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Abstract: In this paper, we consider a predator–prey model given by a reaction–diffusion system. This
model encompasses the classic Holling I, Holling II, Holling III, and Holling IV functional responses.
We investigate the stabilization problem of the considered system using multiplicative controls. By
linearizing the system and using the maximum principle, we construct a multiplicative control that
exponentially stabilizes the system towards its steady-state solutions. The proposed feedback control
allows us to reach a large class of steady-state solutions. The global well-posedness is obtained via
Banach fixed point. Applications and numerical simulations to Holling responses I, II, III, and IV are
presented.
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1. Introduction

The dynamics between prey and predator species in natural systems can be represented by a coupled
system of nonlinear reaction-diffusion equations. This type of system is usually represented by a
system of partial differential equations, rather than a system of ordinary differential equations, which
are often used to represent interactions between prey and predator populations without diffusion (see
for instance, [13] and [30] and references therein). We are concerned with the following mathematical
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model, which expresses the conservation of predator and prey densities:

∂y1(t, x)
∂t

= ∆y1 + y1h (y1) − y1y2k (y1) , x ∈ Ω, t > 0
∂y2(t, x)
∂t

= δ∆y2 − ay2 + by1y2k(y1), x ∈ Ω, t > 0
∂y1

∂v
=
∂y2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

y1(0, x) = y0
1(x), y2(0, x) = y0

2(x), x ∈ Ω̄

(1.1)

where y1 and y2 represent the prey and predator population densities at time t respectively. The
function y1h (y1) is the intrinsic growth rate of the prey y1 and signifies its growth rate in the absence
of the predator. It can be linear if h (y1) = r1, logistic if h (y1) = r1 (1 − y1/κ1), Gompertz if
h (y1) = h0 ln (κ1/y1) (h0, r1, κ1 > 0) etc. See [1, 2] and the references therein. The predator’s functional
response to prey is y1k(y1), which represents the number of prey individuals consumed per unit area
and unit time per predator. It includes as particular cases of various classical functional responses:
y1k (y1) = βy1 (Holling type I), y1k (y1) = βy1/ (1 + µy1 ) (Holling type II), y1k (y1) = βy2

1/
(
1 + µy2

1

) (Holling type III; see [3]), y1k (y1) = βy1/
(
γ + µy1 + y2

1

)
(Holling type IV; see [4]) etc. Here

β, γ > 0, µ ≥ 0.

There is a large amount of literature related to the mathematical study of prey-predator systems
of the diffusion type. In [24], Morita and Tachibana showed the existence of an entire solution (i.e.,
a solution that exists for all (t, x) ∈ R2) of the predator-prey reaction-diffusion systems with Holling
type I. The proof is carried out by applying the comparison principle and an appropriate pair of a
subsolution and a supersolution. For Holling II functional response, Garvie and Trenchea proved the
existence of a solution by using semigroup theory and application of the invariant region method of
Smoller (see [15]). In [1], Apreutesei and Dimitriu studied the well-posedness of a predator-prey
reaction-diffusion system with Holling type III. They show the existence of the solutions provided that
the initial data are positive and satisfy a specific regularity. For more results on the well-posedness
of these systems, we refer, for instance, to [8–10] and the reference therein. Recently, Mi et al. [23]
considered a nonlocal predator–prey model with double mutation; they defined pair of upper and lower
solutions, and they designed a new comparison principle that ensures the existence of the solutions.

In our case, the situation is quite complicated due to the generalized nonlinearity considered, which
encompasses all Holling functional responses nonlinearities. Consequently, we use the Banach fixed
point and the stabilization of an associated system to obtain the global well-posedness. The existence
and stability results concerning the steady states of these systems have been extensively studied see, for
example, [2,5,7,21] and the references therein. The results show that the system exhibits very unusual
behavior for some parameter values, while some steady states are stable under system parameter
constraints. It would be interesting to investigate a method that allows driving the systems to these
equilibrium states without adding additional constraints on the system parameters that might contradict
the measures taken during the modelling. To this end we use multiplicative controls to stabilize the
system, this choice is determined by the real application. In fact, for the prey predator model, these
controls can be interpreted as harvesting efforts. A huge amount of literature has been devoted to
stabilizing uncoupled linear systems via multiplicative controls. For example, we mention the works
of [4, 17, 26] and the references therein. However, the choice of such control in the nonlinear cases
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generates new difficulties. Indeed, the first difficulty is that the stabilization of nonlinear parabolic
coupled systems by using multiplicative controls remains an open problem. Another difficulty of
the problem lies in the fact that these controls are nonlinear, which doubles the nonlinearity of
the system. Note also that the controllability of bilinear systems is an open problem see [3]. For
hyperbolic coupled systems we refer to [19], where the authors characterize the stabilization of a class
of coupled hyperbolic systems by using multiplicative controls. They showed the equivalence between
stabilization and the observability of the uncontrolled system. In this work, we hope to achieve the
stabilization result. More precisely, let

f (y1, y2) = y1h (y1) − y1y2k (y1) and g(y1, y2) = −ay2 + by1y2k(y1). (1.2)

We obtain from (1.1) the following system

∂y1(t, x)
∂t

= ∆y1 + f (y1, y2), x ∈ Ω, t > 0
∂y2(t, x)
∂t

= δ∆y2 + g(y1, y2), x ∈ Ω, t > 0
∂y1

∂v
=
∂y2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

y1(0, x) = y0
1(x), y2(0, x) = y0

2(x), x ∈ Ω̄

(1.3)

We say that (ye
1, y

e
2) is an equilibrium state of (1.3) if and only if:

1- (ye
1, y

e
2) ∈ H2(Ω) ∩ H1

0(Ω).
2- (ye

1, y
e
2) solves the following elliptic system

∆ye
1 + f (ye

1, y
e
2) = 0, x ∈ Ω

δ∆ye
2 + g(ye

1, y
e
2) = 0, x ∈ Ω

∂ye
1

∂v
=
∂ye

2

∂v
= 0, x ∈ ∂Ω

Translate (ye
1, y

e
2) into zero via the following change of variable z1 = y1 − ye

1 et z2 = y2 − ye
2. Obviously

(z1, z2) solves the following system

∂z1(t, x)
∂t

= ∆z1 + f
(
z1 + ye

1, z2 + ye
2
)
− f (ye

1, y
e
2), x ∈ Ω, t > 0

∂z2(t, x)
∂t

= δ∆z2 + g
(
z1 + ye

1, z2 + ye
2
)
− g(ye

1, y
e
2), x ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

z1(0, x) = z0
1(x) := y0

1(x) − ye
1, z2(0, x) = z0

2(x) := y0
2(x) − ye

2, x ∈ Ω̄

(1.4)

then stabilizing (1.3) towards (ye
1, y

e
1) is reduced to the stability of the null solution to system (1.4).

By injecting a multiplicative control into the prey and predator equations, we obtain from (1.4) the
following system

∂z1(t, x)
∂t

= ∆z1 + f
(
z1 + ye

1, z2 + ye
2
)
− f (ye

1, y
e
2) + v(t)Bz1, x ∈ Ω, t > 0

∂z2(t, x)
∂t

= δ∆z2 + g
(
z1 + ye

1, z2 + ye
2
)
− g(ye

1, y
e
2) + v(t)Bz2, x ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

z1(0, x) = z0
1(x) := y0

1(x) − ye
1, z2(0, x) = z0

2(x) := y0
2(x) − ye

2, x ∈ Ω̄

(1.5)
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where v(t) is a feedback control to be determined. The control operator B is assumed to be bounded
from L2(Ω) to L2(Ω). The terms v(t)Bz1 and v(t)Bz2(t) can be regarded as the effort applied to harvest
the prey and predator, respectively. System (1.5) represents the evolution of predator-prey densities
under the action of harvesting. In the following, we construct the the control feedback v(t), ensuring
the exponential stabilization of (1.5).

The rest of the paper is organized as follows. In section 2, we present the assumptions and main
results. We start with the stabilization of the linearized system and extend the result to the nonlinear
system, where we show the well-posedness and exponential stabilization using Banach fixed points. In
section 3, we illustrate the obtained results for different Holling responses.

2. Assumptions and main results

For a bounded open set Ω ⊂ RN , we denote by H the Lebesgue space L2(Ω) endowed with the inner
product 〈., .〉 and its corresponding norm ‖.‖, H the Cartesian product L2(Ω) × L2(Ω) with the norm
‖.‖H and H = H1(Ω) × H1(Ω) with the norm ‖.‖H.
The following assumptions will be in effect everywhere in the following:

(H1) (ye
1, y

e
2) ∈ C(Ω)

(H2) f , g ∈ C1(R × R) satisfy the growth condition

| f (y, z)| + |g(y, z)| 6 C
m0∑
i=1

(|y|ri + |z|ri) for all y, z ∈ R, (2.1)

where m0 is a positive integer and ri, 1 6 i 6 m0, are such that

1 ≤ r1 < r2... < rm0 ≤ m0

(H3) y1(t, x) ≥ 0 and y2(t, x) ≥ 0 provided that y0
1(x) ≥ 0 and y0

2(x) ≥ 0.

Assumptions (H1) and (H2) for Holling types I, II, III and IV, imply, in particular that:
fy(ye

1, y
e
2), fz(ye

1, y
e
2), gy(ye

1, y
e
2), gz(ye

1, y
e
2) ∈ L∞(Ω). Assumption (H3) is proved for Holling type I, II, III

and IV; see, for instance, [1, 8].
Consider System (1.5),

∂z1(t, x)
∂t

= ∆z1 + f
(
z1 + ye

1, z2 + ye
2
)
− f (ye

1, y
e
2) + v(t)Bz1, x ∈ Ω, t > 0

∂z2(t, x)
∂t

= δ∆z2 + g
(
z1 + ye

1, z2 + ye
2
)
− g(ye

1, y
e
2) + v(t)Bz2, x ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

z1(0, x) = z0
1(x) := y0

1(x) − ye
1, z2(0, x) = z0

2(x) := y0
2(x) − ye

2, x ∈ Ω̄

(2.2)

The linearized system associated with (2.2) is given by

∂z1(t, x)
∂t

= ∆z1 + fy
(
ye

1, y
e
2
)

z1 + fz
(
ye

1, y
e
2
)

z2 + v(t)Bz1, x ∈ Ω, t > 0
∂z2(t, x)
∂t

= δ∆z2 + gy
(
ye

1, y
e
2
)

z1 + gz
(
ye

1, y
e
2
)

z2 + v(t)Bz2, x ∈ Ω, t > 0
∂y1

∂v
=
∂y2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

z1(0, x) = z0
1(x) := y0

1(x) − ye
1, z2(0, x) = z0

2(x) := y0
2(x) − ye

2, x ∈ Ω̄

(2.3)
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2.1. Exponential stabilization of the linearized system

In this section, we establish the exponential stabilization of the linearized system (2.3).

Spectral proprieties

Let a = supx∈Ω | fy(ye
1(x), ye

2(x))| , b = supx∈Ω | fz(ye
1(x), ye

2(x))|, c = supx∈Ω |gy(ye
1(x), ye

2(x))| and d =

supx∈Ω |gz(ye
1(x), ye

2(x))|.
Let A := ∆ + aI where D(A) = D(∆) = H2(Ω) ∩ H1

0(Ω). It is clear that A is a self-adjoint operator
with a compact resolvent; hence, the spectrum of A reduces to its point spectrum. More precisely,
the eignvalues (λi)i∈N∗ of A are reals. We suppose that there exists a finite positive integer N such that
{λi ≥ 0, ∀i ∈ {1, ...,N}} which is guaranteed thanks to the assumption fy(ye

1, y
e
2) ∈ L∞(Ω).

