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Abstract: Deep learning (DL), a branch of machine learning and artificial intelligence, is nowadays
considered as a core technology. Due to its ability to learn from data, DL technology originated from
artificial neural networks and has become a hot topic in the context of computing, it is widely applied in
various application areas. However, building an appropriate DL model is a challenging task, due to the
dynamic nature and variations in real-world problems and data. The aim of this work was to develope
a new method for appropriate DL model selection using complex spherical fuzzy rough sets (CSFRSs).
The connectivity of two or more complex spherical fuzzy rough numbers can be defined by using the
Hamacher t-norm and t-conorm. Using the Hamacher operational laws with operational parameters
provides exceptional flexibility in dealing with uncertainty in data. We define a series of Hamacher
averaging and geometric aggregation operators for CSFRSs, as well as their fundamental properties,
based on the Hamacher t-norm and t-conorm. Further we have developed the proposed aggregation
operators and provide here a group decision-making approach for solving decision making problems.
Finally, a comparative analysis with existing methods is given to demonstrate the peculiarity of our
proposed method.

Keywords: complex spherical fuzzy rough set; Hamacher aggregation operators; decision making
problems; deep learning technique
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1. Introduction

Due to the development of numerous effective learning methods and network structures in the
late 1980s, neural networks have become a popular topic in the fields of machine learning and
artificial intelligence [1]. Innovative methods include multilayer perceptron networks trained using
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backpropagation type algorithms, self-organizing maps and radial basis function networks. While
neural networks are successfully used in a variety of applications, interest in this field has waned in
recent years. Hinton et al. [2] presented deep learning in 2006, which is based on the notion of artificial
neural networks (ANNs). Deep learning became a popular topic after that, leading to a renaissance in
neural network research, which is sometimes referred to as new generation neural networks. This
is because deep networks, when correctly trained, have demonstrated great success in a range of
classification and regression difficulties [1]. Due to its ability to learn from supplied data, deep learning
technology is currently regarded as one of the hottest subjects in the fields of machine learning, artificial
intelligence, data science, and analytics. According to historical data obtained from Google trends [3],
the international popularity of deep learning is increasing day by day [4]. Deep learning differs from
traditional machine learning in that, as the volume of data increases, deep learning technology employs
more layers to represent data abstractions in order to develop computational models. While deep
learning takes a long time to train a model because of the enormous number of parameters, it runs
relatively quickly during testing when compared to other machine learning methods [5]. Although
deep learning models are effectively employed in the aforementioned application domains, developing
an adequate deep learning model is a difficult undertaking due to the dynamic nature and variability of
real-world problems and data. Convolutional neural networks (CNNs or , alternatively, ConvNets) [6]
have a prevalent discriminative deep learning architecture that learns directly from input without
requiring human feature extraction. CNNs are widely used in image and video recognition, medical
image analysis, recommender systems, image classification, image segmentation, natural language
processing, financial time series, and many other applications. Recurrent neural networks (RNNs)
constitute another prominent neural network that uses sequential or time-series data and feeds the
result from the previous phase as input to the current stage [7, 8]. Recurrent networks, like feed-
forward networks and CNNss, learn from training input but differ in that they have “memory” which
allows them to influence the current input and output by utilizing information from prior inputs.
Long short-term memory networks (LSTMNs) were first proposed in [9] to address RNN concerns
with vanishing/exploding gradients. These challenges can arise during the backpropagation over time
as the algorithm trains on extended temporal sequences. Deep learning models, which include the
autoencoder (AE), generative adversarial networks (GANSs) and their derivatives, have been classified
as generative models. GAN deployment is generally intended for unsupervised learning tasks, but
it has also proven to be a better solution for semi-supervised and reinforcement learning activities,
depending on the task [10].

Multi-criteria group decision making (MCGDM) [11-13] is a consistent decision-making approach
that aims to determine the best alternative based on a number of criteria. The MCGDM approach has
grown more popular among experts due to its wide range of applications in fields such as operations
research, engineering technology and management science. Due to the expanding ambiguities and
uncertainties in the data, the decision experts found it difficult to apply crisp values [14, 15].

Zadeh first introduced the idea of a fuzzy set in 1965 [16] which took into account an element’s
degree of membership (DM) in a set. It has been widely applied in a variety of multi-criteria decision-
making problems. Later researchers examined that membership in fuzzy sets did not cover an object’s
uncertainty. Because the fuzzy set failed to describe the uncertainty with only the DM of an element,
Atanassov [17] established the generalized notion when he added the degree of non- membership
(DNM) to a fuzzy set and created the so called intuitionstic fuzzy set (IFS). The basic features of
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the IFS were developed and researched in 1986. In the case of the IFS there are some constraints
on DM and DNM. Due to IFS constraints in some circumstances, the IFS is unable to explain the
uncertainty of real-world data. Huang [18] established some generalized operations for IFSs, such
as the Hamacher sum, the Hamacher product, Hamacher exponentiation, etc., and further developed
some generalized Hamacher aggregation operators, such as the intuitionistic fuzzy Hamacher weighted
averaging operator, the intuitionistic fuzzy Hamacher ordered weighted averaging operator and the
intuitionistic fuzzy Hamacher hybrid averaging operator. Zhou and Chang [19] extended the concept
of an IFS and developed fuzzy number intuitionistic fuzzy Hamacher aggregation operators. Because
the total of the values of the DM and DNM is more than one, IFS theory has its own limitations
in transmitting information regarding the DM and DNM of an object; thus, IFS theory has failed to
describe the uncertainty in daily life applications.

Pawlak [20] developed a new, important rough set theory approach for dealing with ambiguous
and uncertain information in the decision-making process in 1982. In recent years, there has been
significant progress in both theoretical and practical investigation into rough sets, and many scholars
have contributed to this research in different ways. Dubois and Prade [21] described the mathematical
structure of fuzzy rough sets (FRSs). Khan et al. [22] extended the concept of a rough set to a
probabilistic hesitant FRS and then explained and applied it to decision-making problems. Further,
Zhou and Wu. [23] defined generalized approximation operators for intuitionistic FRSs. To solve
multi-attribute group decision making problems, Huang et al. [24] proposed an evaluation based on the
distance from the average solution technique.

Gundogdu and Kahraman [25,26] worked on the multi-criteria decision-making problem to propose
a decision-making system based on the multi-criteria decision-making model. In their hospital location
selection, Kahraman et al. [27] utilized TOPSIS method in Spherical fuzzy environment. In [28]
Mahmood et al. introduced the concept of spherical fuzzy sets and T-spherical fuzzy sets, as well
as their basic operators laws and aggregation operators . To solve a decision-making problem,
Ashraf et al. [29, 30] used spherical fuzzy set aggregation operators. Gundogdu et al. [31, 32]
applied the VIKOR method to site selection and waste management problems in the spherical fuzzy
environment. Sharaf [33] proposed a spherical fuzzy-VIKOR method based on spherical weighted
average mean/geometric mean operators. The spherical fuzzy graph was proposed by Akram et al. [34],
and these spherical fuzzy graphs were used by Akram [35] to propose a decision-making method.

Although all of these traditional fuzzy set theory models excel at carrying fuzzy information, their
ability to deal with one-dimensional information is limited. Many complex multi-criteria decision-
making problems have two-dimensional information that cannot be handled by existing multi-criteria
decision-making strategies. To counteract this trend, Ramot et al. [36, 37] created complex fuzzy sets
(CFSs), which incorporate fuzzy set theory by introducing complex amplitude and phase terms. The
phase term is a key component of complex fuzzy sets making it the only tool capable of capturing two-
dimensional information. Alkouri and Salleh [38] proposed complex intuitionistic fuzzy sets (CIFSs)
and terms for the DM and NDM, including amplitude and phase terms,that can be applied to decision-
making problems with two-dimensional information.

Akram et al. [39] established the generalized the complex intuitionistic fuzzy Hamacher
weighted averaging/geometric operator and complex intuitionistic fuzzy Hamacher ordered weighted
averaging/geometric operator. The disadvantage of CIFSs is that the restrictions on the amplitude
and phase terms are relatively strict, which illustrates the inadequacy of a CIFS when one or both
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conditions are not satisfied. Due to this fact, Ullah et al. [40] developed distance measure for the
complex Pythagorean fuzzy sets (CPyFSs), making MCGDM more accurate. Due to the fully tunable
requirement of the CPyFSs model, it is more efficient and predominant than other two-dimensional
imprecise knowledge techniques. Ma et al. [41] proposed a CPyFS-VIKOR method for MCGDM
problems based on linguistic information. Akram et al. [42] extended the of ELECTRE-I and TOPSIS
methods for MCGDM problems under CPyFSs. Akram and Naz [43] presented a novel decision-
making approach by implementing a CPyFSs environment. Garg et al. [44] discussed the CPyFSs
for MCGDM problems. Further Akram et al. [45] extended the complex spherical fuzzy to VIKOR
method for solving the MCGDM problems. Morever Akram et al. [46] also defined a series of
prioritized weighted aggregation operators for a complex spherical fuzzy . Hence in this paper, we
present some Hamacher operational laws and some new aggregation operators for the hybrid study
of complex spherical fuzzy rough sets (CSFRSs) to accommodate more uncertainty during decision-
making problems.

