
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(11): 25633–25653.
DOI: 10.3934/math.20231308
Received: 19 June 2023
Revised: 16 July 2023
Accepted: 19 July 2023
Published: 05 September 2023

Research article

A pre-processing procedure for the implementation of the greedy rank-one
algorithm to solve high-dimensional linear systems

J. Alberto Conejero1, Antonio Falcó 2,*and Marı́a Mora–Jiménez1

1 Instituto Universitario de Matemática Pura y Aplicada. Universitat Politècnica de València, Spain
2 ESI International Chair@CEU-UCH, Departamento de Matemáticas, Fı́sica y Ciencias

Tecnológicas, Universidad CEU Cardenal Herrera, CEU Universities, San Bartolomé 55, 46115
Alfara del Patriarca, Spain

* Correspondence: Email: afalco@uchceu.es.

Abstract: Algorithms that use tensor decompositions are widely used due to how well they perfor
with large amounts of data. Among them, we find the algorithms that search for the solution of a linear
system in separated form, where the greedy rank-one update method stands out, to be the starting point
of the famous proper generalized decomposition family. When the matrices of these systems have
a particular structure, called a Laplacian-like matrix which is related to the aspect of the Laplacian
operator, the convergence of the previous method is faster and more accurate. The main goal of this
paper is to provide a procedure that explicitly gives, for a given square matrix, its best approximation
to the set of Laplacian-like matrices. Clearly, if the residue of this approximation is zero, we will
be able to solve, by using the greedy rank-one update algorithm, the associated linear system at a
lower computational cost. As a particular example, we prove that the discretization of a general partial
differential equation of the second order without mixed derivatives can be written as a linear system
with a Laplacian-type matrix. Finally, some numerical examples based on partial differential equations
are given.

Keywords: tensor decompositions; rank-one tensors; high-dimensional linear systems; laplacian-like
matrices; partial differential equations
Mathematics Subject Classification: 65F99, 65N22

1. Introduction

Working with large amounts of data is one of the main challenges we face today. With the rise of
social networks and rapid technological advances, we must develop tools that allow us to work with
so much information. At this point the use of tensor products comes into play, since their use reduces

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231308

25634

the number of and speed up the operations to be carried out. Proof of this is the recent article [1],
where tensor products are used to speed up the calculation of matrix products. Other articles that
exemplify the goodness of this operation include [2], where the solution of 2,3-dimensional optimal
control problems with spectral fractional Laplacian-type operators is studied, and [3], where high-order
problems are studied through the use of proper generalized decomposition methods.

When we try to solve a linear system of the form Ax = b, in addition to the classical methods,
there are methods based on tensors that can be more efficient [4], since the classical methods face the
problem of the curse of dimensionality, which makes them lose effectiveness as the size of the problem
increases. The tensor methods look for the solution in separated form, that is, as the tensor combination

x =
∞∑
j=1

x j
1 ⊗ · · · ⊗ x j

d,

where x j
i ∈ R

Ni , d is the dimension of the problem, and ⊗ is the Kronecker product as reviewed in the
next Section. The main family of methods that solves this problem is proper generalized decomposition
family [5], and it is based on the greedy rank-one update (GROU) algorithm [6, 7]. This algorithm
calculates the solution of the linear system Ax = b in separated form and, for this, in each iteration,
it updates the approximation of the solution with the term resulting from minimizing the remaining
residue. Furthermore, there are certain square matrices for which the GROU algorithm improves their
convergence i.e., matrices of the form

A =
d∑

i=1

idN1 ⊗ · · · ⊗ idNi−1 ⊗ Ai ⊗ idNi+1 ⊗ · · · ⊗ idNd ,

where idNk is the identity matrix of size Nk × Nk, and Ak ∈ R
Nk×Nk , for 1 ≤ k ≤ d. These matrices are

called Laplacian-like matrices, due to their relationship with the Laplace operator written as

d∑
i=1

−
∂2

∂x2
i

=

d∑
i=1

∂0

∂x0
1

⊗ · · · ⊗
∂0

∂x0
i−1

⊗

(
−
∂2

∂x2
i

)
⊗
∂0

∂x0
i+1

⊗ · · · ⊗
∂0

∂x0
d

.

It is not easy to decide when a given matrix A can be represented in that form. To do this, we can
use some of the previously results obtained by the authors of [8]. In this paper, we prove that the
set of Laplacian-like matrices is a linear subspace for the space of square matrices with a particular
decomposition of its dimension. Moreover, we provide a greedy algorithm that provides the best
Laplacian approximation LA, for a given matrix A, as well its residue, RA = A − LA. However, an
iterative algorithm it is not useful enough against a direct solution algorithm. The main goal of this
paper is to provide a direct algorithm that allows one to construct the best Laplacian-like approximation
by using only a particular block decomposition of the matrix A. It can be considered as a pre-processing
procedure that allows one to represent a given matrix in its best Laplacian-like form, and if the residual
is equal to zero, we definitively have its Laplacian-like representation form. Hence, we efficiently use
the GROU algorithm to solve the high-dimensional linear system associated with the matrix A.

We remark that, by using the decomposition A = LA + RA, we can rewrite the linear system as
(LA + RA)x = b, and when the value of the remainder is small, we can approximate the solution of the
system x∗ by using the solution of the Laplacian system xL. This fact is specially interesting in the case

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25635

of the discretization of some partial differential equations. We also study the Laplacian decomposition
of the matrix that comes from the discretization of a general second order partial differential equation
of the form

α
∂ 2 u
∂x2 + β

∂ 2 u
∂y2 + γ

∂u
∂x
+ δ
∂u
∂y
+ µu = f,

with homogeneous boundary conditions. Besides, to compare different numerical methods to solve
partial differential equations, we consider two particular cases: the Helmholtz equation, which solves
an eigenvalue problem for the Laplace operator. Furthermore, to illustrate that it is not necessary to be
limited to the second order, we also consider the 4th order Swift-Hohenberg equation

∂u
∂t
= ε −

(
1 +
∂2

∂x2

)2

u.

This equation is noted for its pattern-forming behavior, and it was derived from the equations for
thermal convection [9].

The paper is organized as follows. We begin by recalling some preliminary definition and results
used throughout the paper in Section 2. Section 3 is devoted to the statement and the proof of the
main result of this paper, which allow one to construct explicitly the best approximation of a given
matrix to the linear space of Laplacian-like matrices. After that, in Section 4, we discuss how we
applied this result to compute the best Laplacian approximation for the discretization of a second order
partial differential equations without mixing derivatives. Finally, some numerical examples are given
in Section 5.