Let us consider the following auxiliary linear system:

∂Z1(t, x)
∂t

= AZ1 + bZ2 + v(t)BZ1, x ∈ Ω, t > 0
∂Z2(t, x)

∂t
= δAZ2 + cZ1 + c0Z2 + v(t)BZ2, x ∈ Ω, t > 0

∂Z1

∂v
=
∂Z2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

Z1(0, x) = Z0
1 := maxx∈Ω z0

1(x), Z2(0, x) = Z0
2 := maxx∈Ω z0

2(x), x ∈ Ω̄

(2.4)

where c0 = supx∈Ω |d − δa|. We mention that a simple application of the maximum principle (see [29])
gives that 0 ≤ z1(t) ≤ Z1(t) and 0 ≤ z2(t) ≤ Z2(t) for

0 ≤ z0
1(x) ≤ Z0

1 := max
x∈Ω

z0
1(x) and 0 ≤ z0

2(x) ≤ Z0
2 := max

x∈Ω
z0

2(x)

Theorem 2.1. Let B be a bounded operator on H; suppose that assumptions (H1), (H2) and (H3) hold;
then, the feedback

v(t) =

(−D − η)

(
‖Z1(t)‖2 + ‖Z2(t)‖2

)
〈BZ1(t),Z1(t)〉 + 〈BZ2(t),Z2(t)〉

if (Z1,Z2) , (0, 0)

0 else
(2.5)

where D = (2λ + b + c + 2δλ + 2c0), λ = max1≤i≤N(λi) and η > 0, ensures the exponential stabilization
of system (2.3).

Remark 2.1. In the case where B = Id, the feedback control v(t) will be a constant, that is, v(t) = −D−η

Proof. On the one hand, from the first equation of (2.4), we have

1
2
∂

∂t
‖Z1(t)‖2 = 〈AZ1(t),Z1(t)〉 + b〈Z2(t),Z1(t)〉 + v(t)〈BZ1(t),Z1(t)〉

≤ λ‖Z1(t)‖2 + b〈Z2(t),Z1(t)〉 + v(t)〈BZ1(t),Z1(t)〉 λ = max
1≤i≤N

(λi)

≤ λ‖Z1(t)‖2 + b‖Z2(t)‖‖Z1(t)‖ + v(t)〈BZ1(t),Z1(t)〉

≤ λ‖Z1(t)‖2 +
b
2
‖Z1(t)‖2 +

b
2
‖Z2(t)‖2 + v(t)〈BZ1(t),Z1(t)〉

AIMS Mathematics Volume 8, Issue 1, 2360–2385.



2365

then
∂

∂t
‖Z1(t)‖2 ≤ (2λ + b) ‖Z1(t)‖2 + b‖Z2(t)‖2 + 2v(t)〈BZ1(t),Z1(t)〉. (2.6)

On the other hand, from the second equation of (2.4), we have

1
2
∂

∂t
‖Z2(t)‖2 ≤ δλ‖Z2(t)‖2 + c〈Z1(t),Z2(t)〉 + c0‖Z2(t)‖2 + v(t)〈BZ2(t),Z2(t)〉

≤

(
δλ + c0 +

c
2

)
‖Z2(t)‖2 +

c
2
‖Z1(t)‖2 + v(t) 〈BZ2(t),Z2(t)〉

then
∂

∂t
‖Z2(t)‖2 ≤ (2δλ + 2c0 + c) ‖Z2(t)‖2 + c‖Z1(t)‖2 + 2v(t) 〈BZ2(t),Z2(t)〉 . (2.7)

Combining (2.6) and (2.7), we obtain

∂

∂t
‖(Z1(t),Z2(t))‖2H ≤ D ‖(Z1(t),Z2(t))‖2H + 2v(t)

(
〈BZ1(t),Z1(t)〉 + 〈BZ2(t),Z2(t)〉

)
where D = (2λ + b + c + 2δλ + 2c0).
Using the expression of v(t), we obtain

∂

∂t
‖(Z1(t),Z2(t))‖2H ≤ −2η ‖(Z1(t),Z2(t))‖2H . (2.8)

Integrating over [k, k + 1] for k ∈ N∗, we obtain

‖(Z1(k + 1),Z2(k + 1))‖2H − ‖(Z1(k),Z2(k))‖2H ≤ −2η ‖(Z1(k + 1),Z2(k + 1))‖2H , (2.9)

then
‖(Z1(k + 1),Z2(k + 1))‖2H ≤

1
2η + 1

‖(Z1(k),Z2(k))‖2H .

By the recurrence argument, one can obtain

‖(Z1(k),Z2(k))‖H ≤
1

(2η + 1)
k
2

∥∥∥(Z0
1 ,Z

0
2)
∥∥∥
H
. (2.10)

Since ‖(Z1(k + 1),Z2(k + 1))‖ decreases then for t ≥ k, we have

‖(Z1(t),Z2(t))‖H ≤ e−mt
∥∥∥(Z0

1 ,Z
0
2)
∥∥∥
H
, (2.11)

where m = ln(1 + 2η) > 0. Recalling that 0 ≤ z1(t) ≤ Z1(t) and 0 ≤ z2(t) ≤ Z2(t) for

0 ≤ z0
1(x) ≤ Z0

1 := max
x∈Ω

z0
1(x) and 0 ≤ z0

2(x) ≤ Z0
2 := max

x∈Ω
z0

2(x)

hence,
‖(z1(t), z2(t))‖H ≤ e−mt

∥∥∥(Z0
1 ,Z

0
2)
∥∥∥
H
, (2.12)

and therefore, there exists a positive constant M3 such that

‖(z1(t), z2(t))‖H ≤ M3 e−mt
∥∥∥(z0

1, z
0
2)
∥∥∥
H
. (2.13)

This completes the proof of Theorem 2.1. �
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2.2. Nonlinear setting

In this section, we shall prove that if ‖(z0
1, z

0
2)‖H ≤ ε for ε small enough, then the local solution of

(2.2) is global by using a Banach fixed point. Moreover, we show that this solution is exponentially
stabilizable.