1.1. Contribution of study

In this work, we have created various types of complex spherical fuzzy rough Hamacher weighted
averaging/geometric aggregation operators in the CSFRSs environment. The CSFRSs can undoubtedly
explain the uncertain subjective data in the most ideal manner and complex spherical fuzzy rough
Hamacher weighted averaging/geometric aggregation operators give more versatility in the data
aggregation process. The main contributions of the article are given as follows.

(a) First, we define CSFRSs with the help of spherical fuzzy sets and complex spherical fuzzy sets
(CSFSs).

(b) We introduce a new score and accuracy functions for CSFRSs.

(c) We developed various types of complex spherical fuzzy rough Hamacher weighted
averaging/geometric aggregation operators for CSFRSs, such as the WA(C'?FR aggregation operator,
the OWAg)FR aggregation operator, the WG(CI?FR aggregation operator and the OWG(CI?FR aggregation
operator to deal with group decision making problems in which the attributes have interrelationships.

1.2. Motivation of the study

According to a review of complex fuzzy sets, CIFS , CPyFS and CSFS. CSFRSs constitute
an effective tool for decision making in a complex and ambiguous setting, and it overcomes the
shortcomings of the previous concepts of a CIFS, CPyFS and CSFS under the condition of two
dimensional information. Some extensions have been attempted since its inception, as have several
techniques for aggregation operators under the complex spherical fuzzy rough Hamacher t-norm and
t-conorm. The following is a description of the motivation for the proposed theory:

(a) CSFRSs have a highly competent structure to better represent vague human opinions in DM,
DNeM(degree of neutral membership) and NDM, which is another common and powerful feature of
receiving two-dimensional information.

(b) We aimed to construct a new notion of CSFRSs based on Hamacher norms, and also to construct
their operational laws.

(c) We aimed to create a list of aggregation operators based on Hamacher norms, as well as to
explain the associated properties.

AIMS Mathematics Volume 8, Issue 10, 23372-23402.



23376

(d) We aimed to develop a decision-making methodology using the proposed aggregation operators
to aggregate the uncertain information in real-world decision-making problems.

(e) We aimed to validate the suggested methodology through a numerical example related to deep
learning technique selection is given.

The rest of the paper is summarized as follows. In Section 2, we discuss the properties of the
fundamental ideas. In Section 3, we first define complex spherical fuzzy rough relations, CSFRSs and
operational laws for CSFRSs under the conditions of the Hamacher t-norm and t-conorm. In Section 4,
we develop complex spherical fuzzy rough Hamacher weighted averaging/geometric aggregation
operators and complex spherical fuzzy rough Hamacher ordered weighted averaging/geometric
aggregation operators their properties are discussed. In Section 5, we define the algorithm based on
the CSFRS proposed operators. In Section 6, presents a numerical example and a case study regarding
to the selection of best alternative for deep learning technique is explained. In Section 7, we present a
comparison analysis. In Section 8, we present the conclusion of the article.

2. Preliminaries
We will introduce some basic literature on CFS, CIFS, CPyFS, CSFSs, rough set relations and

complex spherical rough sets (CSRSs) in the section, which will be useful in a later section.
Definition 1. [37] Consider S to be a non-empty universe; the CFS is mathematically defined as

T = {(6.pr ()7 @) 5 € 8} (1)
where i = V—=1. uy € [0,1] and €, € [0,2n], The DM is represented as py and the amplitude term of
degrees is represented by {,,..

Definition 2. [48] Consider S to be a non-empty universe; the CIFS is mathematically defined as
T = {(5 v (5) €D, vy (8 €7 D) : 5 € §) 2)

where i = V—1. uy,vy € [0, 1] and {’w ,{’VT € [0, 2x], such that 0 < puy ($) + vy(§) < 1 and 0 < {’W(s’) +

€, .(8) < 2n. The two dimensional information in term of represent by pix () iy (5) Pl ),

Definition 3. [47] Consider S to be a non-empty universe; CPyFS is mathematically defined as
T = {(5, 0 () €D,y (5 ™9, ) : s € 8 3)

where i = V-1, uy ,vy € [0,1] and Kw, fw € [0,2n], such that 0 < uy () + ve(§* < 1and 0 <

i’w(j)2 + fw(é)2 < 2n. The two dimensional information represent by iy (§) ¢l )y, ) 2l )

Definition 4. [45] Consider S to be a non-empty universe; the CSFS is mathematically defined as
T = {(s’,,urr (5) ei27r([uY(§))’pT (5) ei27r(€pT(§))’ v () eiZH(KVY(s'))) - S} 4)

where i = N—=1, py, px, v¢ € [0,1] and €, €., €, € [0,2x]. Such that 0 < (5 + pr(§)? +
V()2 < 1and 0 < fw(s’)2 + fmr(j)2 + KVT(E)2 < 2n. The two dimensional information is represented by
i (§) €7 oo () O g e (§) @276 ),

AIMS Mathematics Volume 8, Issue 10, 23372-23402.



23377

Definition 5. [45] Suppose that T(Qg) = (,ugeizn([f‘g),pgeﬂ”(fpg), vgeiz”(fvg)) € CSFS (S ) (g €N). The
operational laws for CSFSs is given as follows:

(1)
meiznm’

K- T(Ql) = (pl)K ei27r(€pl)K’ , (K > 0),
(VI)K ei27r(t’vl)K

(2) p
(ﬂl)K ei27z'(L’#1 ) ,

(T (Ql))K = 1- (1 —p?)K@iz’r Vl_(1_€/%1 )K’ , (K > 0)’
1 - (1 _ V%)Ketﬁn \/l—(l—t’%l )K

(3)

i+ 1 = e N,
T (o) ® T (02) = 01022701 62), :

V.27 Gy)

(4) .
i ppe ),

/ 2 2 2 2 A+ -2 )

T(Ql)®‘r(@2): p1+p2_pl.pze PL TP TP PZ,
K 2 2 2 g2

vf " v% _ v?.v% 27N G 6,6 .6)

Definition 6. [24] Consider Z to be a non-empty universe and (' € S FS (S xS as any spherical fuzzy
relation on a set S. Then the following holds:

(1) Y is reflexive if (uy (§,5) =1, (oy (5, 8) =0and vy (5, 5) =0,V s € S.

(2) T is symmetric if (5,0) € § xS, ur (5,0) = py (8, 5), pr(5,0) = (py (8, §)) and vy (5, )
(e 3, 5)) . o

(3) T is transitive if (5,d) € S X S, puyr(S,d) = Nses [y (5,0) V uy (0, d)] ov (5, d)
Ve Loy (5,0) A py (0, d)] and vy (S, d) = V g5 [V (5,0) A vy (0, d)]. .

Alternatively, the relation T is transitive if the following holds for all §,0 € S and «, k2, k3 € [0.1]

@VdeS,ur 0,5 >k, and uy (5,d) > k1 = py (0,d) > ki,

b)Y deS, pr(d,5) <k and py (5,d) < ky = py (0,d) < ks,

(©)VdeS,ve(d,§) < ks, and vy (§,d) < k3 = vy (0,d) < k3.

Definition 7. [24] Consider S to be a non-empty universe and for any subset ' € SRS (S x §) is
any arbitrary spherical rough set (SRS) relation on a set S. The pair (S’ , T) denotes the approximation

space of the SRS. Now for any o C S FS(S) the lower and upper approximations of o0 with respect to
(§ , ‘Y‘) are spherical fuzzy sets which are defined follows:

n»

1) = {($: 110 9 . Py (§) v (9)) 1 § € S (5)
T (0 ={($. 10 ()P (). Vi (9) : § € S ©

AIMS Mathematics Volume 8, Issue 10, 23372-23402.



23378

where
e () = \/ [ (5,0) V v (9)] (7)
deS
pro ) = \ lor (5.0) A pr (9] @®)
€8
Vi ($) = [\ [vr (5,0) A v (9)] ©)
N
and
Ky () = /\ L (5,0) A v (9)] (10)
oeS
i ) = /\ lov (5,0) A pr (9)] (11)
98
Vi (9= \/ e (5,0) V vr (9)]. (12)
08

e 2 Ve 2 7 2 e 2 e 2
They are defined such that 0 < (,ux(g) (s)) +(px(9) (s)) +(VI(9) (s)) <land0 < (ﬂ?@ (s)) +(p?(g) (s)) +
2
(v 9) < 1.
Y (o) and T (o) are spherical fuzzy sets so Y (o), T (©) : SRS (S’ ) = SRS (S’ ) are upper and lower

approximation operators.
( M) (5) Prie) (5) )

. _ o) V() (5)
Then, the pair Y (0) = (I ©), ’I’(Q)) = <s, ( Hiior (9P (9, )

Vi) (5)

> - §e 8 Viscalled a SFRS.

3. CSFRS

The CSREFS is the most important modification of the CIFS, CPyFS and CSFS because it allows for
greater space for experts to provide values for the DM, NeDM and NDM which consist of amplitude
and phase terms for the processing of imprecise two-dimensional information. We will combine the
concepts of CSFSs and rough sets to introduce the new concept of CSFRSs. For the created models,
new operational laws, scores and accuracy mappings are designed and studied.