2. Preliminary definitions and results

First at all we introduce some notations that we use throughout the paper. We denote by RN×M, the
set of N × M-matrices and by AT the transpose of a given matrix A. As usual we use

⟨x, y⟩2 = ⟨x, y⟩RN = xT y = yT x

to denote the Euclidean inner product in RN , and its corresponding 2-norm, by ∥x∥2 = ∥x∥RN = ⟨x, x⟩1/22 .

Given a sequence {u j}
∞
j=0 ⊂ R

N , we say that a vector u ∈ RN can be written as

u =
∞∑
j=0

u j

if and only if

lim
n→∞

n∑
j=0

u j = u

in the ∥ · ∥2-topology.
The Kronecker product of two matrices A ∈ RN1×M1 and B ∈ RN2×M2 is defined by

A ⊗ B =


A1,1B A1,2B . . . A1,M1 B
A2,1B A2,2B . . . A2,M1 B
...

...
. . .

...

AN1,1B AN1,2B . . . AN1,M1 B

 ∈ RN1N2×M1 M2 .

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25636

We can see some of the well-known properties of the Kronecker product in [7].
As we already said, we are interested solving the high-dimensional linear system Ax = b obtained

from a discretization of a partial differential equation. We are interested in solving it by using a tensor-
based algorithm; so, we are going to look for an approximation of the solution in separated form. To
see this, we assume that the coefficient matrix A is a (N1 · · ·Nd) × (N1 · · ·Nd)-dimensional invertible
matrix for some N1, · · · ,Nd ∈ N. Next, we look for an approximation (of rank n) of A−1b of the form

A−1b ≈
n∑

j=1

x j
1 ⊗ · · · ⊗ x j

d. (2.1)

To do this, given x ∈ RN1···Nd , we say that x ∈ R1 = R1(N1,N2, . . . ,Nd) if x = x1 ⊗ x2 ⊗ · · · ⊗ xd, where
xi ∈ R

Ni for i = 1, . . . , d. For n ≥ 2, we define, inductively, that Rn = Rn(N1,N2, . . . ,Nd) = Rn−1 + R1,

that is,

Rn =

x : x =
k∑

i=1

x(i), x(i) ∈ R1 for 1 ≤ i ≤ k ≤ n

 .
Note that Rn ⊂ Rn+1 for all n ≥ 1.

To perform (2.1), what we will do is minimize the difference∥∥∥∥∥∥∥b − A

 n∑
j=1

x j
d ⊗ · · · ⊗ x j

d


∥∥∥∥∥∥∥

2

,

that is, solve the problem

arg min
u∈Rn

∥b − Au∥2. (2.2)

Here, ∥ · ∥2 is the 2-norm, or the Frobenius norm, defined by

∥A∥2 =

√√ m∑
i=1

n∑
j=1

|ai, j|
2 =

√
tr(A⊤A), for A ∈ Rm×n.

Unfortunately, from Proposition 4.1(a) of [10], we have that the set Rn is not necessarily (or even
usually) closed for each n ≥ 2. In consequence, no best rank-n approximation exists, that is, (2.2) has no
solution. However, from Proposition 4.2 of [10] it follows that R1 is a closed set in any norm-topology.
This fact allows us to introduce the following algorithm.

The GROU algorithm is an iterative method to solve linear systems of the form Ax = b by using
only rank-one updates. Thus, given A ∈ GL(RN×N) with N = N1 · · ·Nd, and b ∈ RN , we can obtain an
approximation of the form

A−1b ≈ un =

n∑
j=1

x j
1 ⊗ · · · ⊗ x j

d

for some n ≥ 1, and x j
i ∈ R

Ni for i = 1, 2, . . . , d and j = 1, 2, . . . , n [7]. We proceed with the following
iterative procedure (see algorithm 1 below): let u0 = y0 = 0, and, for each n ≥ 1, take

rn−1 = b − Aun−1, (2.3)

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25637

un = un−1 + yn, where yn ∈ arg min
u∈R1

∥rn−1 − Au∥2. (2.4)

Since un ≈ A−1b, we can define the rank⊗ for A−1b obtained by the GROU Algorithm as

rank⊗(A−1b) =
{

∞ if { j ≥ 1 : y j = 0} = ∅,
min{ j ≥ 1 : y j = 0} − 1 otherwise.

The next result, presented in [7], gives the convergence of the sequence {un}n≥0 to the solution A−1b of
the linear system.

Theorem 2.1. Let b ∈ RN1···Nd and A ∈ RN1···Nd×N1···Nd be an invertible matrix. Then, by using the
iterative scheme described by (2.3) and (2.4), we obtain that the sequence {∥rn∥2}

rank⊗(A−1b)
n=0 is strictly

decreasing and

A−1b = lim
n→∞

un =

rank⊗(A−1b)∑
j=0

y j. (2.5)

Note that the updates in the previous scheme works under the assumption that, in line 5 of
algorithm 1, we have a way to obtain

y ∈ arg min
x∈R1

∥ri − Ax∥22. (2.6)

To compute y, we can use an alternating least squares (ALS) approach (see [7, 11]).

Algorithm 1 GROU algorithm
1: procedure GROU(f, A, ε, tol, rank max)
2: r0 = f
3: u = 0
4: for i = 0, 1, 2, . . . , rank max do
5: y = procedure (minx∈R1 ∥ri − Ax∥22)
6: ri+1 = ri − Ay
7: u← u + y
8: if ∥ri+1∥2 < ε or |∥ri+1∥2 − ∥ri∥2| < tol then goto 13
9: end if

10: end for
11: return u and ∥rrank max∥2.
12: break
13: return u and ∥ri+1∥2

14: end procedure

The idea below the ALS strategy to solve (2.6) is as follows: for each 1 ≤ k ≤ d, we proceed as
follows. Assume that the values x1, . . . , xk−1, xk+1, . . . , xd are given. Then, we look for the unknown xk,
satisfying

xk ∈ arg min
zk∈R

Nk×Nk

∥b − A(x1 ⊗ · · · ⊗ xk−1 ⊗ zk ⊗ xk+1 ⊗ · · · ⊗ xd)∥2,

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25638

where we can write

A(x1 ⊗ · · · ⊗ xk−1 ⊗ zk ⊗ xk+1 ⊗ · · · ⊗ xd) = A(x1 ⊗ · · · ⊗ xk−1 ⊗ idNk ⊗ xk+1 ⊗ · · · ⊗ xd)zk.