Theorem 2.2. Well-posedness
Let B be a bounded operator on H, suppose that assumptions (H1), (H2) and (H3); then, for (z0

1, z
0
2) ∈ H

such that ‖(z0
1, z

0
2)‖H ≤ ε, where ε is sufficiently small, system (2.2) admits a global solution (z1, z2) ∈

Lr(0,∞;H) for some r ≥ 1.

Proof. System (2.2) can be written as
∂

∂t
(z1(t), z2(t)) = A(z1, z2) +A0(z1, z2) + Φ(z1, z2) + v(t)B(z1, z2), t > 0,

∂z1

∂v
=
∂z2

∂v
= 0, (t, x) ∈ Σ = (0,∞) × ∂Ω

(z1(0), z2(0)) =
(
z0

1, z
0
2

)
≡

(
y0

1 − ye
1, y

0
2 − ye

2

)
,

(2.14)

where

A =

(
∆ 0
0 α∆

)
, A0 =

(
fy(ye

1(x), ye
2(x))Id fz(ye

1(x), ye
2(x))Id

gy(ye
1(x), ye

2(x))Id gz(ye
1(x), ye

2(x))Id

)
, B =

(
B
B

)
and

Φ(z1, z2) ≡
(
Φ1(z1, z2),Φ2(z1, z2)

)
=

(
f
(
z1 + ye

1, z2 + ye
2
)
− f

(
ye

1, y
e
2
)
, g

(
z1 + ye

1, z2 + ye
2
)
− g

(
ye

1, y
e
2
))

−A0(z1, z2).

According to assumptions (H1) and (H2), we deduce that

‖Φ(z1, z2)‖H ≤ C
m∑

i=1

(
‖z1‖

ri + ‖z2‖
ri
)
,

≤ 2C
m∑

i=1

‖(z1, z2)‖ri
H
,

for some positive integer m, where ri are such that 1 ≤ r1 < · · · < rm ≤ m.
Let us consider {

X ∈ Lr(0,∞;H); ‖X‖Lr(0,∞;H) ≤ ρ
}

= S (0, ρ),

where 1 ≤ r ≤ m. We note by (Γ(t, s))0≤s≤t the evolution system generated by (z1, z2) :−→ A(z1, z2) +

A0(z1, z2) + v(t)B(z1, z2) (see Definition 5.3 p 126 [25]). Let the map

(Λ(z1, z2))(t) ≡ Γ(t, 0)(z0
1, z

0
2) +

∫ t

0
Γ(t, s)Φ(z1(s), z2(s))ds. (2.15)

From (2.13), we conclude that Γ(t, .)(z1, z2) ∈ Lr(0,∞;H), that is∫ ∞

0
‖Γ(t, s)(z1, z2)‖r

H
ds < ∞, ∀(z1, z2) ∈ H , (2.16)
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(see p 299 [12]). Moreover, using the superposition property of the evolution system (Γ(t, s))0≤s≤t, we
deduce from (2.13) and (2.16) that there exists a positive constant M4 such that∫ ∞

0
‖Γ(t, s)(z1, z2)‖rHds ≤ M4‖(z1, z2)‖r

H
. (2.17)

•We start by showing the invariance of Λ. We define

(N(z1, z2))(t) :=
∫ t

0
Γ(t, s)Φ(z1(s), z2(s))ds (2.18)

By duality arguments as in [31] page 197, we obtain

‖(N(z1, z2)(t)‖Lr(0,∞;H) ≤ M4

m∑
r=1

ρr, (2.19)

for all (z1, z2) ∈ S (0, ρ).
Then

‖(N(z1, z2)(t)‖Lr(0,∞;H) ≤ M4

m∑
r=1

ρr = M4
1 − ρm

1 − ρ
. (2.20)

Substituting in (2.15), we obtain

‖(Λ(z1, z2))‖rLr(0,∞;H) ≤ 2r−1‖Γ(t, 0)(z0
1, z

0
2)‖rLr(0,∞;H) + 2r−1

∥∥∥ ∫ t

0
Γ(t, s)Φ(z1(s), z2(s))ds

∥∥∥r

Lr(0,∞;H)

≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2r−1
(
M4

1 − ρm

1 − ρ

)r

, (using (2.20))

and hence

‖Λ(z1, z2)‖rLr(0,∞;H) ≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2r−1
(
M4

1 − ρm

1 − ρ

)r

.

Let us consider ρ > 0, which is chosen to satisfy the following constraints

2r−1Mr
3‖(z

0
1, z

0
2)‖r
H
≤

1
2
ρr, 2r−1

(
M4

1 − ρm+1

1 − ρ

)r

≤
1
2
ρr, ρ , 1 (2.21)

and hence
‖Λ(z1, z2)‖rLr(0,∞;H) ≤ ρ

r.

Therefore
Λ(z1, z2) ∈ S (0, ρ).