Definition 8. Consider Z to be a non-empty universe and (' € CS FS (S x8) as any complex spherical
fuzzy relation on a set S. Then the following holds.
(1) Y is reflexive if py (§, §) e ™D =1 py (8, §) 2o &9 = 0,

and vy (5, §) eV =0, s € §.
(2) Y is symmetric if (5,0) € S x 8, pr (§,8) &2 xS = 1. (8, §) 7 i @

O (.S,‘, a) elZﬂ(pr (5,0)) = py (a’ SI‘) e127'r([pT (0,5)) and Vo (f, a) elZﬂ'(fVT (5,0) = vy (6, f) elZiT([v,r (B,S)'
(3) Y is transitive if (§,d) € § X §,

o (5, d) €2 Cun G Aacs [ (5,0) V v (8, )] o 27(Nocs G SOV, (8,d)])’

o (5, d) €2 D) — Vs [or (5,0) A pr (8, d)] €2 Voes |60 SOINE,. (B,d)])’ and v (5, d) e G =
Vaes [ (5,0) A v (9, d)] e Vossl s (60000, 0]
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Alternatively, the relation X is transitive if the following holds for all §,0 € S and ., k», k3 € [0.1].
a o 2, (8.9)
(a)VdeSs,uy(0,S)e ™ > Ky, and
pr (5,d) 7D > kg = 1 (0,d) 2" 0D 2k,
(b)Y d eS8, py(d,5) e @D < i, and
pr (5,d) 7D <y =5 (3,d) D < 1,
(c)VdeS,ve(d,$) e @D < i and
ve (8, d) €7 SD) < o — v (8, d) €7 G OD) < s

Definition 9. Consider S to be a non-empty universe and for any subset Y € CSRS(S x S) is any
arbitrary CSRS relation on a set §. The pair (S , T) denotes the approximation space of the CSRS.

Now for any 0 € CS FS(S) the lower and upper approximations of o with respect to (S‘ , ‘Y’) are CSFSs,
which are defined as follows

. A\ 27 (0)($) A\ 27 (0)()
§, §))e e §))e @t .
() = {[ Lm0 9) igﬁ}i@f f@))) XS (13)
(VI@ (S))e e
B < () o2 o) ) 27 o) ($) X
Tio) = {[ Hlmw (9)T ’igﬁ?@ ﬁii)e " |isest, (14)
Vi (§) €0
where . )
Lxo) (5) eth(é’ﬂI(g)(s)) _ \/ [MT (5,0) V pa ( 6)] eizn(\/ﬁeg [fw(s',a)wfw(a)]), (15)
0eS
prioy (70D = N [p1(5,0) A pr (@)] 2 Nos LSO @D), (16)
des
Vi () @) _ /\ [V (5,0) A vep (0)] 227 (Nocs [fw(s’,aww(a)]), (17)
deS
and . ]
Hig () €7D = N [ (5,0) A pr (9)] €N Lin 506 O), (18)
deS
P (5) £ o0 _ /\ [or (5,0) A pr ()] eizn(/\aef [fw(f,a)mw(a)])’ (19)
9es
Vit (5) g0 _ \/ [y (5,0) V vy (9)] 277 (Vaes [6ry (506 D)]) (20)
deS
Such that
7 2 pa 2 pa 2
0 < (10 ) + (Pr0 D) + (Va0 (H) <1
2 2 2
0 2 (e ) + (b D) + (6 (9) <27
and

0 < (7 ) + (o7 ) + (17 (9) <1
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0 < (G, ) + (G, ®) + (6, ©) <21

Y (o) and ?(Q) are CSRSs, so Y (o) ,T(g) : CSRS (S) — CSRS (S') are upper and lower
approximation operators. The combination
276y (0)(5)

P (5) e

M) (5) e 2Ly (0)(5)
Yo / ) ’

( V() (5) PCNEIC) | | ) y
( Hig) (5) elQJT([,MT(K_))(S))’W(Q) (5) elZH(KPT(")(S))’ ) :

. o 27l )(5))
V(o) (e Te

T =(Tw© Tw)= <s s

is called a CSRS.

The  complex  spherical  fuzzy  rough  values are denoted by (o) =
27(Lyy) 0 eilﬂ(f%) v eizn(ng) ]

Hg€ =P Ve
— 2n(lz) —
(ﬂge (), pge

27(655) , V_g ei27r(€@))

Definition 10. /18] Suppose that x,y are two real numbers and a > 0; then, the Hamacher t-norm
and t-conorm are respectively defined as follows

TH(x,y) = i : 21
a (%) I+(1-a)(x+y—xy) @D
N —xy—(1-

SgH)(x,y) _Xty-xy (1-a) xy, 22)

1 -(1-a)xy
where a > 1 and (x,y) € [0,1] X [0, 1].

3.1. Complex spherical fuzzy Hamacher aggregation operators

In this section, we used the Hamacher operators to define complex spherical fuzzy rough operational
laws for complex spherical fuzzy rough values (CSFRVs) using the Hamacher t-norm and t-conorm.
We are working to develop some aggregation operators for CSFRVs.

i2n(6y))

/ﬂe R /J—lei27r(£’ﬂ)’
Definition 11. Suppose that Y (o1) = (Y (01). T (o1) = || pie™ . |.| pre™ ™, || and Y (02) =
_eizn({’L1 ) v_leiQ”((W)
(I (02) ,T(Qﬁ) = P2€l2ﬂ(fpf2), , p_geiz’r(%), are two CSFRVs, where k > 0. Then,the Hamacher
— i2n(¢,,) V_ei2ﬂ'(€@)
e 2
t-norm and t-conorm operations for CSFRSs are given by
(1)
T (01) ® T (02)

- {(I (1) EBI(Qz)) > (T (01) @T(Qz))}
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(2)
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] [2 *4212’%[%242’(1 “)F2|51242
A A 2’”N 1= Gy ]
1=(-a)t i ’
27 il
p1-p2 ¢ \/a+(1 a)([z +£§2 [%1@2,2)
Jer-alpt+oi-p i) ’
27i i)
vivy \/(1+(1—(r)({"2,71+[‘2,72—[%71l’,2,72)
\/a+(1 a)(v +v1—v1 2)

- 24242
\/a+(1 Q)(/i]ﬂi] L‘]'El)

/L#L 52 /2 —(1— a)ﬂ 2
2mi £ z— ) .
\/mzﬂTzz—mz.;Tzz—(l—a)mz.;Tf ¢ - ““”‘W‘@ :
1-(l-o)r” ji2°
2ni ooy
R _ 2 2 72
P12 ¢ \/a+(l (y)( I+{’p2 (pl fpl)
Va+(1-a)(pi* +p2°—p1° 2°)
27i] Ot
R 2 2 2
V1.2 e \/u+(l n)( 1+[V2 [Vl KW)
Vat+(l-a) (74722 -712.77)
T (01) ® Y (02)
(T @) ®Y (). (T ® T (0)]
Cuy tuy
"ﬂ/ﬁ \/(Y+(| ry) +[12‘2 1y ‘L)
9

p12+p22=p12.p22~(1-a)p12.p2? 1-(1-a)£2

S )
J{’ A mfpl A ]

b

51
1=(1-a)p12.p2?
2.2 2 2
3+, 3 -1-0 3,
vi2+v22-vi2.vn?=(1 a)V| 1—(1— a)l2 {2
1—(1—(1)1/71 .7

H2

Vat+(l-a) (@ +im i 12°)

M1 ”2)
s

fLMZ f2 [2
1

1— (1 a)ﬂ

\/Pl +p2°—P1-p2 —(1 a/)Pl P e J

1-(1-a)p1>p2°

—(1— a)ﬂ [21
[2
P

2

deL [2 [2

1 (1-@)z2

\/W"’sz—ﬁz.ﬁz—(l—amz.n ¢ J
2

1-(1—a)v2.v;

F‘l Vo)
mm +(1 (1) +[2 2 72

—(1- ar)(’z 2
Vi

2

v
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(3)
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We use the score function to compare two or more CSFRVs.
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’ugeﬂﬂ(fﬂg )’ pgeizn(t’pi ) ’
i2n(C,,) >
e £ &
= Ve € CSRS (3)
Iu—geiZH(é’E)’ p—geiZTI(f@)’
Ve oi2(l)

Definition 12. Suppose that T(Qg) = (I (Qg)’T(Qg))

(g € N). The score (3’ 6) and accuracy (Ac) functions are respectively defined as follows:

—2 —2 —2
47r2(,u_§+,ug —p_ﬁ—pg —v_é—vg )+(€é+€%—€§g —fp%—fvzg —f%)

and
AP Ty +py +Pg AV V) (G A O O+ 4 2+ 1)
AC(T(gg)) = — — — 1672 — — ~ ’ (24)
where S'G(T(Qg)) € [-2,2] and Ac(fr(gg)) €1[0,2].
i2n(l,) - i2x(6,)
[ e o)
— iZ;GQg) ’ A
Definition 13. Suppose that ‘Y'(Qg) = (I (Qg),T(Qg>) = Y€ € CSRS (S)
— 1271(6@) —_— 1271(5@)
Hge s Pge ,
Vel i)

(g € N). Then, the following holds:
(1) If $ Cerey > S: Coxio)y then Y (01) > Y (02);
(2) If S e¢xor)) = S Cevion)) thenY (01) = Y (02);
(a) If ACx(oy)) > Alcroy) then T (01) > T (02);
(b) If AC¢v(oy)) = ACr(oy) then T (01) = Y (02).

4. Complex spherical fuzzy rough Hamacher aggregation operators

We use the Hamacher operators of CSFRs to define the weighted averaging and geometric
aggregation operations described.