In consequence, by using a least squares approach [11], we can obtain xk by solving the following
Nk × Nk-dimensional linear system:

Zkzk = b, (2.7)

where

Zk := (xT
1 ⊗ · · · ⊗ xT

k−1 ⊗ idNk ⊗ xT
k+1 ⊗ · · · ⊗ xT

d)AT A(x1 ⊗ · · · ⊗ xk−1 ⊗ idk ⊗ xk+1 ⊗ · · · ⊗ xd)

and
bk := (xT

1 ⊗ · · · ⊗ xT
k−1 ⊗ idNk ⊗ xT

k+1 ⊗ · · · ⊗ xT
d)AT b.

Clearly,

∥b − A(x1 ⊗ · · · ⊗ xk−1 ⊗ zk ⊗ xk+1 ⊗ · · · ⊗ xd)∥2 ≤ ∥b − A(x1 ⊗ · · · ⊗ xk−1 ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xd)∥2

holds for all zk ∈ R
Nk×Nk . However, it is well known (see Section 4 in [11]) that the performance of the

ALS strategy can be improved (see Algorithm 2 below) when the shape of the matrix AT A ∈ RN×N ,

with N = N1 . . .Nd, can be written in the form

AT A =
r∑

i=1

d⊗
j=1

A(i)
j , (2.8)

where
⊗d

j=1 A(i)
j = A(i)

1 ⊗ · · · ⊗ A(i)
d ; here, A(i)

j ∈ R
N j×N j for 1 ≤ j ≤ d and 1 ≤ i ≤ r. In particular, when

the matrix A is given by

A =
d∑

i=1

idN1 ⊗ · · · ⊗ idNi−1 ⊗ Ai ⊗ idNi+1 ⊗ · · · ⊗ idNd ,

then the matrix AT A can be easily written in the form of (2.8). These matrices were introduced in [8]
as Laplacian-like matrices since they can be easily related to the classical Laplacian operator [2, 12].
The next section will be devoted to the study of this class of matrices.

3. On the best Laplacian matrix approximation

As we said in the introduction, the proper orthogonal decomposition is a popular numerical
strategy in the engineering process to solve high-dimensional problems. It is based on the GROU
algorithms (2.3) and (2.4), and it can be considered as a tensor-based decomposition algorithm.

There is a particular type of matrices to solve high-dimensional linear systems for which these
methods work particularly well, i.e., those that satisfy the property (2.8). To this end, we introduce the
following definition.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25639

Algorithm 2 An ALS algorithm for matrices in the form of (2.8) [11, Algorithm 2]

1: Given AT A =
∑r

i=1

⊗d
j=1 A(i)

j ∈ R
N×N and b ∈ RN .

2: Initialize x(0)
i ∈ R

Ni for i = 1, 2 . . . , d.
3: Introduce ε > 0 and itermax, iter = 1.
4: while distance > ε and iter < itermax do
5: for k = 1, 2, . . . , d do
6: x(1)

k = x(0)
k

7: for i = 1, 2, . . . , r do
8: α(i)

k =
(∏k−1

j=1(x(0)
j)T A(i)

j x(0)
j

) (∏d
j=k+1(x(1)

j)T A(i)
j x(1)

j

)
9: end for

10: x(0)
k solves

(∑r
i=1 α

(i)
k A(i)

k

)
xk = (x(0)

1 ⊗ · · · ⊗ x(0)
k−1 ⊗ idNk ⊗ x(0)

k ⊗ · · · ⊗ x(0)
d)T b

11: end for
12: iter = iter + 1.
13: distance = max1≤i≤d ∥x(0)

i − x(1)
i ∥2.

14: end while

Definition 3.1. Given a matrix A ∈ RN×N , where N = N1 · · ·Nd, we say that A is a Laplacian-like
matrix if there exist matrices Ai ∈ R

Ni×Ni for 1 ≤ i ≤ d be such that

A =
d∑

i=1

Ai ⊗ id[Ni] �
d∑

i=1

idN1 ⊗ · · · ⊗ idNi−1 ⊗ Ai ⊗ idNi+1 ⊗ · · · ⊗ idNd , (3.1)

where idN j is the identity matrix of size N j × N j.

It is not difficult to see that the set of Laplacian-like matrices is a linear subspace RN×N of matrices
satisfying the property (2.8). From now on, we will denote byL

(
RN×N

)
the subspace of Laplacian-like

matrices in RN×N for a fixed decomposition of N = N1 · · ·Nd.
Now, given a matrix A ∈ RN×N , our goal is to solve the following optimization problem:

min
L∈L(RN×N)

∥A − L∥2. (3.2)

Clearly, if we denote by ΠL(RN×N) the orthogonal projection onto the linear subspace L
(
RN×N

)
, then

LA := ΠL(RN×N)(A) is the solution of (3.2). Observe that ∥A − LA∥2 = 0 if and only if A ∈ L
(
RN×N

)
.

We are interested in trying to achieve a structure similar to (3.1) to study the matrices of large-
dimensional problems. We search an algorithm that allows one to construct, for a given matrix A, its
Laplacian-like best approximation LA.

To do this, we will use the following theorem, which describes a particular decomposition of the
space of matrices RN×N . Observe that the linear subspace span{idN} in RN×N has, as the orthogonal
space, the following null trace matrices:

span{idn}
⊥ = {A ∈ Rn×n : tr(A) = 0},

with respect to the inner product ⟨A, B⟩RN×N = tr(AT B).

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25640

Theorem 3.2. Consider
(
RN×N , ∥ · ∥2

)
as a Hilbert space where N = N1 · · ·Nd. Then, there exists a

decomposition
RN×N = span{idN} ⊕ hN = L

(
RN×N

)
⊕ L

(
RN×N

)⊥
,

where hN = span{idN}
⊥ is the orthogonal complement of the linear subspace generated by the identity

matrix. Moreover,
L

(
RN×N

)
= span {idN} ⊕ ∆, (3.3)

where ∆ = hN ∩ L(RN×N). Furthermore, L(RN×N)⊥ is a subspace of hN and

∆ =

d⊕
i=1

span{idN1} ⊗ · · · ⊗ span{idNi−1} ⊗ span{idNi}
⊥ ⊗ span{idNi+1} ⊗ · · · ⊗ span{idNd}.