• Now we show that Λ is a contraction map on S (0, ρ).
Let us consider (y1, z1), (y2, z2) ∈ S (0, r), then there exists a constant C such that:

∥∥∥Φ(y1, z1) − Φ(y2, z2)
∥∥∥
H
≤ C

( m∑
i=1

‖y1 − y2‖
ri + ‖z1 − z2‖

ri
)
,
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≤ C‖y1 − y2‖

m∑
i=1

‖y1 − y2‖
ri−1 + C‖z1 − z2‖

m∑
i=1

‖z1 − z2‖
ri−1,

≤ C
∥∥∥(y1 − y2), (z1 − z2)

∥∥∥
H

m∑
i=1

‖y1 − y2‖
ri−1

+ C
∥∥∥(y1 − y2), (z1 − z2)

∥∥∥
H

m∑
i=1

‖z1 − z2‖
ri−1,

≤ C
∥∥∥(y1, z1) − (y2, z2)

∥∥∥
H

( m∑
i=1

‖y1 − y2‖
ri−1 +

m∑
i=0

‖z1 − z2‖
ri−1

)
. (2.22)

≤ 2C
∥∥∥(y1, z1) − (y2, z2)

∥∥∥
H

( m∑
i=1

(‖(y1, z1)‖ + ‖(y1, z1)‖)ri−1
)
, (2.23)

where the following argument is used

‖y1 − y2‖ ≤ ‖y1‖ + ‖y2‖ ≤ ‖(y1, z1)‖H + ‖(y2, z2)‖H ,

‖z1 − z2‖ ≤ ‖z1‖ + ‖z2‖ ≤ ‖(y1, z1)‖H + ‖(y2, z2)‖H ,

In the other hand, similar to (2.19), one can show as well that∥∥∥Λ(y1, z1) − Λ(y2, z2)
∥∥∥

Lr(0,∞;H)
≤ 2C

∥∥∥(y1, z1) − (y2, z2)‖Lr(0,∞;H)

m∑
r=1

(2ρ)r−1,

≤ 2C
1 − (2ρ)m

1 − 2ρ

∥∥∥(y1, z1) − (y2, z2)‖Lr(0,∞;H).

Then Λ is a contraction on S (0, ρ) for ρ chosen such that

2C
1 − (2ρ)m

1 − 2ρ
< 1, ρ ,

1
2

(2.24)

then according to the Banach fixed point, system (2.2) has for (z0
1, z

0
2) sufficiently small, a unique

solution
(z1, z2) ∈ Lr(0,∞;H).

�

Now we characterize the exponential stabilization of (2.2). Theorem 2.3 below is the main result of
this paper.

Theorem 2.3. Let B be a bounded operator on H, suppose that assumptions (H1), (H2) and (H3) hold,
then the following feedback

v(t) =


(−D − η)

(
‖Z1(t)‖2 + ‖Z2(t)‖2

)
〈BZ1(t),Z1(t)〉 + 〈BZ2(t),Z2(t)〉

if (Z1,Z2) , (0, 0)

0 else
(2.25)

where D = 2λ + b + c + 2δλ + 2c0, λ = max1≤i≤N(λi), exponentially stabilizes (2.2).

AIMS Mathematics Volume 8, Issue 1, 2360–2385.



2369

Proof. We start by showing that the solution (z1, z2) of (2.2) obeys the following estimate:

‖(z1, z2)‖rLr(0,∞;H) ≤
2r−1Mr

3

1 −Cρ,1
‖(z0

1, z
0
2)‖r
H

:= Cρ‖(z0
1, z

0
2)‖r
H
, (2.26)

where
Cρ,1 = 2rC3

(1 − ρm

1 − ρ

)r
.

.
In fact, according to the variation of constants formula, we have

(Λ(z1, z2))(t) ≡ Γ(t, 0)(z0
1, z

0
2) +

∫ t

0
Γ(t, s)Φ(z1(s), z2(s))ds, (2.27)

then ∥∥∥Λ(z1, z2)
∥∥∥r

Lr(0,∞;H)
=

∫ ∞

0
‖Λ(z1(t), z2(t))‖rHdt

≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2r−1
∫ ∞

0

∥∥∥ ∫ t

0
Γ(t, s)Φ(z1(s), z2(s))ds

∥∥∥r

H
dt. (2.28)

Using (2.19) in (2.28), we deduce that there exists a positive constant C3 := CM4 such that

‖(z1, z2)‖rLr(0,∞;H) :=
∥∥∥Λ(z1, z2)

∥∥∥r

Lr(0,∞;H)
,

≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2rC3

( m∑
r=0

‖(z1, z2)‖rLr(0,∞;H)

)r
,

≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2rC3‖(z1, z2)‖rLr(0,∞;H)

( m∑
r=1

‖(z1, z2)‖r−1
Lr(0,∞;H)

)r
,

≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2rC3‖(z1, z2)‖rLr(0,∞;H)

( m∑
r=1

ρr−1
)r
,

≤ 2r−1Mr
3‖(z

0
1, z

0
2)‖r
H

+ 2rC3

(1 − ρm

1 − ρ

)m+1
‖(z1, z2)‖rLr(0,∞;H),

then

‖(z1, z2)‖rLr(0,∞;H) ≤
2r−1Mr

3

1 −Cρ,1
‖(z0

1, z
0
2)‖r
H

:= Cρ‖(z0
1, z

0
2)‖r
H
, (2.29)

where
Cρ,1 = 2rC3

(1 − ρm

1 − ρ

)r
.