4.1. Complex spherical fuzzy rough Hamacher averaging aggregation operators

Definition 14. Suppose that T(Qg) = (I(Qg),T(Qg)) € CSRS (S) (g €N). Then the WAgg)FR
aggregation operator can be defined as

n n

WAL (00,0 (02) -, Y (0n)) = (Z KX (06) ) ke T (@g)] (25)

g=1 g=1
where (K, Ky, ...k,)" is the weight vector of Y (Qg) with kg > 0; Zgzl ke = 1.

Theorem 1. Suppose that T (Qg) = (I (Qg) Y (Qg)) € CSRS (S) (g € N) and (ky, k3, k) is the weight

vector of T(Qg) with k, > 0; Y5 1 kg = 1. Then the WA(C]?FR aggregation operator is a mapping
D" — D such that

WAL (T (1) .Y (02) . Y (@) = [Z kX (06)> D 4T (gg)] (26)

g=1 g=1
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In Theorem 2, some important properties of the WACS g Aggregation operators are listed.

Theorem 2. Suppose that I (Qg) = (‘Y’ (Qg) T (Qg)) e CSRS (A) (g € N)and (ki, K, ...k,)" is the weight

vector of Y (Qg) with kg > 0; 35y kg = 1. Then the important properties of the WAcs rr aggregation
operator are described as follows

(1) (Idempotency): If ' (o,) = T (o) = (Y (0), T (0)) ¥ g € N, then

WA (T (@), T (©02), s T (@) = T (). 27

(2) (Boundedness): Let (T (0))” = (mmx(gg) ,max?(gg)) and (T (o))" = (maxx(gg),minT(gg)).
8 8 8 8
Then
(1 (0)” < WAL . (T (01), T (02),..., T () < (T (0))" . (28)

(3) (Monotonicity): Let P (o,) = (P (o). P(0)) € CSFRS (S) (g € N) such that P(g,) <(¢,) and
ﬁ(gg) < T(Qg) . Then
WAL (P (01), P(02), s P(02)) < WASD (' (01), T (02), .., T (00))- (29)
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4.2. Complex spherical fuzzy rough Hamacher ordered averaging aggregation operators

Definition 15. Suppose that T(Qg) = (I (Qg),T(Qg)) € CSRS( ) (g € N). Then the OWA(C{?FR
aggregation operator can be defined as

OWAL e (T (©1), T (02) 1o T (0)) = [Z kX (0eto) Y Ke T (Qf(g))] (30)

g:] g:1

where (ky, Kz, ...k,)" is the weight vector of Y (Qg) with kg > 0; 375y kg = 1. Thus, T (Qg) is a family of
the greatest values.
Theorem 3. Suppose that ( (Qg) = (I (Qg) T (Qg)) € CSRS ( A) (g € N)and (k, K2, ...k,)" is the weight

vector of (T (01), T (02) , ..., Y (0,)) with k, > 0; ZZ:] kg = 1. Then the OWA(CS)FR aggregation operator
is a mapping D" — D such that

n n
(H) = T
OWAL) (T (01), Y (©2) .. Y (00)) = [Z kX (0ece) - ) kT (Qf<g>)] (31)
g=1 g=1
Kg Kg
n 2 )
| gﬂ (1+(n I)F/”{-‘(g)) gl;ll[l [”{-‘(g))
ﬁ(l( o Yol ¥ “
+(a-u ) - (—/1 ) ( z )
o= ) g\ Ee) L ) B “ ¢ f“f@
L 8 u 2 K ¢ ’
g[=[1(1+(a D) Hmh) [0,
Va n(pf(g))
\/»ﬁ( kg 27 . Kg Kg
e T1(p. ) 2 ?
S i JEI(”(" ”(] ecs ))) oo ”(‘f’f(w]
Kg n 2kg ’
gnl(1+(a 1)(1 P >)) +(a_1)gr_ll(f’£(g))
K
v “ ( Ve(g) )g
\/» ﬁ( Kg 271'i kg 2K,
@ [T (ve >) f 2 |
e e ng:ll(lﬂn 1)(1 et >)] eh H(V‘f(g
n 5 Kg n 2kg ’
ﬂ(l+(a—l)(1—v£(g))) +(a-1) H(@)
_ g=1 =257 g=1
- n ¢ n s
1 [l+(<y—l)€2 ) -1 ( )
| o=1 PE(g) g=1 Pé(e)
n kg n  o\Kg Tl Kg P
[T (1+(e=Dizgi*) ™ ~ 11 (1-Fee) ) n[1+<a D ] +a-D) n(l 2a_ ¢
g=1 g=1 e s=1 Pee) i
) n ’
\ I (1= D) +a=1) T (1~ )
8= 8=

Va 11 (ff)Kg
i ag:l Pé(g)
va 11 (p7)"¢ W T 5 N
3 Pg i [H—(a—l)[l—[z ]] +a-1) H(,, )
&= e Peco) )

g=1
\/ﬁl(n(a—l)(l—;ﬁ))“ +(a—1) ﬁl (7)™
g= 8=

b

NG N

[iloz)
®

i i

o kg Kg 2K,
Va H (Vs‘(g)) i (H(a—l)(l—[z ]] +a-1) n ( - ) ¢
g=1 Vé(g) &)

e
\/ (1+(e-D(1-vg52))“ +(a— 1)1-[(%))

In Theorem 4, some important properties of the WA(CS)FR aggregation operators are listed.
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Theorem 4. Suppose that 't (Qg) = (‘Y‘ (Qg) T( )) € CS RS (S) (g € N) and (ky, k3, k) is the weight
vector of (T (01),7 (02),..., T (0n) with k, > 0; k, = 1. Then, the important properties of
OWA(C}?FR operator are described as follows

(1) (Idempotency): If Y (0,) = T (0) = (Y (0) ., T (0)) ¥ g € N, then

g 1

OWALY (L (01), Y (02) 5., L (02) = T (0). (32)

(2) (Boundedness): Let (Y (0))” = (min T (Qg) ,max Y (Qg)) and (Y (0))" = (max T (Qg) ,min Y (Qg)) .
8 8 8 8
Then

(T (0))” < OWAL g (T (01), T (02) ..., T (00)) < (T (0))" . (33)

(3) (Monotonicity): Let P(Qg) = (£ (Qg) 13( )) € CSFRS ( ) (g € N) such that B(Qg) SI(Qg) and
I_J(Qg) < T(Qg). Then

OWAD  (P(01),P(02) .. P(0n)) < OWAL (T (01), T (02) ... T (0n)) . (34)

4.3. Complex spherical fuzzy rough Hamacher geometric aggregation operators

Definition 16. Suppose that ‘I’(Qg) = (I(Qg),T(Qg)) € CSRS( ) (g €N). Then, the WG(CI?FR
aggregation operator can be defined as

WG(CP?FR (T (1), (©2),...., T(0,) = (I (Qg))Kg , (T (Qg))Kg (35)

where (K, Ky, ...k,)" is the weight vector of Y (Qg) with kg > 0; ZZ=1 ke = 1.

Theorem 5. Suppose that Y (Qg) ( ( ) T( )) € CSRS ( ) (g € N) and (ky, k3, k) is the weight
> 0;

vector of (Y (©1), T (02) ... Y (0,)) with ,
is a mapping D" — D such that

Z _1 kg = 1. Then the WG(CS)FR aggregation operator

WG(CI?FR (T (1), YT (©2),...., T(0,) = l—[ (I (Qg))Kg , (T (Qg))l(g (36)
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In Theorem 6, some important properties of the WG(CS)FR aggregation operators are listed.

Theorem 6. Suppose that Y (Qg) = (I (Qg) g (Qg)) € CSRS (S) (g € N) and (ky, k2, k) is the weight
vector of (Y (01),T (02), ..., Y (04)) with k, > 0; 22:1 k, = 1. Then, the important properties of the

WG(CS)FR operator are described as follows

(1) (Idempotency): If ' (o) = T (0) = (T (0). T (0)) ¥ g € N, then

WG (T (01), T (02) 1o T (00) = T (0). (37)

(2) (Boundedness): Let (Y (0))” = (min T (Qg) ,max Y (Qg)) and (Y (0))" = (max T (Qg) ,min Y (Qg)) .
hon g g g g

(T (0)™ < WGgrg (T (1), T (02) ... T (00)) < (T (0))". (38)

(3) (Monotonicity): Let P (o) = (P (). P (c;)) € CSFRS () (g € N) such that P (o) < Y (o) and
ﬁ(gg) < T(Qg). Then

WG(C{L?FR (P(01),P(02), ..., (H)

P(0n) < WGgp

(L1, T (), ...,

T (o)) - (39)
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4.4. Complex spherical fuzzy rough Hamacher ordered geometric aggregation operators

Definition 17. Suppose that 't (o) = (Y (0¢). T (0¢)) € CSRS (8) (g € N). Then the OWGy,,
aggregation operator can be defined as:

n n

OWGE e (T (00, T (02) -, T () = [ | | (1 (0s0)) ™ | | (T (2eco)))” (40)

g=1 g=1

where (K1, Ky, ...k,)" is the weight vector of Y (Qg) with kg > 0; 351 kg = 1. Thus, T (Qg) is a family of
the greatest values.