Proof. It follows from Lemma 3.1, Theorem 3.1 and Theorem 3.2 in [8]. □

The above theorem allows us to compute the projection of matrix A onto L(RN×N) as follows.
Denote by Πi the orthogonal projection of RN×N onto the linear subspace

span{idN1} ⊗ · · · ⊗ span{idNi−1} ⊗ span{idNi}
⊥ ⊗ span{idNi+1} ⊗ · · · ⊗ span{idNd}

for 1 ≤ i ≤ d. Thus,
∑k

i=1Πi is the orthogonal projection of RN×N onto the linear subspace ∆. In
consequence, by using (3.3), we have

tr(A)
N

idN +

d∑
i=1

Πi(A) = arg min
L∈L(RN×N)

∥A − L∥2. (3.4)

If we further analyze (3.4), we observe that the second term on the left is of the form

d∑
i=1

Πi(A) =
d∑

i=1

idN1 ⊗ · · · ⊗ idNi−1 ⊗ Xi ⊗ idNi+1 ⊗ · · · ⊗ idNd ,

and that it has only (N2
1 + · · · + N2

d − d)-degrees of freedom (recall that dim span{idNi}
⊥ = N2

i − 1). In
addition, due to the tensor structure of the products, the unknowns xl of Xk are distributed in the form
of a block so that we can calculate which will be the entries of the matrix A that we can approximate.
Therefore, to obtain the value of each xl, we only need to calculate which is the value that best
approximates the entries (i, j) of the original matrix that are in the same position as xl.

In our next result, we will see how to carry out this procedure. To do this, we make the following
observation. Given a matrix A = (ai, j) ∈ RKL×KL for some integers K, L > 1, we can write A as a matrix
block:

A =


A(K,L)

1,1 A(K,L)
1,2 · · · A(K,L)

1,L

A(K,L)
2,1 A(K,L)

2,2 · · · A(K,L)
2,L

...
...

. . .
...

A(K,L)
L,1 A(K,L)

L,2 · · · A(K,L)
L,L

 , (3.5)

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25641

where the block A(K,L)
i, j ∈ RK×K for 1 ≤ i, j ≤ L is given by

A(K,L)
i, j =


a(i−1)K+1,(j−1)K+1 · · · a(i−1)K+1, jK

...
. . .

...

aiK,(j−1)K+1 · · · aiK, jK

 .
Moreover,

∥A∥2
RKL×KL

=

KL∑
i=1

KL∑
j=1

a2
i, j =

L∑
r=1

L∑
s=1

∥A(K,L)
r,s ∥

2
RK×K
.

Observe that K and L can be easily interchanged. To simplify the notation, from now on given N =
N1N2 · · ·Nd, we denote it by N[k] = N1 · · ·Nk−1Nk+1 · · ·Nd for each 1 ≤ k ≤ d.

Theorem 3.3. Let A ∈ RN×N , with N = N1 · · ·Nd. For each fixed 1 ≤ k ≤ d, consider the linear function
Pk : RNk×Nk −→ RN×N given by

Pk(Xk) := idN1 ⊗ · · · ⊗ idNk−1 ⊗ Xk ⊗ idNk+1 ⊗ · · · ⊗ idNd .

Then, the solution of the minimization problem

min
Xk∈R

Nk×Nk
∥A − Pk(Xk)∥2 (3.6)

is given by

(Xk)i, j =



1
N[1]

N[1]∑
n=1

a(i−1)N[1]+n,(j−1)N[1]+n if k = 1,

1
N[k]

Nk+1···Nd∑
m=1

N1···Nk−1∑
n=1

A(Nk ···Nd ,N1···Nk−1)
n,n


(i−1)Nk+1···Nd+m,(j−1)Nk+1···Nd+m

if 1 < k < d,

1
N[d]

N[d]∑
n=1

A(Nd ,N[d])
n,n


i, j

if k = d.

Proof. First, let us observe that idN1 ⊗ · · · ⊗ idNk = idN1···Nk ; so, we can find three different situations in
the calculation of the projections:

(1). P1(A) = X1 ⊗ idN[1]; in this case,

P1(X1) =


(X1)1,1idN[1] (X1)1,2idN[1] . . . (X1)1,N1idN[1]

(X1)2,1idN[1] (X1)2,2idN[1] . . . (X1)2,N1idN[1]
...

...
. . .

...

(X1)N1,1idN[1] (X1)N1,2idN[1] . . . (X1)N1,N1idN[1]

 ∈ RN[1]N1×N[1]N1 .

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25642

(2). Pd(Xd) = idN[d] ⊗ Xd; in this case,

Pd(Xd) =


Xd Od · · · Od

Od Xd · · · Od
...
...
. . .

...

Od Od · · · Xd

 ∈ RNdN[d]×NdN[d] ,

where Od denotes the zero matrix in RNd×Nd .

(3). Pi(Xi) = idN1···Ni−1 ⊗ Xi ⊗ idNi+1···Nd for i = 2, . . . , d − 1; in this case, for a fixed 2 ≤ i ≤ d − 1, we
write Nℓ = N1 · · ·Ni−1 and Nr = Ni+1 · · ·Nd. Thus,

Pi(Xi) = idNℓ ⊗ Xi ⊗ idNr

= idNℓ ⊗


(Xi)1,1idNr (Xi)1,2idNr . . . (Xi)1,N1idNr

(Xi)2,1idNr (Xi)2,2idNr . . . (Xi)2,N1idNr
...

...
. . .

...

(Xi)N1,1idNr (Xi)N1,2idNr . . . (Xi)N1,N1idNr


=


Xi ⊗ idNr Oi ⊗ idNr · · · Oi ⊗ idNr

Oi ⊗ idNr Xi ⊗ idNr · · · Oi ⊗ idNr
...

...
. . .

...

Oi ⊗ idNr Oi ⊗ idNr · · · Xi ⊗ idNr

 ∈ R(NiNr)Nℓ×(NiNr)Nℓ .

In either case, a difference of the form

min
Xk∈R

Nk×Nk
∥A − Pk(A)∥2

must be minimized. To this end, we will consider each case A as a block matrix A ∈ RKL×KL in the
form of (3.5).
Case 1: For P1(X1), we take K = N[1] and L = N1; hence,

A − P1(X1) =


A(K,L)

1,1 − (X1)1,1idN[1] A(K,L)
1,2 − (X1)1,2idN[1] . . . A(K,L)

1,N1
− (X1)1,N1idN[1]

A(K,L)
2,1 − (X1)2,1idN[1] A(K,L)

2,2 − (X1)2,2idN[1] . . . A(K,L)
2,N1
− (X1)2,N1idN[1]

...
...

