear map W, , : O(D) — O(D) defined by

Weu()(@) = u@)(f o ¢(2)), f€OD), z€D.

W, . which is called weighted composition operator with symbols u and ¢. Observe that W, ,(f) =
M, C.(f), where M, (f) = u.f, is the multiplication operator with symbol u, and C,(f) = f o ¢, is the
composition operator with symbol ¢.

Ifu=1,then W, , = C,, and if ¢ is the identity (¢(z) = z), then W, , = M,,.

During the past few decades, composition operators and weighted composition operators have been
studied extensively on spaces of analytic functions on various domains in C or C". We refer the readers
to the monographs [1, 3,5, 13, 18-20,22,25] for detailed information and the references therein.
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For a € D the Mobius transformation ¢,(z) is defined by
wa(z) = a_—_z’ for z € D.
1-az

For each a € D, the Green’s function with logarithmic singularity at a € D is denoted by

a)
lpa(2) )
The pseudohyperbolic distance p : D X D — [0, 1) is defined by

gz, a) = 10g(

a—=z
p(a,2) = lga(D)] = ‘—‘ fora,z € D.

1 -az
We will denote by
»(z) = Y(2)
Pe(2),¥(2) = | ——|
e '1 — p(Y(2)

It is easy to check that p(a, 7) satisfies the following inequalities:

1 —p(a,z) < 1 -1z < I +p(a,z2)

< < , z,a€D.
l+p(a,z) = 1=la* = 1-p(a,z)

For 0 < @ < oo, recall that an f € O(D) is said to belong to the a@-Bloch space (or Bloch-type space)
B if
Bo(f) = sup(l = z21*)|f"(2)] < oo.

zeD

With the norm ||f]| = [£(0)| + B,(f), B* is a Banach space. When a = 1, B' = B is the well-known
Bloch space. For more information on Bloch spaces we refer the interested reader to [21]. Let B be
the space which consists of all f € 8 satisfying

Jim (1 - 12?1 (@)] = 0.

This space is called the little Bloch-type space. See [S] for more information on Bloch spaces.
Let @ > 0. The Bers-type space, denoted by H:°(D), is a Banach space defined by

Hy (D) :={ feOD) /Sug (1 = P)If @) < oo},

Hio@) = (f€OD)/ lim ((1-F)1f@D =0}

equipped with the norm
1/ llg ) == sup (1 = 121/ @) for f € H(D).
zeD

Note that, H;°(D) is a Banach space with the norm ||.|l¢= ).
When a = 0, H;°(D) is just the bounded analytic function space (D). For more information about
several studied on Bers-type spaces we refer to [3,22].
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Let K : [0, c0) — (0, o0) be right continuous and nondecreasing function. The authors El-Sayed
A. and Bakhit in [7] introduced the Nx (D) spaces as follows:
The analytic Ng(DD)-space is defined by

Nk@):={feOoD)/ f [f@PK(g(z, a)dA(z) < oo},
D

Nk oD@ :={feO0D)/ m j}; |fPK(g(z, @)dA(z) = 0},

equipped with the norm

/IRy = SUP f If@PK(g(z,a)dA), f € Nk(D).
D

aeD

Remark 1.1. We make the following observations:

(D) If K(1) = 17, then Ng(D) = N,(D), since g(z,a) = (1 - loal?).

Q) IfK(t) = 1, then N1(D) = A* ( the Bergman space ), where for 0 < p < oo, the Bergman space ‘AP
is the set of analytic functions f in the unit disk D with

1
1 = fD FOPAAQ) < oo.

Remark 1.2. In the study of the space Ng(D), the authors in [7] assumed that the following condition

! 2
(1-0 1
TR 1.1
osslg)l o (1 =1tr2)3 (Og(r))i’ r < oo (1)

is satisfied, so that the Nx(D) space is not trivial.

Lemma 1.1. /8, Lemma 2.2] Assume that the function K satisfies (1.1). For each w € D, let h,,(z) =
1 = 2
4 for z € D. Then h,, satisfies the following conditions:
(1 —wz)?

(@) hy € Nk(D),
1) 1wl vem) < 1,

(iii) sup Ayl vy < 1.
weD

Several important properties of the Nx(D)-spaces and H;' (D) spaces and also of weighted
composition operators from Nk (DD)-spaces to the spaces H; (D) and from H_ (D)-spaces to Ng(D)
have been characterized in [7, 8, 15].

We cite here main results from [15] for the reader’s convenience.