A

Theorem 7. Suppose that T (Qg) = (I (Qg) Y (Qg)) € CSRS (S) (g € N) and (ky, k2, .. &) is the weight

vector of (Y (01),T (02), ..., Y (0,)) with k, > 0; Zgzl k, = 1. Then the OWG(CS)FR operator is a
mapping D" — D such that

n n
WGy 100, T @t = [Tl []Fless)| 1)
g=1 g=1
. va n(@“
n Kg i
\/agll(@) e ngf[l(lﬂa 1)( F‘E( )))K +(a-1) 1‘1 ([l‘g(g) s
Ve, ) o i
g Kg
. gg(wm 1)(;,6@)] -gr:1 [1-%@]
gH(1+(a—l)P§(g)) g—glel(l—@) ¢ . gnl(ma 1)635( ))Kg +a-1) ﬂ (- [1275(8))“

glel(n(a l)pg(g)) +(a—l)g]}](l_@)m§

n Kg n 2 Kg
o ggl[”(" D >] e (14%))
Tl

ﬁ(l (a=1) 2 Kg_]"[ 1- 2 N “s
Vé(g) ) ( Ve ) i (
&= 57 g=1 5867 o 1+(a— 1)[ V@) +(a— 1) (1 [V{f( ))

n K n ?
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&= &= T
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n o \ 8“1( Hag))
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n . o \2
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n ¢ s
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In Theorem 8, some important properties of the OWGCS rr Gggregation operators are listed.
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Theorem 8. Suppose that 't (Qg) = (I (Qg) Y (Qg)) € CSRS (S) (g € N) and (ky, k3, k) is the weight
vector of (Y (01), Y (02), ..., T (0n)) with k, > 0; ZZ,ZI k, = 1. Then, some important properties of the
OWG(CI?FR operator are described as follow

(1) (Idempotency): If I (o) =T () = (L (0). T (0)) ¥ g € N, then

OWGE), o (T (0, (02) . T (@) = T (0). 42)

(2) (Boundedness): Let (Y (0))” = (min I(gg),max?(gg)) and (Y ()" = (max I(gg),minT(@g)).
8 8 8 8
Then
(T (©)” S OWGE (T (©0), Y (02) 5, Y (02) < (T (©))" (43)

(3) (Monotonicity): Let P(0,) = (P(0;). P (o)) € CSFRS (8) (g € N) such that P (o,) <  (o;) and
I_D(Qg) < T(Qg). Then

OWG (S (P (1), P(©02) s s P(02)) € OWGES e (X (00, (02) 5 o0, T (00)) (44)
5. Algorithm for decision making problems with complex spherical fuzzy rough information

In this section we analyze a decision-making problem in an uncertain environment using the idea
of CSFRS aggregation operators. It is essential to take decision-makers’ deep learning technique into
account when evaluating the deep learning model upon which decisions will be made in various real
life situations. We take into consideration a real-time decision problem that applies deep learning
methodology using the proposed aggregation operators with CSFRSs.

Decision-making steps. We will construct an algorithm based on the proposed method with
CSFRSs in this part. Following are the main steps.

Step 1: Identify the n attributes represented by N8 = {§, ..., N,}.

Step 2: Identify the m alternatives represented by 3 = {J,, ..., J,,.}.

Step 3: Identify the d experts (Ey, ..., E;) that are responsible for selecting the best alternative from
a collection of m alternatives for every n attribute.

Step 4: Use the CSFRS information and the decision matrix (E)® = Tl(.]k.) to evaluate the values for
each alternatives.

Step 5: Construct the normalized expert matrices denoted by(N)/, as follows.

(E)D = { T(Qijc) = (I (Qu)?(% ])) i ]C‘ for benefit
(0) = (2(o) . (Tlen)) 7 forcon

i=1,2,.,8,j=12,.,8and j=1,2,..d.
Step 6a: Aggregate the different preferences Tg'j’.),j = 1,..,d into ‘I’E';) = (X1 =

() 2n(ty;;) — Dat—) — 2n(t)

e =Pl = | e T ppe TN e WA t t

, PGy, , il using the cs pr Aggregation operators.
ij = ij
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Step 6b: Aggregate the different preferences ‘I’gf),k = 1,..,d into 'I'gf) = (Iij’Tij) =

i2m(by;;) i2n(lp;;) — 2r() — 2n(ls)
Hije =P = e i, pie T : .
[[ Al ,-Z,TZH) J,( i 7 ,-zf(gvﬁ) J )J using the WG\, . aggregation operators.
Vij itk Vije Y

Step 7a: Determine the overall values Y; for each alternative J; by using the weight vector n and
the OWA(CF?FR aggregation operators.

Step 7b: Determine the overall values Y; for each alternative J; by using the weight vector n and
the OWGg?FR aggregation operators.

Step 8: Using Eq (12), calculate the Y’; score values.

Step 9: Rank and arrange the alternatives J; (i = 1,2,....,g) in ascending order based on its
Definition 13. The alternative with the highest score value is our best value.

The proposed method is graphically represented in Figure 1.

Figure 1. Graphical presentation of proposed method.

6. Case study

This section discusses a applications of the proposed approach for the evaluation of deep learning.
Today’s Fourth Industrial Revolution (Industry 4.0) is often defined by technology-driven automation
and smart and intelligent systems in a variety of application areas such as smart healthcare, business
intelligence, smart cities, cybersecurity intelligence and many others [49]. Deep learning algorithms
have evolved considerably in terms of performance in a wide range of applications, particularly in
security technologies, as an ideal option for discovering complicated architecture in high-dimensional
data. As a result of their outstanding ability to learn on historical data, deep learning approaches can
play a critical role in developing intelligent data-driven systems that meet todays needs. As a result,
deep learning has the potential to revolutionize the planet as well as humans’ daily lives through its
ability to automate and learn from experience. Deep learning technology is thus applicable to well-
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known areas of computer science, such as artificial intelligence [50], machine learning [51] and data
science with advanced analytics [49]. Although deep learing models have been successfully deployed
in a variety of applications, picking an effective deep learning model is a difficult issue. For this, four
possible deep learning techniques to consider as alternatives are presented as follows in Step 1.

Step 1.

CNNs (J1): CNNs [6] have a prevalent discriminative deep learning architecture that learns directly
from input without requiring human feature extraction. As a result, the CNN improves the design of
classic ANNs such as regularized multilayer perceptron networks. Each layer in a CNN considers the
optimal parameters for meaningful output while also reducing model complexity. CNNs also employs
a ‘dropout’ [52] to address the issue of overfitting that may arise in a conventional network. CNNs are
designed particularly to cope with a broad range of two-dimensional forms and are therefore widely
used in visual identification, medical image analysis, image segmentation, natural language processing
and many other applications [6,53]. The capacity to automatically uncover crucial properties from
input without the need for human interaction makes it more powerful than a typical network.

RNNs (J,): The RNN is another prominent neural network that uses sequential or time-series data
and feeds the result from the previous phase as input to the current stage [7,8]. Recurrent networks, like
the feed-forward network and CNN, learn from training input but differ in that they have “memory”
which allows them to influence current input and output by utilizing information from prior inputs. As
a traditional deep neural networks which posits that inputs and outputs are independent of one another,
RNN output is dependent on earlier items in the sequence. However, conventional recurrent networks
suffer from diminishing gradients, which makes learning large data sequences difficult. Another early
paper [54] described a new learning process called backpropagation, which modifies the weights of
connections in recurrent networks using internal hidden units. RNNs are frequently employed to
process data in the temporal domain (sequential information) due to the presence of an “internal
memory” [55].

LSTM (93): LSTM networks were first proposed in [9] to address RNN concerns with
vanishing/exploding gradients. These challenges can arise during the backpropagation over time during
the algorithm’s training on extended temporal sequences. In this respect, gradients can exponentially
attain very low values near zero (vanishing) or very high values (exploding) after repeated operations of
compound functions with weight matrices. LSTM introduced the use of “gates”, i.e., nonlinear devices
that control memory cells using sigmoidal and hyperbolic tangent functions [56]. Despite having
the same inputs and outputs as a standard RNN, an LSTM cell has internal recurrence (self-loop) to
transmit information flow through a long sequence.

GANSs (J,4): Deep learning models, which include the AE, GANs and their derivatives, have been
classified as generative models. GAN deployment is generally intended for unsupervised learning
tasks, but it has also proven to be a better solution for semi-supervised and reinforcement learning
activities, depending on the task [10]. GANSs are also employed in cutting-edge transfer learning
research to enforce the alignment of the latent feature space [57].

Step 2. Description of the criteria for deep learning

There are four different criteria to evaluate the four alternatives as follows.

Data Availability (DA) (¥;): Deep learning models often require a substantial amount of labeled
data for training. Sufficient and high-quality data are critical for obtaining good performance. The
availability and quality of data are important factors in evaluating whether deep learning is a good
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approach [58].

Model Complexity (MC) (NX,): Deep learning models are made up of numerous layers of
interconnected artificial neurons that allow them to learn complicated representations from data. The
intricacy of the problem at hand may influence the decision to use deep learning. Deep learning may
be a useful solution if the task involves the capture of complicated patterns or characteristics.

Computational Resources (CR) (N3;): Deep learning models are computationally intensive
and require substantial computational resources, especially when training large-scale models [59].
GPUs, or specialized hardware accelerators are commonly used to speed up training and inference.
Availability of such resources and infrastructure is an important consideration.