. . .
...

A(K,L)
N1,1
− (X1)N1,1idN[1] A(K,L)

N1,2
− (X1)N1,2idN[1] . . . A(K,L)

N1,N1
− (X1)N1,N1idN[1]

 .
In this situation, we have

∥A − P1(X1)∥2
RN×N
=

N1∑
i=1

N1∑
j=1

∥A(K,L)
i, j − (X1)i, jidN[1]∥

2

R
N[1]×N[1]

;

hence, we wish for each 1 ≤ i and j ≤ N1 to yield

(X1)i, j = x ∈ arg min
x∈R
∥A(K,L)

i, j − x idN[1]∥
2

R
N[1]×N[1]

= arg min
x∈R

N[1]∑
n=1

(a(i−1)N[1]+n,(j−1)N[1]+n − x)2.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25643

Thus, it is not difficult to see that

(X1)i, j =
1

N[1]

N[1]∑
n=1

a(i−1)N[1]+n,(j−1)N[1]+n

for 1 ≤ i, j ≤ N1.

Case 2: For Pd(Xd), we take K = Nd and L = N[d]; hence,

A − Pd(Xd) =


A(K,L)

1,1 − Xd A(K,L)
1,2 − Od · · · A(K,L)

1,N[d]
− Od

A(K,L)
2,1 − Od A(K,L)

2,2 − Xd · · · A(K,L)
2,N[d]
− Od

...
...

. . .
...

A(K,L)
N[d],1
− Od A(K,L)

N[d],2
− Od · · · A(K,L)

N[d],N[d]
− Xd

 .
Now, we have

∥A − Pd(Xd)∥2
RN×N
=

N[d]∑
i=1

∥A(K,L)
i,i − Xd∥

2
RNd×Nd

+

N[d]∑
i=1, j=1,i, j

∥A(K,L)
i,i ∥

2
RNd×Nd

.

Thus, Xd ∈ R
Nd×Nd minimizes ∥A − Pd(Xd)∥2

RN×N
if and only if

Xd ∈ arg min
X∈RNd×Nd

N[d]∑
i=1

∥A(K,L)
i,i − X∥2

RNd×Nd
.

In consequence,

Xd =
1

N[d]

N[d]∑
i=1

A(K,L)
i,i .

Case 3: For Pi(Xi), we take K = NiNr and L = Nℓ; hence,

A − Pi(Xi) =


A(K,L)

1,1 − Xi ⊗ idNr A(K,L)
1,2 − Oi ⊗ idNr · · · A(K,L)

1,Nℓ
− Oi ⊗ idNr

A(K,L)
2,1 − Oi ⊗ idNr A(K,L)

2,2 − Xi ⊗ idNr · · · A(K,L)
1,Nℓ
− Oi ⊗ idNr

...
...

. . .
...

A(K,L)
Nℓ,1
− Oi ⊗ idNr A(K,L)

Nℓ,2
− Oi ⊗ idNr · · · A(K,L)

Nℓ,Nℓ
− Xi ⊗ idNr

 .
In this case,

∥A − Pi(Xi)∥2
RN×N
=

Nℓ∑
n=1

∥A(K,L)
n,n − Xi ⊗ idNr∥

2
RNiNr×NiNr

+

Nℓ∑
n=1, j=1,n, j

∥A(K,L)
n, j ∥

2
RNiNr×NiNr

,

so we need to solve the following problem:

min
X∈RNi×Ni

Nℓ∑
n=1

∥A(K,L)
n,n − X ⊗ idNr∥

2
RNiNr×NiNr

. (3.7)

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25644

Since X ⊗ idNr ∈ R
Ni×Ni ⊗ span{idNr}, we can write (3.7) as

min
Z∈RNi×Ni⊗span{idNr }

Nℓ∑
n=1

∥A(K,L)
n,n − Z∥2

RNiNr×NiNr
. (3.8)

Observe that

A∗ = (a∗u,v) =
1
Nℓ

Nℓ∑
n=1

A(K,L)
n,n = arg min

U∈RNiNr×NiNr

Nℓ∑
n=1

∥A(K,L)
n,n − U∥2

RNiNr×NiNr
.

To simplify the notation, we writeU := RNi×Ni⊗span{idNr}. Then, we have the following orthogonal
decomposition, RNiNr×NiNr = U⊕U⊥.Denote byΠU the orthogonal projection onto the linear subspace
U. Then, for each Z ∈ U, we have

∥A(K,L)
n,n − Z∥2 = ∥(id − ΠU)(A(K,L)

n,n) + ΠU(A(K,L)
n,n) − Z∥2

= ∥(id − ΠU)(A(K,L)
n,n)∥2 + ∥ΠU(A(K,L)

n,n) − Z∥2,

because (id − ΠU)(A(K,L)
n,n) ∈ U⊥ and ΠU(A(K,L)

n,n) − Z ∈ U. In consequence, the process of solving (3.8)
is equivalent that for solving the following optimization problem:

min
Z∈U

Nℓ∑
n=1

∥ΠU(A(K,L)
n,n) − Z∥2

RNiNr×NiNr
. (3.9)

Thus,

Z∗ =
1
Nℓ

Nℓ∑
n=1

ΠU(A(K,L)
n,n) = arg min

Z∈U

Nℓ∑
n=1

∥ΠU(A(K,L)
n,n) − Z∥2

RNiNr×NiNr
,

that is, Z∗ = ΠU(A∗); hence,

Z∗ = arg min
Z∈U
∥A∗ − Z∥2 = Xi ⊗ idNr = arg min

X∈RNi×Ni
∥A∗ − X ⊗ idNr∥

2
RNiNr×NiNr

.

Proceeding in a similar way as in Case 1, we obtain

(Xi)u,v =
1
Nr

Nr∑
m=1

a∗
(u−1)Nr+m,(v−1)Nr+m

=
1
Nr

1
Nl

Nr∑
m=1

 Nl∑
n=1

A(K,L)
n,n


(u−1)Nr+m,(v−1)Nr+m

for 1 ≤ u, v ≤ Ni. This concludes the proof of the theorem. □

To conclude, we obtain the following useful corollary.