Theorem 1.1. [15,24] Let K : [0, 00) — [0, o) be a nondecreasing function and ¢ be a analytic self-
map of D. For a € (0,00), u € O(D) and W, , := uC, : Nx(D) — H; (D) the weighted composition
operator. Then we have:

(1) W, is bounded if and only if

112\
Sup(w) <o (12)
zeD

(1 = le(2)P)
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(2) W, , is compact if and only if

lim su (1.3)

r—lig@)>r

(Relds |z|2>“) )
= Te@P

Remark 1.3. When K(t) = t?, Theorem 1.1 coincides with [24, Thoerem 3, Corollary 2].

Theorem 1.2. [15,24] Let K : [0,00) — [0, ) be a nondecreasing function and ¢ be a analytic
self-map of D. For a € (0, c0) and u € O(D). Then the following properties hold:
(1) The weighted composition operator W,, , = uCy, : Hy (D) — Nk(D) is bounded.
(2) u and ¢ satisfy
sup ﬂl((g(z a))dA(z) < oo. (1.4)
wet Jo (L= lp@Py

Remark 1.4. When K(t) = t*, Theorem 1.2 coincides with [24, Thoerem 1].

Lemma 1.2. [7, Proposition 2.1] For each right continuous and nondecreasing function K : [0, c0) —
[0, 00), the following inclusion holds:

Nk(D) ¢ H"(D).

Our goal here is to investigate the boundedness and compactness of multivariable difference of
n n

two weighted composition operators acting from l_[ Nk (D)-spaces to l_[ 7‘((‘;‘/’_ (D)-spaces and form
j=1 j=1

l_l 7—(°°(ID)) spaces to l—[ Nk, (D)-spaces.
We consider that each of the product spaces is equlpped with the following norm.

For f = (fi,--- . ) €X = ﬂx,,wesetufnx—annx

To this end we introduce analytic maps ¢, ¥ : D — D and u, v, : D — Cfork = 1.--- ,n and look
at the operator
T<ﬁk,¢k = ka, ug Wl//k, v = ukcgak - chwk-

Let
()D = (Qpl" o »Qon) € S(D)n9 w = (wl"" ,wn) € S(D)n
and
u= (@, - ,u,) € 0D, v=(v, - ,v,) € OD)".
Set
K=(;, - ,K,and a = (a;, - ,a,) € R".
We define

Toy = Tows Tow) : | [N — | | o).
i=1 i=1
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Tgo,gb(f) ((Tgm,w] )fl’ ) (Tga,,,w,, )fn)

(lel o —=VifioW, Unfn © @y = Vafn o '//n).

2. Main results

2.1. Multivariable differences of Weighted composition operators from [[;_, Nk (D) into
[Ti-1 H;, (D)

In this section we study the boundedness and compactness of differences of two weighted
composition operators T, , = W, , - W, , : HNKkD) 1_[ ak(D) In fact, the following

k=
results corresponds to the results obtained in [2,4,6,9-12,23].
We are now ready to prove a necessary and sufficient condition for the boundedness of T, :

[TMe@ — [ ] Hom.

1<i<n 1<i<n
For that purpose, consider the following conditions:

(@I = 121*)™
sup (sup (% UKD o). ")) <. @.1)
1<kzn \ zep V(1 = (@)
i@I(1 = [zI*)™
sup | su (or(2), (z)))) < oo, (2.2)
1sk£n( ze]]g)( (1= (@) PR
(@I = )™ @)l = |z*)*™ )
sup | su - < oo, (2.3)
1sk£)n( ze]g (1 = ()P (1 = P
Lemma 2.1. [16,17] Let f € 7-{[‘;°(D), B> 0. Then
(1= P £() = (1= WP f )| < 1 fllaggoip(z, w) for all z,w € D.
Theorem 2.1. Let K; : [0, c0) — [0, o) for j = 1,--- ,n be a nondecreasing function, ¢; and s ; are
analytic self-maps from D to D. Foru = (uy,--- ,u,),v = (v, - ,v,) € OD),¢ = (@1, ), ¥ =
Wy, -~ 1//n) anda = (ay, - ,a,) € R, a; > 0. Then the following statements are equivalent:

(1) T,, : H N, (D) —> ]_[ H(D) is bounded.

2) g,y and u v satisfy the condztlons (2.1) and (2.3).
(3) @, ¥ and u,v satisfy the conditions (2.2) and (2.3).