Interpretability (I) (N;): Deep learning models are frequently referred to as black boxes due
to their complicated nature, which makes interpreting their internal workings and decision-making
process difficult [60]. If interpretability is critical for a certain application (e.g., healthcare or legal
domains), alternate approaches that provide more transparency, such as decision trees or rule-based
systems, may be selected.

Step 3. A group of three experts {E}, E;, E3} were formed by CSFRVs.
Step 4. Describe the CSFRVss of the three expert matrices as in Tables 1-3.

Table 1. Expert information (E)l

( 0. 26'2"(0 8) O 298’2”(0 33) 0. 92er7zr(0 87) 0 296’2”(0 33) 0. 826'7”(0 8]) 0 366’27{(0 37) 0. 926'7”(0 87) 0 296127r(0 33)
0. 246’2”<0 27) 0. 246127{(0 27) ’ 0. 386127{(0 37) 0. 24€I77l'(0 27)

Sl ( 0 84612"(0 34) 0 4e127r(0 .5) 0 78e177r(0 .39) 0 436127{(0 il) 0 676127((0 .5) O 3er2zr(0 82) 0 71 eﬂn(() .21) 0 3 1 ez2n(0 63)
0. 88127{(0 3) 0. 2%8'2”(0 .46) 0. 126127r(0 .43) 02 ler”zr(() .55)

0 596127r(0 .57) O 53exZ7r(0 55) ) ( 0 3561271(0 .29) O 33e12zr(0 36) 0 3581271(0 .29) O 33e127r(0 ?6) 0 3581271(0 .29) O 33ez21r(0 ?6)
0.51e 127r(0 58) 0. 86:2n(0 86) 0. 86:2n(0 86) 0. 86:27{(0 86)

32 0.6¢270-1D ,0. 53270 13) 0. 598127r03§) 0.23¢1270. 81) 0. 726127r031) 0.41¢270 73) 0. 826[%025) 0.11¢2%0 88)
0 236'2”(0 14) 0 1 36127r(0 .41) 0 1 36127r(() .46) 0 396'2”(0 19)

( 0. 356'7”(0 .29) 0 336"2”(0 36) 0. 356'7”(0 .29) 0 336’2”(0 36) 0. 356'7”(0 .29) 0 336"27{(0 36) 0. 356'2”(0 .29) O 336"27{(0 36)
O 8€I77[(0 86) 0 8el7n(0 86) 0 86127{(0 86) 0. 86127{(0 86)

33 ( 0 79el7n(0 19) 0 39612”(0 11) 0 916’2"(0 .21) 0 1 1612”(0 56) 0 71607{(041) 0 13ez2n(0 94) 0 SleIZn((1 .25) 0 34612"«) 61)
0. 38e127r(0 18) O 496127r(0 .48) 0. 04ex7zr(0 .07) 0. 196177((0 39)

0 836'2"(0 .33) O 1 36’2”(0 53) 0 2961271(0 .57) O 53e127r(0 55) 0 1 981271(0 35) O 53e12rr(0 55) 0 2981271(0 .57) 0 53ez21r(0 55)
0. 356127:(0 83) 0.1 16127:(0 58) 05 16127:(0 58) 05 13’2"(0 58)

34 0.83¢127(0:51) ,0. 131270 H) 0.42¢127(0.33) ,0. 49,270 83) 0.14¢127(043) ,0. 451270 44) 0.15¢27(0:37) ,0. 49270 44)
0 396'2”(0 .29) 0.396'2”(0 .29) 0 256'2”(0 15) 0 236'2”(0 14)

Table 2 Expert information (E )2

( 0.22¢7270: 65) 0 36¢270- %7) 0.35¢270: 29) 0 33270 36) 0.92¢7270: 87) 0 29270 ??) 0.35¢270: 29) 0 33¢i270. ?6)
0 38612"(0 .35) 0 86’2"(0 36) ’ 0 24612"(0 27) 0 86:27((0 86)

gl 0. 618’2”0 15) 0 53812”(0 S()) 0. 6261271035) 0. 168127«0 61) 0. 616’2”035) 0. 478127«042) 0. 746127r0 17) 0 SSeLZII(O 81)
0 376'2”(0 .49) 0 436'2”(0 .45) 0 336'2”(0 .49) 0 396'2”(0 .29)

( 0. 926'2"(0 87) 0 296’27{(“ 33) 0. 82e127r(0 81) 0 366’27{(0 37) 0. 35e127r((l .29) 0 336’2”(0 %) 0. 92e12n((l 87) 0 296127r(4) 33)
0. 24812/«0 27) 0. 386127«0 35) 0. 86’7”(0 86) 0. 246’2”(0 27)

32 ( O 6661%(0 11) 0 5 lezZn(O 14) 0 776'2"(0 .32) 0 43612”(0 71) O 936'2”(0 .08) 0 09612"(0 91) 0 45e127r(0 .06) 0 026127«0 56)
0. 258'2”(0 34) 0. 418'2”(0 13) 0. 216"2”(0 11) 0. 496'2”(0 .48)

( 0 356'2”(0 .29) 0 338127r(0 36) 0 358127r(0 .29) 0 338127r(0 36) 0 5981271(0 57) 0 538’2”(0 55) 0 5981271(0 57) 0 53e32n(0 55)
0 456’2"(0 22) 0 SezZIr(() 36) 0 5 1 ezZn(O 58) 0 5 1 ezZn(O 58)

33 0. 8861271 (0.09) 0 076127«0 82) 0. 8961271 (0.06) 0 OSeLZIr(O 72) 0. 566‘2” (0.17) 0 446121{(0 59) 0. 616‘2” (0.13) 0 436121{(0 81)
0 256'2”(0 11) 0 3 1 ean(O 141) 0 356'2”(0 .32) 0 1 36127r(0 .41)

0. 66e127r(0 57) 0 536’27{(0 Si) 0. 826'2”(0 8) 0 36ex7n((l 37) 0. 35612n((l .29) 0 336’2”(0 %) 0.82¢ i27r(0.81) 0 366127r(4) 37)
3 0.5 1et27r(0 58) 0. 386'2”(0 35) 0. 86:”7((0 86) 0. 386’2”(0 35)

4 O 858'2”(0 .32) 0 34ez2n(0 19) 0 5 1 ezer(O .48) 0 246'2"(0 67) 0 68e127r(0 .53) 0 39612”(0 78) 0 61e1°7r(0 12) 0 3Sez2n(0 il)
0. 21@27{(0 31) 0. Ser”zr(() 3) 0. 396'2”(0 .43) 0. 328'2”(0 .46)
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Table 3 Expert information (E )3

177r(0 25) 0 368’2”(0 37)

0 386’2"<0 35) ’
i2m(0.25) i27(0. 16)
0.45¢ ,0.15¢
0. 46121«0 3)

“ {(< e |
=

0. 926127r(0 87) O 296‘2”(0 33)
0 246’2"(0 27)

0 836127r(0 .39) 0 29612”<0 61)
0. 21(:"2”(0 34)

0 5981271(0 .57) 0 53e127r(0 .55)
0 51¢ zer(O 58)

E( })
(( )) ]
R
< 1

0. 426'2”(0 .47) 0 296’2”(0 33) 0. 926127r(0 87) 0 296’2”(0 33)
3 02467027 ) ’ 02467027

1 0.45¢1270.23) () 14i27(049)
033627042

0 5981271(0 .57) O 53e12rr(0 55)
0.51¢ zer(O 58)

( 0. 61e127r(0 19) 0 396t2n<0 91)

0 78612”(0 .38) 0 18612n(0 Sl)
0. 48el77r(0 .24) )
O 3581271(0 .29) O 33e127r(0 36)
0.8¢ zZn(O 86)
0. 848127r(0 34) 0 46177[(0 08) 0. 63812;r(0 18) 0 35612n(0 89)
0 8 ezer(O .3)

0. 596'2”(0 .57) 0 5361271 055)

0 Zlezh(oll)

0. 596'2”(0 .57) 0 536’2” (0.55) ))

( O 066’2"(0 .05)
0. 596127r(0 .57) 0 536127r(0 55) 0. 356127r(0 .29) O 336127r(0 36)

( 0 8 erer(O 86)

0. 816127r(0 13) 0 416127r(0 .99)
( 0. 066'2”(0 .02)

0 5961271(0 .57) 0 53e1’>n(0 55)

0.15¢202

) 0.51 eﬂn(O .58)
0. 736127r(0 13) 0 46612”(0 ]l) )

i27(0.39) 27(0.59)
0.33¢ ,0.19¢

0. 356",”(0 123)
O 22e127r(0 11) O 36e127r(0 37)

0 51 elZn(O .58)

0. 876127r(‘) .35) 0 186127r(0 77)
0. 23427{(0 .43)

0 3581271(0 .29) 0 33e127r(0 36)

RE

—_— ——

0. 4let7zr(0 13)
0 67e127r(0 .29) 0 336127r(0 36)

0. 86:27{(0 16) 0. 38812”(0 35) 0. 88’2”(0 86) 0.5 lezZIr(O 58)
34 0 678127r(0 12) 0 436’2”(0'05), 0 638127r(0 .21) 0 556z2n(0.78)’ 0 538127r(0 33) 0 476’2”<0 62) 0.518'2”(0 .23) 0 4681“7«0 74)
( 0,43ei2”(0'45) ) ( 0,392’2”(0'43) ) O 352’2”(0 16) ) ( O 17ei27r(0.55) )

Step 5. All criteria are benefits, so it is not necessary to find the normalization, All expert matrices are
considered as normalized matrices.