Now, we prove the following lemma to achieve the proof of Theorem 2.3.
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Lemma 2.1. There exist a time T > 0 and a constant 0 < γ < 1 such that

‖(z1(T ), z2(T ))‖H ≤ γ‖(z0
1, z

0
2)‖H . (2.30)

Proof. According to the variation of constants formula (2.15), there exists a positive constant K :=
sups∈[0,T ] ‖Γ(t, s)‖L(H) such that we have

‖(z1(T ), z2(T ))‖H ≤ M3 e−λT ‖(z0
1, z

0
2)‖H + K

∫ T

0
‖Φ(z1(s), z2(s))‖Hds,

≤ M3 e−λT ‖(z0
1, z

0
2)‖H + K

∫ ∞

0
‖Φ(z1(s), z2(s))‖Hds,

≤ M3 e−λT ‖(z0
1, z

0
2)‖H + 2KC

m∑
r=1

‖(z1(s), z2(s))‖rLr(0,∞;H),

≤ M3 e−λT ‖(z0
1, z

0
2)‖H + M5

m∑
r=1

‖(z0
1, z

0
2)‖r
H
, (using (2.29))

≤ M3 e−λT ‖(z0
1, z

0
2)‖H + M5‖(z0

1, z
0
2)‖H

m∑
r=1

‖(z0
1, z

0
2)‖r−1
H
,

≤ M3 e−λT ‖(z0
1, z

0
2)‖H + M5‖(z0

1, z
0
2)‖H

m∑
r=1

(
ρ

2M3

)r−1

, (using (2.21))

≤ M3 e−λT ‖(z0
1, z

0
2)‖H + M5

1 − ( ρ

2M3
)m

1 − ρ

2M3

‖(z0
1, z

0
2)‖H ,

≤
(
M3 e−λT +M5

1 − ( ρ

2M3
)m

1 − ρ

2M3

‖
)
(z0

1, z
0
2)‖H

then

‖z1(T ), z2(T )‖H ≤
(
M3 e−λT +M5

1 − ( ρ

2M3
)m

1 − ρ

2M3

‖
)
(z0

1, z
0
2)‖H ,

≤
(
M3 e−λT +αρr

)
‖(z0

1, z
0
2)‖H , (for some α > 0)

≤
(
M3 e−λT +h(ρ)

)
‖(z0

1, z
0
2)‖H ,

where h(ρ) = αρm; we have
h(0) = 0, h′(ρ) > 0.

We can take ρ = R > 0 sufficiently small and T sufficiently large so that

γ := CM3 e−λT +h(R) < 1;

then, (2.30) yields. �

We reiterate the argument obtaining

‖(z1(nT ), z2(nT )‖H ≤ γ‖
(
z1((n − 1)T ), z2((n − 1)T )

)
‖H ≤ γ

n‖(z0
1, z

0
2)‖H , n = 1, 2, . . .
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Let us consider t1 = nT , then for all t ≥ t1 we conclude that

‖(z1(t), z2(t))‖H ≤ γn‖(z0
1, z

0
2)‖H ;

hence, there exist two positives constants N and α1 such that

‖(z1(t), z2(t))‖H ≤ N e−α1t ‖(z0
1, z

0
2)‖H .

�

3. Applications and numerical simulations

In this section, we apply the exponential stabilization result for the different Holling response
functions I, II, III and IV. We present numerical simulations for each example in two-dimensional
space.

In the following, we consider the two-dimensional closed rectangular habitat Ω := {(x, y)/ 0 ≤ x ≤
a, 0 ≤ y ≤ b}. The eigenvalues and eigenfunctions respectively of the Laplacian operator ∆ with the
Neumann boundary in Ω are given by (see [16])

λM,N = −π2
[(

M2/a2
)

+
(
N2/b2

)]
; M,N = 0, 1, 2, . . . (3.1)

and
ψM,N(x, y) = cos(Mπx/a) cos(Nπy/b). (3.2)

3.1. Holling type I

Let consider the following prey-predator-diffusion with a Holling type I functional response.

∂y1(t, x, y)
∂t

= ∆y1 + f (y1, y2), (x, y) ∈ Ω, t > 0
∂y2(t, x, y)

∂t
= δ∆y2 + g(y1, y2), (x, y) ∈ Ω, t > 0

∂y1

∂v
=
∂y2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

y1(0, x, y) = y0
1(x, y), y2(0, x) = y0

2(x, y), (x, y) ∈ Ω

(3.3)

where f (y1, y2) = r1y1(1 − y1/κ1) − βy1y2 and g(y1, y2) = −r2y2 + bβy1y2.
Steady state solutions analysis:
System (3.3) has the following constant steady states

(0, 0), (κ1, 0), (y∗, z∗) (3.4)

where (y∗, z∗) is the solution of the following systemr1y∗(1 − y∗/κ1) − βy∗z∗ = 0,
−r2z∗ + by∗z∗ = 0.

(3.5)

and (y(x), z(x)), where (y(x), z(x)) is a non-constant positive function when it exists. The asymptotic
behavior of these steady states has been studied extensively; see, e.g., [6,11]. Furthermore, Kishimoto
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and Weinberger [18] showed that (3.3) has no stable positive steady-state solution when the domain Ω

is convex, while, according to Theorem 2.3, these equilibrium states can be reached; more precisely,
let z1 = y1 − ye

1 and z2 = y2 − ye
2; then, we have the following system:

∂z1(t, x, y)
∂t

= ∆z1 + f (z1 + ye
1, z2 + ye

2) − f (ye
1, y

e
2) + v(t)Bz1, (x, y) ∈ Ω, t > 0

∂z2(t, x, y)
∂t

= δ∆z2 + g(z1 + ye
1, z2 + ye

2) − g(ye
1, y

e
2) + v(t)Bz2, (x, y) ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

z1(0, x, y) = z0
1(x, y) := z0

1(x, y) − ye
1, z2(0, x) = z0

2(x, y) := z0
2(x, y) − ye

2, (x, y) ∈ Ω

(3.6)

where BY =
2

1 + µ(x, y)
Y, ∀Y ∈ L2(Ω) and µ ∈ L∞(Ω) such that µ(x, y) ≥ 1, ∀(x, y) ∈ Ω, is

exponentially stabilizable for all equilibrium states (ye
1, y

e
2).

Let us verify the conditions of Theorem 2.3:
-Following [20], system (3.3) has a unique smooth non-negative solution for y0

1(x) ≥ 0 and y0
2(x) ≥ 0.