Corollary 3.4. Let A ∈ RN×N , with N = N1 · · ·Nd. For each fixed 1 ≤ k ≤ d, consider the linear
function Pk : RNk×Nk −→ RN×N given by

Pk(Xk) := idN1 ⊗ · · · ⊗ idNk−1 ⊗ Xk ⊗ idNk+1 ⊗ · · · ⊗ idNd .

For each 1 ≤ k ≤ d, let Xk ∈ R
Nk×Nk be the solution of the optimization problem (3.6). Then,

LA =
tr(A)

N
idN +

d∑
k=1

Pk

(
Xk −

tr(Xk)
Nk

idNk

)
= arg min

L∈L(RN×N)
∥A − L∥2. (3.10)

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25645

Proof. Observe that, for 1 ≤ k ≤ d, the matrix Xk satisfies

Pk(Xk) = arg min
Z∈h(k)

∥A − Z∥2,

where
h

(k) := span{idN1} ⊗ · · · ⊗ span{idNk−1} ⊗ R
Nk×Nk ⊗ span{idNk+1} ⊗ · · · ⊗ span{idNd}

is a linear subspace of RN×N that is linearly isomorphic to RNk×NK . Since
RNk×Nk = span{idNk} ⊕ span{idNk}

⊥, then

Xk =
tr(Xk)

Nk
idNk +

(
Xk −

tr(Xk)
Nk

idNk

)
;

hence

Pk(Xk) = Pk

(
tr(Xk)

Nk
idNk

)
+ Pk

(
Xk −

tr(Xk)
Nk

idNk

)
=

tr(Xk)
Nk

idN + Pk

(
Xk −

tr(Xk)
Nk

idNk

)
.

We can conclude that Πk(A) = Pk

(
Xk −

tr(Xk)
Nk

idNk

)
; recall that Πk is the orthogonal projection of RN×N

onto the linear subspace

span{idN1} ⊗ · · · ⊗ span{idNk−1} ⊗ span{idNk}
⊥ ⊗ span{idNk+1} ⊗ · · · ⊗ span{idNd}.

From (3.4), the corollary is proved. □

4. The best Laplacian approximation for the discretization of second-order partial differential
equations without mixing derivatives

In this section, we consider the general equation of a generic second-order partial differential
equation without mixing derivatives with homogeneous boundary conditions. More precisely, let

αuxx + βuyy + γux + δuy + µu = f for (x, y) ∈ (0, 1) × (0, 1), (4.1)
u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0 for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (4.2)

We discretize (4.1) with the help of the following derivative approximations:

ux(x, y) ≈
u(xi+1, y j) − u(xi−1, y j)

2h
, uy(x, y) ≈

u(xi, y j+1) − u(xi, y j−1)
2k

,

and
uxx(x, y) ≈

u(xi+1, y j) − 2u(xi, y j) + u(xi−1, y j)
h2 ,

uyy(x, y) ≈
u(xi, y j+1) − 2u(xi, y j) + u(xi, y j−1)

k2

for i = 1, . . . ,N and j = 1, . . . ,M. From (4.2), we have that u(x, y0) = u(x, yM+1) = u(x0, y) =
u(xN+1, y) = 0 for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25646

Next, in order to obtain a linear system, we put uℓ := u(xi, y j) and fℓ := f(xi, y j), where ℓ :=
(i − 1)M + j for 1 ≤ i ≤ N and 1 ≤ j ≤ M. In this way, the represented mesh is traversed as
shown in Figure 1, and the elements U = (uℓ)MN

ℓ=1 and F = {fℓ}MN
ℓ=1 are column vectors. It allows us to

represent (4.1) and (4.2) as the linear system AF = U, where A is the MN × MN-block matrix

A =



T D1

D2 T D1
. . .
. . .
. . .

D2 T D1

D2 T


(4.3)

for T ∈ RM×M, given by

T =


2µh2k2 − 4αk2 − 4βh2 2βh2 + δh2k 0 . . . 0

2βh2 − δh2k 2µh2k2 − 4αk2 − 4βh2 2βh2 + δh2k . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2βh2 − δh2k 2µh2k2 − 4αk2 − 4βh2

 ,

and D1,D2 ∈ R
M×M are the diagonal matrices:

D1 = (2αk2 + γhk2)idM, D2 = (2αk2 − γhk2)idM.

(i, j)

(1, 1)

(N,M)

Figure 1. Proceeding from (1, 1) to (1,M); (2, 1), . . . , (2,M); and, ending at
(N, 1), . . . , (N,M).

In this case, tr(A) = NM(2µh2k2 − 4αk2 − 4βh2); so, instead of looking for LA, as in (3.10), we will
look for LÂ, where

Â =
(
A −

tr(A)
NM

idNM

)
has a null trace. Proceeding according to Theorem 3.3 for sizes N1 = N and N2 = M, we obtain the

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25647

following decomposition:

X1 =



0 2αk2 + γhk2 0 . . . 0
2αk2 − γhk2 0 2αk2 + γhk2 . . . 0

...
. . .

. . .
. . .

...

0 . . . 2αk2 − γhk2 0 2αk2 + γhk2

0 . . . 0 2αk2 − γhk2 0


∈ RN×N

and

X2 =



0 2βh2 + δh2k 0 . . . 0
2βh2 − δh2k 0 2βh2 + δh2k . . . 0

...
. . .

. . .
. . .

...

0 . . . 2βh2 − δh2k 0 2βh2 + δh2k
0 . . . 0 2βh2 − δh2k 0


∈ RM×M.

We remark that tr(X1) = tr(X2) = 0.Moreover, the residual of the approximation LÂ of Â is ∥Â−LÂ∥ = 0.
In consequence, we can write the original matrix A as

A =
tr(A)
NM

idNM + X1 ⊗ idM + idN ⊗ X2.

Recall that the first term is
tr(A)
NM

idNM =
(
2µh2k2 − 4αk2 − 4βh2

)
· idNM =

(
2µh2k2 − 4αk2 − 4βh2

)
· idN ⊗ idM;

hence, A can be written as
A = Z1 ⊗ idM + idN ⊗ Z2,

where

Z1 =



µh2k2 − 2αk2 − 2βh2 2αk2 + γhk2 0 . . . 0
2αk2 − γhk2 µh2k2 − 2αk2 − 2βh2 2αk2 + γhk2 . . . 0

...
. . .

. . .
. . .

...