Step 6a. As shown in Tables 1-3, the overall CSFRV matrices were derived with the WA(CF_?FR

aggregation operators. Suppose that the weight of the experts is x = (0.33,0.37,0.3)" and a =
the results are shown in Table 4.

’

Table 4. Aggregated values obtained by using WACS Fr OpPErators.

0.231270865D_() 371 208D 0.71127060)_() 344¢72R0350) 0.895¢27085D)_() 312270343 0.8516770T88D_() 3()3¢120340)
3 ( 0. 6236’2"(0 618) ) ( 0.432¢i27(0.342) > ( 0.280¢27(0:3002) > ( 0.358¢i27(0:3976) ) >
1 0.680¢27024) () 309,i2n(0273) 0.643¢27032D_() 25021(0578) 0.697¢270417) () 294,4i2(0.560) 0.766¢270276) () 3671270683)
( 0.5356127«0 405) ) ( 0.360¢27(0484) ( 0.6035¢i27(03701) ( 0.258¢27(0:3788)
0.754¢270709)_() 400270755 0.646¢270629) () 4]8¢27(0438) 0.349¢270.289) () 33()127(0359) 0.745¢7270689) () 37(¢i27(0403)
3 ( 0.615¢27(0-686) ) ( 0.567¢27(0:578) )v ( 0.800¢i27(0-860) ) ( 0.461¢270513) )
2 0.673¢270.180)_ () 527i2(0.149) 0.657¢270299_() 373270806 0.8126270213)_ () 235127(0839) 0.914¢7270329) () 121270670
( 0.352¢27(02275) ) ( 0.268¢27(0:225) ) ( 0.524¢270.136) ) ( 0.292¢i27(0:340) )
0.409¢27036D_() 4051270751 0.402¢27036D) () 40527(0433) 0.529¢270.5029) () 453,627(0498) 0.452¢7270415) () 387i27(0415)
3 0.819¢i27(0:546) 0.747¢270-584) 0.592¢i27(0:661) 0.689¢127(0754)
3 0.800¢270-139)_ () 234270177 0.833¢1270219) () 114¢27(0658) 0.7502703290) () 217270753 0.676¢270.179)_ () 391 ¢i27(0788)
( 0.364¢270.167) ) ( 0.415¢270420) ) ( 0.363¢27(02130) ) ( 0.114¢270.147) )
0.748¢270426) () 303,620(0917) 0.602¢27063D) () 453,¢i2(0465) 0.4522704153) () 386,i27(0437) 0.693¢270579)_ () 4661270482
3 0.938¢/27(0.694) 0.278¢27(0459) 0.688¢/27(0.754) 0.462¢127(0490)
4 0.790¢270364)_() 280920151 0.491¢270366)_() 413270771 0.6132704D)_ () 4351270743 0.5726270280)_ () 420i27(0.69)
( 0.347617,((0 367) ) ( 0.4696'2”(“ 359) ) ( 0.641e‘2”(° 2180) ) ( 0_232g,z;r(0 328) )

Step 7a. As shown in Table 4, the overall CSFRV matrices were derived with the OWA(C?FR

aggregation operators. Suppose that the weight of the experts is 7 = (0.23,0.32,0.25,0.20)” and
a = 1; the results are shown in Table 5.

Table 5. The overall CSFRV matrices obtained by using the OWA(CS) rr OPETators.

3, (0.69217 £2r0.71768) () 35738,i27043592) () 4368() ezzn(o.41800)) ’
(0.69524 ¢21(032487) () 34345,0i21(05127) () 3692704401 1))
3, (0.68626 £2M0.65821) () 305()4i27048118) () 61208 ei27r(0.65421)) ’
(0.72659 £27025201) () 970()5,i27(053857) () 26967 ei27r(0.24929))
3 (0.453786i2n(0.39753), 0.43037¢20(0.519561) 0.7212761'2”(0.63319)) ,

W
—

0.787508¢27022577) (). 21721¢27(0:523400) () 26636 ei27r(0.26169))
O.6436O€i2n(0'60947), 0.420406€i2ﬂ(0'55098), 0.5 1966ei2ﬂ(0.56708)) ,
0.63921627038478), 0. 400676¢27 0473477, 0371192703349

—

34

L
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Step 8. Based on the information in Table 5 and the Definition 12 are shown in Table 6.

Table 6. The score results for the OWA(CI?FR operator.
Sé(sl) = 0.09981 Sé(sz) = 0.07933 Sé(53) =0.019424 56(54) = 0.000625

Step 9. The ranking of all alternatives J; (i = 1, ...,4) according to the above score values is given in

Table 7.
Table 7. The ranking of OWA(CI?FR operator.

Ranking Best Alternative
N 1 > 82 > 83 > 54 N 1

So CNNs (9)) is the best alternative.

Influence of the parameter on the final result.

Using the proposed aggregation operators in the overall ranking was the same in terms of the values
of the alternatives, as shown in Step 3a above. The ranking of the alternatives shows that J; is the best
alternative. In order to show the effects of changing the parameter, i.e.,]1 < a < 30 in the OWA(CI?FR

operators on the ranking results,all results are shown in Table 8.

Table 8. Effects of changing the parameter of the OWA(CF?FR operators.

Different parameters Operators S¢(y)) SC(3y) S¢(3y) S¢(s,)
a=1 owA®) . 0.09982  0.07933  0.01942  0.00063
a=2 owAL) . 0.66999  0.65607  0.63106  0.55909
a=3 OWAYD . 0.67033  0.65660  0.63107  0.59656
a=4 OWAR) . 067768  0.66507  0.63486  0.55911
a=>5 owA®) . 0.65188  0.63911  0.62730  0.59844
a=10 OwAYD . 065191  0.63938  0.62726  0.55366
a=15 owAL) . 0.66616  0.65341  0.63219  0.55285
a=25 OWAYD . 043771 032882  0.29121  0.24889
a =30 owAL) . 022667  0.19155  0.15398  0.11121

Table 9 represents the ranking of the OWA(CI?FR operators.

Table 9. Ranking as a result of using different parameter values for the OWA(CI?FR operators.

Different parameters Operators Ranking
a=1 owa® g > 3 > I > g,
a=2 OWA(CF_?FR I3 > I > I3 > Y,
a=3 owa® g > 9 > 95 > 9,
a=4 owaAll g > 9 > 93 > 9,
a=>5 owaL . g > 9 > 95 > 9,
a=10 owAll 9 > 9 > 93 > 3,
a=15 owA® g > 9 > 9 > 9,
a=25 OWA(C%)FR I, > I > I3 > I,
a=30 owAll g > 9 > 93 > 3,

Step 6b. Next, we analyze the WGg)FR aggregation operator. Considers that the weight of the experts

is k = (0.33,0.37,0.3)". After which, for a given decision matrix, we applied the WG(CI?FR aggregation
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operators to produce new aggregated values, as shown in Table 10.

Table 10. Aggregated values obtained by using WG(C{?FR operators.

0.268€i2”(0'600), 0.3206’2”(0'338), 0‘554(3'2”(0'5]9), 0'292?27{(0.326)‘ 0.670€i2”(0'755), 0.3026‘&”(0'378) 0.5546'2"(0'464), 0‘292(3[2”(0,326)
3 { ( 0'3206ei27r(0.307) ) ’ ( 0'579‘,[2”(0.295) ) 4 ( 0.2856'27{(02%) ) ( 0.579€i2”(0'645) )
1 ( 0.6706'2”(0‘263), 0.4 loeizn(o 320) ( 0. 6576127“0,370)’ 0.2788i2"(0'527), ( 0.6946‘2”(0‘440), 0.3496'2”(0‘627) ) ( 0_769612”(0.256)’ 0.41 18127r(0,706) )
0.35361271'(0.375) 0.331 e:21r(0.426) 0.308€i2”m'406) 0.2856“2”(0‘402)
0.5906[2”(0'672), 0.383€i2n(().4 l(]) 0.59 16"2”(0’549), 0.3798i2n(ll.397)’ 0.3886[2”(0'328), 0.31 36[27r(0.342) 0.6 17812’“0'564), 0.3576"2”(“‘385)
S ‘ ( 0.353612”(0'404) ) I ( 0.604€i2”((]'661) ) 4 ( 0.7756"2"(0'837) ) 4 ( 0. 58561'27{(0 .652) )
2 0.699€i2”(0']7l), 0.4746‘[2”(0'“8) 0. 6906'2"(0'332), 0'344ei2n(0,786)’ 0»759?i2”(0'225)» 0.293€i2”(0'838) 0. 620612”(0 193) 0 2346'2”(0 717)
( 0.4676'2”(026” ) ( 0.281 eiZn(O.ZSQ) ) ( 0.1 Soei2n(0.282) ) ( 0. 3832‘2"(0 373) )
0.431 eiZIr(O 375)’ 0_3696i27r(0,394) 0.431 Ei2"(0'375), 0.369€i2”(0‘394) 0.5236'2”(0‘482), 0.449612”(0 471) 0471 elZn(OAZI )’ 0_409527{(0.42”)
S | ( 0-58861'2”(0.304) ) ( 0.7346"2”(0‘662) ) ( 0.63161271'(0.70]) ) ( 0.6926'2”(0'760) )
3 ( 048286[2”(0' ]57)’ 03 146[27r(0. 1 56) ) ( 0. 74361211'((). l74)’ 0.1 loeiZIr(()ﬁW) ) ( 0.7769[2”(“'361), 0.2966[27«0.805) ) ( 0.6396[2”(0' 197)’ 0.37661211'(0.857) )
0.3256"2"(0'136) 0.3776‘12”(0'390) 0.240ei2n1().281) 0.137({[2/{([).339)
0.7586‘[2”(0'439>, 0.3746’12"(0'486) 0. 456(3'2”(0'49”, 0.413€i2”<0'428) 0.31 7e.ier(0.3~'l’>‘)Y 0.4006‘[2”(0'473) 0‘555(312"(0.686)’ 0'449(3[2”(0,466)
3 { ( 0. 554612740 .4257) ) ( 0. 297ei7n(0 .435) ) ( 0. 70’36127“0 .701) ) ( 0.441 ei’77r(0 .483) )
4 ( 0.81 76’2”(0 343) 0 2966’2”(0 1'&9) ) 0 5336‘7”(0 .386) 0 41 06’2”(0 .740) ) ( 0. 526@‘2”‘0 .441) 0 441 e:Zn(O 634) ) ( 0. 38961271'(0 301) 0 41 26127r(0 337) )
0.325¢ i27(0.324) 0.419¢ :21{(0 315) 0. 32061271'(0 .290) 0. 2486’2”(0 391)