- By simple calculus, there exist positive constants C1,C2,C3,C4,C5 and C6 such that

| f (y1(t, x), y2(t, x))| ≤ C1|y1(t, x)| + C2|y1(t, x)|2 + C3|y2(t, x)|2

and
|g(y1(t, x), y2(t, x))| ≤ C4|y2(t, x)| + C5|y1(t, x)|2 + C6|y2(t, x)|2;

then (H2) holds for r1 = 1, r2 = 2, m0 = 2 and C = max{C1,C2,C3,C4,C5,C6}.

Numerical simulations:
Let Ω = [0, 300] × [0, 300], B = Id, r1 = 1, κ1 = 1, e = 2.5, β = 0.4, δ = 1, r2 = 0.6 and b = 5. The
choice of parameters for numerical simulation was inspired from [22]. We illustrate numerically the
exponential stabilization of (3.6) towards (ye

1, y
e
2) = (0, 0). To this end we start by the explicitation of

the feedback control v(t). On the one hand, by simple calculus we have:

a = 1, b = 0, c = 0, d = 0.6 and c0 = 0.4. (3.7)

On the other hand, the eigenvalues of A := ∆ + aI are:

λM,N = 1 − π2[M2/3002 + N2/3002]; M,N = 0, 1, 2...

It is clear that A has a finite number of positive eigenvalues, the largest one being λ0,0 := 1. Then
following Theorem 2.3, we obtain v(t) = −5. Let

y0
1(x, y) = 0.1 + sin(

π

400
x) sin(

π

500
y), ∀(x, y) ∈,Ω

and
y0

2(x, y) = 0.1 + sin(
π

400
x) + sin(

π

400
y), ∀(x, y) ∈ Ω.

Using the 2D finite difference (see [14]), we obtain Figure 1, which shows the densities of the
uncontrolled system, and Figure 2, which shows the densities of the controlled system.
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Figure 1. Uncontrolled prey and predator densities at T = 0 and T = 100 with Holling type
I functional response.
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Figure 2. Controlled prey and predator densities at T = 50 and T = 100 with Holling type I
functional response.

3.2. Holling type II

Let us consider the following prey-predator- diffusion with a Holling type II functional response.

∂y1(t, x, y)
∂t

= ∆y1 + f (y1, y2), (x, y) ∈ Ω, t > 0
∂y2(t, x, y)

∂t
= δ∆y2 + g(y1, y2), (x, y) ∈ Ω, t > 0

∂y1

∂v
=
∂y2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

y1(0, x, y) = y0
1(x, y), y2(0, x, y) = y0

2(x, y), (x, y) ∈ Ω

(3.8)

where f (y1, y2) = r1y1(1 − y1/κ1) −
βy1y2

1 + ey1
and g(y1, y2) = −r2y2 +

bβy1y2

1 + ey1
.

Steady state solutions analysis:
System (3.8) has the following constant steady states

(0, 0), (κ1, 0), (y∗, z∗) (3.9)
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where (y∗, z∗) is the positive solution of the system
y∗ + r1y∗(1 − y∗/κ1) −

βy∗z∗

1 + ey∗
= 0,

−r2z∗ +
bβy∗z∗

1 + ey∗
= 0;

(3.10)

and (y(x), z(x)) where (y(x), z(x)) is a non-constant positive function when it exists. Camara and Aziz-
Alaoui (see [8] and [7]) show that for suitable conditions on r1, β and e, system (3.8) has at least one
positive solution. They have shown that (0, 0) and (κ1, 0) are unstable, while, according to Theorem
2.3, these equilibrium states can be reached; more precisely, let z1 = y1− ye

1, z2 = y2− ye
2; then, we have

the following system

∂z1(t, x, y)
∂t

= ∆z1 + f (z1 + ye
1, z2 + ye

2) − f (ye
1, y

e
2) + v(t)Bz1, (x, y) ∈ Ω, t > 0

∂z2(t, x, y)
∂t

= δ∆z2 + g(z1 + ye
1, z2 + ye

2) − g(ye
1, y

e
2) + v(t)Bz2, (x, y) ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

z1(0, x, y) = z0
1(x, y) := z0

1(x, y) − ye
1, z2(0, x) = z0

2(x, y) := z0
2(x, y) − ye

2, (x, y) ∈ Ω

(3.11)

where BY = µ(x, y)Y, ∀Y ∈ L2(Ω) and µ ∈ L∞(Ω) such that µ(x, y) ≥ 1, ∀(x, y) ∈ Ω, is exponentially
stabilizable for all equilibrium states (ye

1, y
e
2). Let us verify the conditions of Theorem 2.3:

-Following Lemma 14.20 [27], system (3.8) has a non-negative solution for y0
1(x) ≥ 0 and y0

2(x) ≥ 0.
-By simple calculus, there exist positive constants C1,C2,C3 and C4 such that

| f (y1(t, x), y2(t, x))| ≤ C1|y1(t, x)| + C2|y1(t, x)|2 + C3|y2(t, x)|

and
|g(y1(t, x), y2(t, x))| ≤ C4|y2(t, x)|,

then (H2) holds for r1 = 1, r2 = 2, m0 = 2 and C = max{C1,C2,C3,C4}.

Numerical simulations:
Let Ω = [0, 500] × [0, 500], B = Id, r1 = 1, κ1 = 1, e = 2.5, β = 0.4, δ = 1, r2 = 0.6, b = 5. Let explicit
the feedback control that stabilizes the solution of (3.11) towards (ye

1, y
e
2) = (0, 0). The eigenvalues of

A := ∆ + aI are:
λM,N = 1 − π2[M2/5002 + N2/5002]; M,N = 0, 1, 2...

It is clear that A has a finite number of positive eigenvalues, the largest one being λ0,0 := 1. By simple
calculations we obtain

v(t) = −5. (3.12)

Let
y0

1(x, y) = 6/35 − 2 × 10−7 (x − 0.1y − 225) (x − 0.1y − 675) , ∀(x, y) ∈ Ω,

and
y0

2(x, y) = 116/245 − 3 × 10−5 (x − 450) − 1.2 × 10−4 (y − 150) , ∀(x, y) ∈ Ω.