0 . . . 2αk2 − γhk2 µh2k2 − 2αk2 − 2βh2 2αk2 + γhk2

0 . . . 0 2αk2 − γhk2 µh2k2 − 2αk2 − 2βh2


is an N × N-matrix and

Z2 =



µh2k2 − 2αk2 − 2βh2 2βh2 + δh2k 0 . . . 0
2βh2 − δh2k µh2k2 − 2αk2 − 2βh2 2βh2 + δh2k . . . 0

...
. . .

. . .
. . .

...

0 . . . 2βh2 − δh2k µh2k2 − 2αk2 − 2βh2 2βh2 + δh2k

0 . . . 0 2βh2 − δh2k µh2k2 − 2αk2 − 2βh2


is a M × M-matrix.

Now, we can use this representation of A to implement the GROU Algorithm 1, together with the
ALS strategy given by Algorithm 2, to solve the following linear system:

AU = (Z1 ⊗ idM + idN ⊗ Z2)U = F.

This study can be extended to high-dimensional equations, as occurs in [8] with the three-dimensional
Poisson equation.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25648

5. Numerical examples

Next, we are going to consider some particular equations to analyze their numerical behavior. In all
cases, the characteristics of the computer used are as follows: 11th Gen Intel(R) Core(T M) i7-11370H
@ 3.30GHz, RAM 16 GB, 64-bit operating system; and, Matlab version R2021b [13].

5.1. The Helmholtz equation

Let us consider the particular case of the second-order partial differential equation with α = β = 1,
µ = c2 and f = 0, that is,

uxx + uyy + c2u = 0.

This is the 2D-Helmholtz equation. To obtain the linear system associated with the discrete problem,
we need some boundary conditions; for example,u(x, 0) = sin(ωx) + cos(ωx) for 0 ≤ x ≤,

u(0, y) = sin(ωy) + cos(ωy) for 0 ≤ y ≤ T,

and u(x,T) = sin (ω(x + T)) + cos (ω(x + T)) for 0 ≤ x ≤,

u(L, y) = sin (ω(y + L)) + cos (ω(y + L)) for 0 ≤ y ≤ T.

This initial value problem has a closed solution for ω =
c
√

2
,

u(x, y) = sin (ω(x + y)) + cos (ω(x + y)) .

From the above operations, and by taking h = k for simplicity, we can write the matrix of the discrete
linear system associated with the equation of Helmholtz as

A =


2c2h4 − 8h2 2h2 0 . . . 0

2h2 2c2h4 − 8h2 2h2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2h2 2c2h4 − 8h2

 ⊗ idM + idN ⊗


0 2h2 0 . . . 0

2h2 0 2h2 . . . 0
...
. . .

. . .
. . .

...

0 . . . 0 2h2 0


or, equivalently,

A =


c2h4 − 4h2 2h2 0 . . . 0

2h2 c2h4 − 4h2 2h2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2h2 c2h4 − 4h2

 ⊗ idM

+ idN ⊗


c2h4 − 4h2 2h2 0 . . . 0

2h2 c2h4 − 4h2 2h2 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 2h2 c2h4 − 4h2

 .
AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25649

If we solve this linear system Aul = f̂l for the case c =
√

2, L = T =, and with N = M, we obtain
the temporary results shown in Figure 2. To carry out this experiment, we have used the following
parameter values: for the GROU Algorithm 1: tol = 2.2204e−16; ε = 2.2204e−16; rank max = 10;
(iter-max = 5 and ε = 2.2204e − 16 were used to perform Algorithm 2); and, the number of nodes
in (0, 1)2 (that is, the number of rows or columns of the matrix A) was increased from 102 to 2002.

0 0.5 1 1.5 2 2.5 3 3.5 4

Nodes in (0,1)
2 104

-2

-1

0

1

2

3

4

lo
g

1
0
(C

P
U

 t
im

e
 i
n
 s

e
c
o
n
d
s
)

A\b

GROU

GROU (A Lap)

Figure 2. CPU time, in seconds, employed to solve the discrete Helmholtz initial value
problem by using the Matlab command A\b, the GROU Algorithm 1 and the GROU
Algorithm 1 with A written as LA, as obtained from Corollary 3.3.

To measure the goodness of the approximations obtained, we calculated the normalized errors, that
is, the value of the difference, in absolute value, of the results obtained and the real solution, between
the length of the solution, i.e.,

ε =
|exact solution − approximate solution|

N2

for the different approximations obtained. The values of these errors were of the order of 10−4 and can
be seen in Figure 3.

0 0.5 1 1.5 2 2.5 3 3.5 4

Nodes in (0,1)
2 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 e

rr
o
r

10-3

A\b

GROU

GROU (A Lap)

Figure 3. Normalized error between the solution of the discrete Helmholtz initial value
problem and the solutions obtained by using the Matlab command A\b, the GROU
Algorithm 1 and the GROU Algorithm 1 with A written as LA, as obtained from Corollary 3.3.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25650

5.2. The Swift-Hohenberg equation

Now, let us consider the partial differential equation of order four:

∂u
∂t
= ε −

(
1 +
∂2

∂x2

)2

u, (5.1)

with the boundary conditions  u(x, 0) = sin(kx),
u(x,T) = sin(kx)eT for 0 ≤ x ≤ L, (5.2)

and
u(0, t) = u(L, t) = 0 for 0 ≤ t ≤ T. (5.3)

For k =
√

1 +
√
ε − 1 L = 2π/k, the initial value problem (5.1)–(5.3) has the following as a solution:

u(x, t) = sin(kx)et.

If we discretize the problem described by (5.1)–(5.3) as in the previous example with the same step
size for both variables, h, we obtain a linear system of the form Aul = f̂l, where A, in Laplacian-like
form, is the matrix

A =


12 − 8h2 + (2 − 2ε)h4 4h2 − 8 2 0 . . . 0

4h2 − 8 12 − 8h2 + (2 − 2ε)h4 4h2 − 8 2 . . . 0
...

. . .
. . .

. . .
. . .

...

0 . . . 0 2 4h2 − 8 12 − 8h2 + (2 − 2ε)h4

 ⊗ idM

+idN ⊗


0 h3 0 . . . 0
−h3 0 h3 . . . 0
...
. . .
. . .

. . .
...

0 . . . 0 −h3 0

 ,
and l = (i − 1)M + j is the order established for the indices, with 1 ≤ i ≤ N and 1 ≤ j ≤ M.