Step 7b. We used the OWGCS +r aggregation operator to compute all of the performance values for
the alternatives J; (i = 1,...,4) and the given weight vector 7 = (0.23,0.32,0.25,0.20)7, as shown in
Table 11.

Table 11. Aggregated values obtained by using the OWG(CI?FR operator.
(0.4924ei2”(°'5767), 0.3156¢27(0-3441) O.4856e’2”(°~4175))

I, (0 6910¢2703322) () 378012705757 (). 4405 ei2ﬂ(0.4191))
(O 5368¢i27(0:5086) () 3775¢127(0-4033) () 6287 0i27(0. 6930))

2 (0 6945¢210:2328) () 3799,i270.7302) () 3648 elzn(ogozl))
(0 4610e2704092) () 41292104374 () 6883270 6541))

3 (0.65 41£1270.2098) () 2944,27(0.7059) () 3147 ezzn(o.amz))
3, (0 4873612704T04) () 423()i2w(04701) () 55()54i2n0. 5459))

((). 55072703700) () 397727(0605T) () 3587 ezzn(03423>)

Step 8. We used Definition 12 to find the values of the score function, Y; (i = 1,2, ....,¢) for each
CSEFRS is given in Table 12.

Table 12. The score results for the OWGéS)FR operator.
S@‘(gl) =0.01192 SC(SZ) =0.01044 SC(53) = 0.00845 S@(m) = 0.00570

Step 9. The ranking of all alternatives J; (i = 1, ...,4), according to the above score values is given in

Table 13.
Table 13. The ranking of OWG(CI?F » Operator.
Ranking Best Alternative

31> 52>S3> 84 51

So CNNs (J)) is the best alternative.
Influence of the parameter on the final result.

Using the proposed aggregation operators in the overall ranking was the same in terms of the values
of the alternatives, as shown in Step 3a above. The ranking of the alternatives shows that J; is the best

AIMS Mathematics Volume 8, Issue 10, 23372-23402.



23396

alternative. In addition, we used different values of a and the J; (i = 1, ...,4) alternatives in the range

of 1 < a < 30 for the OWGg)FR aggregation operators, as shown in Table 14.

Table 14. Different parameter values for the OWG(CI?FR operator.

Different parameters ~ Operators 5¢(s)) 5¢(3y) 5¢(sy) S¢(s,)
a=1 OWGH . 001192  0.01044  0.00845  0.00570
a=2 OWGY) . 0874239  0.830844  0.696897  0.556891
a=3 owGYl) . 0.781545 0.738655  0.761055  0.610513
a=4 OWGY), . 0862354 0.819876  0.708495  0.308497
a=5 OWGHD . 0793645 0.754832  0.754179  0.417226
a=10 OWGY) . 0854751 0811625  0.721307  0.421334
a=15 OWGH) . 0.807664 0.769699  0.682453  0.286805
a=25 OWGH) . 0763233 0.700252  0.651501  0.292544
a =130 OWGH . 0763233 0.644694 0356126  0.255765

Table 15 represents the ranking parameter values for OWG(C{? Fg Operator.

Table 15. Ranking of different parameter values for the OWG(CI?FR operator.

Different parameters Operators Ranking
a=1 OWG(C{:IS)FR 51 > 32 > 33 > 34
a=72 OWG(C{?FR 81 > 82 > 53 > 54
a=3 OWG(C]:[S’)FR 81 > 82 > 83 > 84
a=4 OWG(C{?FR 81 > 82 > S3 > S4
a=>5 OWGg?FR 51 > 52 > 83 > 84
a=10 OWGg?FR 81 > 52 > 33 > 34
a=15 OWG(C{?FR 81 > 82 > 53 > 54
a=25 owGll . 3, > 9, > Iy > 9,
a=30 OWG(CHS)FR 81 > 82 > 83 > 84

7. Comparative analysis

This part compares the achievement and advantages of the proposed complex spherical fuzzy
rough Hamacher aggregations operators and several other existing aggregation operators. Previous
research includes different aggregation operators such as the intuitionstic fuzzy weighted averaging
and geometric aggregation operators [17] and the intuitionstic fuzzy Hamacher weighted averaging
and geometric aggregation operators [18] taking into consideration the phase term to zero. To
compare the proposed CSFRSs with IFSs first we convert the CSFRSs to IFSs.  Similarly,
by comparing the proposed method with different spherical fuzzy aggregation operators such as
Dombi averaging/geometric aggregation operators for SFSs [24,30] averaging/geometric aggregation
operators for SFRSs, we apply some condition to transform the data into spherical fuzzy set so that
the comparison is easy. By evaluating the information with some previous operators and coming to
the same optimal decision, the authors were able to use the take different information given above and
apply the proposed aggregation operators in the results are same as that of the existing approaches as
shown in Table 16.
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Table 16. Different methods using ranking of the alternatives.

Methods S 5‘(51) N @(32) S 6‘(33) S 6‘(54) Ranking

IFWA [17] 0.9888,0.4824,0.2232,0.0072 J,>0,>0:> 0y
IFOWA [17] 0.6555,0.5351,0.2507,0.1455 J:>8,>0;> 9,
IFWG [17] 0.7324,0.6181,0.2559,0.2001 J1>8,>0:> 9,
IFOWG [17] 0.4535,0.3864,0.0382,0.0207 J1>3,>0;> 93,
IFHWA [18] 0.6623,0.3330,0.2684,0.2323 J,>8,>0:> 0,y
IFHOWA [18] 0.3544,0.3212,0.2852,0.0853 J,>8,>0;> 9,
IFHOWG [18] 0.4423,0.3432,0.1284,0.0821 J1>8,>0:> 9,
IFHOWG [18] 0.3132,0.2912,0.2722,0.1215 J,>0,>0:> 0y
SFDWA [30] 0.8636,0.8243,0.7245,0.1731 J,>8,>0;> 0,y
SFDOW ([30] 0.4523,0.3908, 0.2477,0.0822 J:>8,>0:> 9,
SFDWG [30] 0.3723,0.3431,0.2179,0.1191 J1>8,>0;> 3,
SFDOWG [30] 0.5652,0.4595,0.3129,0.1553 J,>8,>0:> 0,4
SFRWA [24] 0.4311,0.3121,0.2045,0.1576 J>8,>0:> 0,

SFROWA [24]

0.2235,0.1944,0.1323, 0.0866

51>82>S3>84

From Table 16, we can see that the rankings of the alternatives obtained from the proposed operators
and existing operators are the same and that the alternative 3 is the best option.

8. Conclusions

In this article, we have presented a structured and comprehensive view of deep learning technology
and decision making methodologies for selecting deep learning technology, which is considered a core
part of artificial intelligence as well as data science. This paper began with a history of ANNs and
moved to recent deep learning techniques and breakthroughs in different applications. CSFRS theory
has been defined as a complementary extension of CSFS and rough set theories, which helps to solve
uncertainty in decision making problems. Aggregating data from different sources into a single data
is a very critical issue in the decision-making process, so we have proposed different types of CSFRS
aggregation operators, such as the WAg)FR,WG(CI?FR, OWA(CI?FR and OWG(CI?FR aggregation operators
based on Hamacher t norms. Also fundamental aspects of these operators have been discussed in
depth. Stepwise algorithms to solve real world problems are included. In addition, we address
multi-attribtue decision-making issues in the selection of deep learning technology to demonstrate
the scope of applicability of the operators proposed in this paper. Finally, to show applicability, we
have compared our results with existing decision-making methods.

In the future, the research directions include the aspects below:

(1) Our existing techniques may be extended to include heterogeneous information, as different
forms of information are closer to actual scenarios and can accept different criteria.

(2) We can use Frank, Yager and Einstein norms to develop generalized aggregation operators to
handle uncertain information.
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