Proof. (3) = (1). Assume that the functions ¢, and u, v satisfy the conditions (2.2) and (2.3). We
need to prove that T, is a bounded operator. Indeed,

let f = (fi,+~ . f) € | | Ni(DD), then we have

i=1
n
||Tsa,w(f)||m:174$®) = Z”T s fillae o)
i=1
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L\:ﬂ:

up (1 = )" [T, 12

.lzeD

= > sup((1 = k)|, — v £2))
i=1 €D
= 2 sup [i(2)(1 = )" fii() — vi@)(1 - Izlz)aifi(lm(z))‘
i=1
n 2\ 2\@i
_ |~ lo@P) o ui@)(1 - 2™ vi)(d — 1)
2,30 [(1 = I 2 R o e

vi(2)(1 — |z*)™
(1 = ly:(2)P)

|1 - e @P) A2 = (1 = @R (2|
[ui(z)(l — 1) vi@)(1 - Izlz)ai]

n

< 2l - OPeO | GTETR o
% [(1 ~ lpi@P) filpi@) - (1 - |wl-(z>|2)f,-(w,-<z)>]|}
< Y fumnmse - M
s (MBI 0.0 i o)
) I~ kD" I~ [P

/Nl Ay ) Sup su
{f @ B2 0=l (- i@P)

; 1— 2\@i
Iv( izﬂ(lt/r(zl)zllz))) PO Ui, i |

The last inequality is obtained by taking in to account that N, (D) ¢ H;°(D) ( [7, Proposition 2.1]) for
i=1,---,nand Lemma 2.1. This means that, under the conditions (2.2) and (2.3) we have

+ sup sup(
1<i<n zeD

||T¢,w(f)||m=lmD) < Clflippe, gy forall f=(fi,, f) € HNKi(D),
' i=1

where C is a positive constant.

Therefore T, is bounded form l_[ Nk, (D) to n 7{;’ (D) as required.
i=1 i=1
(2) = (3). Observe that fori = 1,--- ,n we have

vi@I(1 = |z1*)" @I - 12P)"
( (1 _ |w(z)|2) (1 _ |Q0,(Z)|2) p(QOI(Z), ¢1(Z)))

@I = 12ZH)% @I = [

(1 = lgi(2)P) (1 = ()P

P(‘Pi(Z),E//i(Z))) < (

+

p(pi(2),¥i(2)),

which implies that (2.3) holds.
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Finally we show the implication (1) :> 2).

Assume that T, , is bounded from ]—[ Ni,(D) to ]—[ H(D) and prove that (2.1) and (2.3) hold.

i=1

Since T, is bounded, we have for all f = (f,---, fn) € [[io; Nk.(D)

T, ()

e, meo S g, vo) -
(1 = @i(w)z)
By taking into account Lemma 1.1, we have h,, = (h.,--- ,h") € 1_[ Nk, (D) and

Foreachze D, setfori=1,---,n, I (2 = be the function test in Lemma 1.1.

WAwlIngem) < 1.

Furthermore

00 > [Ty, y ()i, ey 2 (1= W) ui@)ho(@ilw)) — vi(w)h, (iw))|
> |A(w) + B)l,
where
_ (1- |U)|2)ui(w) (1- |w|2)Vi(w)
Alw) = 2 2
(1 =le@P)” (1 =Wi(w)P)
and
(1- |¢U|2)Mi(w)

B(w) = — | (1= W) ui( ), (gi(@)) = (1 = W) viw)h, i) |

(1 = lpiw)l?)
In view of Lemma 2.1 and (2.1) we deduce that |B(w)| < oo for all w € D, which implies that |A(w)| < oo
for all w € D. Thus, the condition (2.3) is proved.

Fix w € D and consider the function g, defined by

8.0 = (L@, g2,

where )
L-lgi()l” Pyi(w)(2)

gi()(z): —_— $l:l5"'7n
(1- gza,-(a))z)2 Gyiw)(Pi(w))
for z € D. We have
8wl vx@) < CllAull, A )
Thus g, € [T, Nk, (D) and moreover
Zu(p(w)) = hy(p(w)), guW(w)) = 0. (2.4)

By the boundedness of
Tyy=Weu= Wy [ [Ne@ — [ [ HED),
i=1 i=1
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then it follows that

n

> sup((1 = [P)"

00 > ||T<p, wgw”w;“(D)

(28 (@i(2) - v,-(z)gi,<wl-(z>>|)

i=1 D
> (1= oP)" (@)l e - i) = @), @), ¥ i =1, .n
(1 = [wP)*uw)I(1 = lpi(w)?) iz
> i=1,---.,n
(1 = lpi(w)l?)