To perform a numerical experiment, we set ε = 2, L = T = 2π and the same number of points for
the two variables. At this point, we can solve the linear system associated with the Swift-Hohenberg
discrete problem by using our tools: the Matlab command A\b, the GROU Algorithm 1, and the GROU
Algorithm 1, together with the ALS Algorithm 2 with A written in Laplacian-like form. In this case,
we used the following parameter values in the algorithms: tol = 2.2204e − 16; ε = 2.2204e − 16;
rank max = 10 for the GROU Algorithm 1, with iter-max = 5 for the ALS step; and, the number of
nodes in (0, 2π)2 was increased from 102 to 2002. Figure 4 shows the results obtained.

Again, we calculated the normalized errors to estimate the goodness of the approximations, the
results of which are shown in Figure 5.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25651

0 0.5 1 1.5 2 2.5 3 3.5 4

Nodes in (0,2)
2 104

-2

-1

0

1

2

3

4

lo
g

1
0
(C

P
U

 t
im

e
 i
n
 s

e
c
o
n
d
s
)

A\b

GROU

GROU (A Lap)

Figure 4. CPU time, in seconds, employed to solve the discrete Swift-Hohenberg initial
value problem by using the Matlab command A\b, the GROU Algorithm 1 and the GROU
Algorithm 1 with A written in Laplacian form.

0 0.5 1 1.5 2 2.5 3 3.5 4

Nodes in (0,2)
2 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 e

rr
o
r

A\b

GROU

GROU (A Lap)

Figure 5. Normalized error between the solution of the discrete Swift-Hohenberg initial
value problem and the solutions obtained by using the Matlab command A\b, the GROU
Algorithm 1 and the GROU Algorithm 1 with A written in Laplacian form.

6. Conclusions

In this work, we have studied the Laplacian decomposition algorithm, which, given any square
matrix, calculates its best Laplacian approximation. Furthermore, in Theorem 3.3, we have shown how
it is implemented optimally.

For us, the greatest interest in this algorithm lies in the computational improvement of combining
it with the GROU Algorithm 1 to solve linear systems through the discretization of a partial derivative
equation. Said improvement can be seen in the different numerical examples shown, where we have
compared this procedure with the standard resolution of Matlab by means of the instruction A\b.

This proposal is a new way of dealing with certain large-scale problems, where classical methods
prove to be more inefficient.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

25652

Acknowledgments

J. A. Conejero acknowledges funding from grant PID2021-124618NB-C21, funded by
MCIN/AEI/ 10.13039/501100011033, and by “ERDF: A way of making Europe”, by the “European
Union”; M. Mora-Jiménez was supported by the Generalitat Valenciana and the European Social
Fund under grant number ACIF/2020/269; A. Falcó was supported by the MICIN grant number
RTI2018-093521-B-C32 and Universidad CEU Cardenal Herrera under grant number INDI22/15.

Conflict of interest

The authors declare that they no have conflicts of interest.

References

1. A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, et al., Discovering
faster matrix multiplication algorithms with reinforcement learning, Nature, 610 (2022), 47–53.
https://doi.org/10.1038/s41586-022-05172-4

2. G. Heidel, V. Khoromskaia, B. Khoromskij, V. Schulz, Tensor product method for fast solution
of optimal control problems with fractional multidimensional Laplacian in constraints, J. Comput.
Phys., 424 (2021), 109865. https://doi.org/10.1016/j.jcp.2020.109865

3. C. Quesada, G. Xu, D. González, I. Alfaro, A. Leygue, M. Visonneau, et al., Un método de
descomposición propia generalizada para operadores diferenciales de alto orden, Rev. Int. Metod.
Numer., 31 (2015), 188–197. https://doi.org/10.1016/j.rimni.2014.09.001

4. A. Nouy, Low-rank methods for high-dimensional approximation and model order reduction, Soc.
Ind. Appl. Math., 2017, 171–226.

5. A. Falcó, A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor
Banach spaces, Numer. Math., 121 (2012), 503–530. https://doi.org/10.1007/s00211-011-0437-5

6. I. Georgieva, C. Hofreither, Greedy low-rank approximation in Tucker format of
solutions of tensor linear systems, J. Comput. Appl. Math., 358 (2019), 206–220.
https://doi.org/10.1016/j.cam.2019.03.002

7. A. Ammar, F. Chinesta, A. Falcó, On the convergence of a Greedy Rank-One Update
algorithm for a class of linear systems, Arch. Comput. Methods Eng., 17 (2010), 473–486.
https://doi.org/10.1007/s11831-010-9048-z

8. J. A. Conejero, A. Falcó, M. Mora-Jiménez, Structure and approximation properties of laplacian-
like matrices, Results Math., 78 (2023), 184. https://doi.org/10.1007/s00025-023-01960-0

9. J. Swift, P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15
(1977), 319–328.

10. V. de Silva, L. H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation
problem, SIAM J. Matrix Anal. Appl., 30 (2008), 1084–1127. https://doi.org/10.1137/06066518X

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

http://dx.doi.org/https://doi.org/10.1038/s41586-022-05172-4
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109865
http://dx.doi.org/https://doi.org/10.1016/j.rimni.2014.09.001
http://dx.doi.org/https://doi.org/10.1007/s00211-011-0437-5
http://dx.doi.org/https://doi.org/10.1016/j.cam.2019.03.002
http://dx.doi.org/https://doi.org/10.1007/s11831-010-9048-z
http://dx.doi.org/https://doi.org/10.1007/s00025-023-01960-0
http://dx.doi.org/https://doi.org/10.1137/06066518X

25653

11. A. Falcó, L. Hilario, N. Montés, M. Mora, Numerical strategies for the galerkin–proper
generalized decomposition method, Math. Comput. Model., 57 (2013), 1694–1702.
https://doi.org/10.1016/j.mcm.2011.11.012

12. W. Hackbusch, B. Khoromskij, S. Sauter, E. Tyrtyshnikov, Use of tensor formats
in elliptic eigenvalue problems, Numer. Lin. Algebra Appl., 19 (2012), 133–151.
https://doi.org/10.1002/nla.793

13. MATLAB, version R2021b, The MathWorks Inc., Natick, Massachusetts, 2021.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 11, 25633–25653.

http://dx.doi.org/https://doi.org/10.1016/j.mcm.2011.11.012
http://dx.doi.org/https://doi.org/10.1002/nla.793
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary definitions and results
	On the best Laplacian matrix approximation
	The best Laplacian approximation for the discretization of second-order partial differential equations without mixing derivatives
	Numerical examples
	The Helmholtz equation
	The Swift-Hohenberg equation

	Conclusions