(1 = |wP)ui(w)|

1 = lpi(w)l?
(1 = |wP)ui(w)| .

= okl plei(2)¥i(2) Yi=1,---,n

Hence the condition (2.2) is satisfied. O

Remark 2.1. the statement (1) of Theorem 1.1 follows easily for the simple case n = 1 and v; = 0,i =
1,--- ,nof Theorem 2.1.

Corollary 2.1. Let K; : [0, o0) — [0, o0) be a nondecreasing function for i = 1,---,n,
o = (@1, ) and ¥ = Yy, ,¥,) are in OD)'. For u = (uy,---,u,) € OD)" and
a = (ay, ), a > 0,then uC, —uCy : [, Nk(D) — [IL, H;> (D) is bounded if and
only if the following two conditions hold:

(1 = =) ui(2)]

sup (sup (T e @ U2 < e 05
" (1~ |z (2)
— |z|/)% u;(z

sup (sup (=BT 0. @) < oo 06

Proof. Assume that T, , is bounded. Then by letting v = u in Theorem 2.1 it follows that the
conditions (2.5) and (2.6) hold.

Conversely, assume that the conditions (2.5) and (2.6) hold. To prove that T, , is bounded, it
suffices in view of Theorem 2.1 to prove that

((1 — 2P w2 (1 = IZIZ)“"Iui(z)l)) < oo
1= lpi)P 1=l —i@)P

sup ( sup
1<i<n \ zeD

In fact, we have fori=1,--- ,n

'(1 — 2P w2l (4 = 2" u)]

1= lpi@)P? 1 - Wil

(1= 1P u@)l|, (1 = lpi)P)
1=l 1= i)l

(1= 1P u@l|, 1+ plil2), i(2))
1= lpi2)l? 1 = p(¢i(2), Yi(2))
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(1 = 1P ui(2)|  2p(pi(2), il2) <o
I—lp@P 1 - plei2), ¥i2)

Using Theorem 2.1, we obtain the boundedness of uC, — uCy, : []iz; Ng,(D) — [1i; H; (D). The
proof of the corollary is complete. O

Remark 2.2. There exist non-bounded multivariable weighted composition operators such that their
difference is bounded.

In the following example we give operators such that neither W, ,, W, , and T, = W, , — W, ,
are bounded from [, Nk, (D) to [T,Z; H; (D).

Example 2.1. By choosing the maps u, v, ¢ and { as follows:

1
ux) =vi@) =1, fori=1,---,n and ¢(2) =2z, Yyi(z) =-z, i=1,---,n 0<ai<zii=1.n

A direct calculation shows

sup(luxzn(l — |z (Ivi(z)l(l — |z[)@
wen \ (1 =lgi(2)P)) (1= i(2)P)

In view of Theorem 2.1, it follows that neither W, , : [[i; Nx(D) — [Ii; Hy (D) nor W, :
[T Nk,(D) — Hy (D) is bounded. However from condition (2.1) or (2.2) it is clear that the
difference operator Wy, — W, ,, : [1Z; Ng,(D) — [1i2; H; (D) is not bounded.

P 0i(2)) = sup PO @) = 0, i= 1,

zeD

The following theorem characterize when the difference weighted composition operators T,
acting between weighted analytic type spaces [[_; Nx(D) and [}, H (D) are compact.

Theorem 2.2. Let ¢ = (@1, , @), ¥ = Wy, -+ ,,) € SD) and u = (uy,- - ,u,),v =y, -+ ,v,) €
OD)" . Let further W,, and Wy, be two weighted composition operators acting from []_; Nk, (D)
into [1i_; Hy (D). Then the operators T,y = W,, — Wy, is compact if and only if the following
conditions hold.

. i (DI(1 = |z*)™
lim (su su ( (0i(2), ,-(z)))) =0, (2.7)
AR S T o) Y
. WVi@I(1 = 2"
tim (sup su ( (@i(2). i(z»)) =0, (2.8)
R W e i wre s
lim ( sup sup (Ai(z))) -0, 2.9)
=17\ l<i<n minflgi@)l, i) }>r
where ) ,
=1z A=1zP)”
AR = @) = vl min] , |
(1 =le:@P (1 = i(2)P)
Proof. We omit the proof, since the techniques are similar to those of [14, Theorem 2.4]. O
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Corollary 2.2. Let K; : [0, o0) — [0, o0) be a nondecreasing function for i = 1,---,n, ¢ =
(1, o) and ¥ = (Yy, - -+ ,¥,) where @; and s; are analytic self-maps fromD toD fori=1,--- ,n
Foru= (u,--- ,u,) € OD)"and a = (a1, - ,a,), where a; > 0,i=1,--- ,n then

uCy, —uCy : 12 Nk, (D) — [1iL, Hy (D) is compact if and only if the following two conditions hold.:

. (1 = 1212 (2)| B

rl;n;(]s;g l;(lzl)llr( A p(soi(z),tm(z))))—o (2.10)
and (1 = 2Py ()]

. = 217)" |ui(z 3

rli“?(i‘?i wi‘?ﬁr( U Poi@.0i(2)) = 0. @.11)

Proof. Assume that T, , is compact. Then by letting v = u in Theorem 2.2 it follows that the
conditions (2.10) and (2.11) hold.
Conversely, assume that the conditions (2.10) and (2.11) hold. To prove that T, , is compact, it

suffices in view of Theorem 2.2 to prove that the condition (2.9) is holds. Since u = v, then
lirrll ( sup sup (A,-(z))) = 0. Using Theorem 2.2, we obtain the compactness of uC, — uCy :
=17 M<i<n min{lg; )], Wi(2)| }>r

[T Nk,(D) — [T, 7{(‘:’ (D). The proof of the corollary is complete. |

2.2. Differences of weighted composition operators from 1_[ H (D) into 1_[ Nk, (D)

i=1 i=1

In this section, we 1nvest1gate the boundedness of differences weighted composition operators

Tpy = W — n H,> (D) — n Ni(D).
Theorem 2.3. Let K; : [0, o0) — [0, o0) be a nondecreasing function for i = 1,---,n,
=(p1. - ,n) and y = (Y1, -+ ,¥,) where @; and ; fori = 1,--- ,n are analytic self-maps from D

toDfori=1,---,n letu= (u, - ,u,) € OD),v=w,,v,)€eOD) anda = (ay,- - , ), with
a; > 0,i=1,---,n. Then the operator T, , : HV{;’(D) — n Nk, (D) is bounded if the following

i=1 i=1
condition is satisfies max (I, J) < co,where

) (P
=5 fifif (- oz )|2)20K(g(z’“))A(Z))

and

2
—sup sup f = Vi) i(g(z,a))dA(z)).

aeD \1<i<n |l//( )|2)2(z

Proof. Assume that the condition in the statement (2) is holds and let f = (fi,---, f,) € H (D).
We have

||T¢ ‘//(f)”NK(D)

= Y e p [ [Ton (@] Ko

k=1 9D

AIMS Mathematics Volume 8, Issue 11, 27363-27375.
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f T (FOE) — vCofe @ Kilg(za))dz

D

= Ysup fD D Fil@e() — @ e Kilg(z a))dz
w |

(|uk(z>fk<¢<z>>| + |<z>fk<wk<z>>|) Ki(g(z. @))dz

IA
22

IA
[\

fD (|uk<zm<<p<z>)|2 ¥ |vk<z>fk(wk(z»|2)1<k<g(z, )dA(z)

= 2 ) sup Iuk(z)ﬁ(¢(Z))|2Kk(g(Z,a))dz+2 SUP f V(@) el ()P Ki(g(z, a))dA(2)

k=1 b =1 aeD
_ 5\ ek . X
= 2,50 | g S (- QD) ARG )dAR)
k=1 aeD
2
NP fD 1 I;:;Zzl)p)zak(l_|¢(Z)|2)zak|fk(l//k(Z))|2Kk(g(Z,a))dz
1(1

IA

e ()P
2 (S d
> IIfIIH (D) sup f T ke ) z)

P
2 - —_—
iy il s P Jo A= wpy

2 ”f”‘Hfow(D) 1+2 ||f||H;°(]D) J
< CH; (D).

a, W

=

Ki(s(z. a))dA(z))

IA

This means that T, , is bounded form [];_; H; (D) to [T;_; Nx(D). O

Finally, it seems to be natural to enquire a necessary and sufficient conditions for the boundedness
and compactness of difference weighted composition operator

T,y | [HE @ — | [ Ne ).
k=1 k=1
This problem will be addressed in a forthcoming paper.

3. Conclusions

We have extended the characterizations of compactness of differences of two weighted composition
for single operator between weighted-type spaces of analytic functions to several variables differences
n

of Weighted composition operators. Namely, T, , := W, , — W, , : l_[ Nk D) — 1—[ ‘H_, (D) where

Twﬁ(f) = (ulfl o —Vvifioyr, Unfn © Yn = Vafn Own)~
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