Using the 2D finite difference (see [14]), we obtain Figure 3, which shows the densities of the
uncontrolled system, and Figure 4, which shows the densities of the controlled system.
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Figure 3. Uncontrolled prey and predator densities at T = 0 and T = 150 with Holling type
II functional response.
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Figure 4. Controlled prey and predator densities at T = 50 and T = 150 with Holling type II
functional response.

3.3. Holling type III

Let us consider the following prey-predator- diffusion with a Holling type III functional response:

∂y1(t, x, y)
∂t

= ∆y1 + f (y1, z1), (x, y) ∈ Ω, t > 0
∂y2(t, x, y)

∂t
= δ∆y2 + g(y1, z1), (x, y) ∈ Ω, t > 0

∂y1

∂v
=
∂y2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

y1(0, x, y) = y0
1(x, y), y2(0, x, y) = y0

2(x, y), (x, y) ∈ Ω

(3.13)

where f (y1, y2) = r1y1(1 − y1/κ1) −
βy2

1y2

1 + ey2
1

and g(y1, y2) = −r2y2 +
bβy2

1y2

1 + ey2
1

.

Steady state solutions analysis:
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System (3.13) has the following constant steady states

(0, 0), (κ1, 0), (y∗, z∗) (3.14)

where (y∗, z∗) is the solution of the following system
ry∗(1 − y∗/κ1) −

β(y∗)2z∗

1 + e(y∗)2 = 0,

−r2z∗ +
bβ(y∗)2z∗

1 + e(y∗)2 = 0.
(3.15)

Tian and Weng in [28] showed that (y∗, z∗) exists and is positive for appropriate assumptions on β, e, b
and r2, and they discussed the stability of this stationary solution. However, we have seen that, by using
Theorem 2.3, these equilibrium states can be reached; more precisely, let z1 = y1 − ye

1, z2 = y2 − ye
2;

then, we have then the following system

∂z1(t, x, y)
∂t

= ∆z1 + f (z1 + ye
1, z2 + ye

2) − f (ye
1, y

e
2) + v(t)Bz1, (x, y) ∈ Ω, t > 0

∂z2(t, x, y)
∂t

= δ∆z2 + g(z1 + ye
1, z2 + ye

2) − g(ye
1, y

e
2) + v(t)Bz2, (x, y) ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

z1(0, x, y) = z0
1(x, y) := z0

1(x, y) − ye
1, z2(0, x) = z0

2(x, y) := z0
2(x, y) − ye

2, (x, y) ∈ Ω

(3.16)

where BY = (µ(x, y) − 1)(µ(x, y) + 1)Y, ∀Y ∈ L2(Ω) and µ ∈ L∞(Ω) such that µ(x, y) ≥ 1, ∀(x, y) ∈ Ω,
is exponentially stabilizable for all equilibrium states (y1

e , y
2
e). Now, let us verify the conditions of

Theorem 2.3:
-Following Lemma 14.20 [27], system (3.13) has a non-negative solution for y0

1(x) ≥ 0 and y0
2(x) ≥ 0.

-By simple calculus, there exist positive constants C1,C2,C3 and C4 such that

| f (y1(t, x), y2(t, x))| ≤ C1|y1(t, x)| + C2y2
1(t, x) + C3|y2(t, x)|

and
|g(y1(t, x), y2(t, x))| ≤ C4|y2(t, x)|,

then (H2) holds for r1 = 1, r2 = 2, m0 = 2 and C = max{C1,C2,C3,C4,C5,C6}.

Numerical simulations:
Let Ω = [0, 350] × [0, 350], B = Id, r1 = 1, κ1 = 1, e = 2.5, β = 0.4, δ = 1, r2 = 0.6, b = 5. Let explicit
the feedback control that stabilizes the solution of (3.16) towards (ye

1, y
e
2) = (0, 0). The eigenvalues of

A := ∆ + aI are:
λM,N = 1 − π2[M2/3502 + N2/3502]; M,N = 0, 1, 2...

It is clear that A has a finite number of positive eigenvalues, the largest one being λ0,0 := 1. By simple
calculations we obtain

v(t) = −3. (3.17)

Let
y0

1(x, y) = 1 − 0.1 sin(
π

400
x) cos(

π

350
y), ∀(x, y) ∈ Ω
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and

y0
2(x, y) = 0.5 + 0.1sin(

π

200
x) + 0.01 cos(

π

300
y), ∀(x, y) ∈ Ω.

Using the 2D finite difference (see [14]), we obtain Figure 5, which shows the densities of the
uncontrolled system, and Figure 6, which shows the densities of the controlled system.

Figure 5. Uncontrolled prey and predator densities at T = 0 and T = 100 with Holling type
III functional response.
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Figure 6. Controlled prey and predator densities at T = 50 and T = 100 with Holling type
III functional response.

3.4. Holling type IV

Let us consider the following prey-predator- diffusion with a Holling type IV functional response:

∂y1(t, x, y)
∂t

= ∆y1 + f (y1, z1), (x, y) ∈ Ω, t > 0
∂y2(t, x, y)

∂t
= δ∆y2 + g(y1, z1), (x, y) ∈ Ω, t > 0

∂y1

∂v
=
∂y2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

y1(0, x, y) = y0
1(x, y), y2(0, x, y) = y0

2(x, y), (x, y) ∈ Ω

(3.18)

where f (y1, y2) = r1y1(1 − y1/κ1) −
βy2

1y2

e1 + ey1 + e2y2
1

, g(y1, y2) = −r2y2 +
bβy2

1y2

e1 + ey1 + e2y2
1

.

Steady state solutions analysis:
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System (3.18) has the following constant steady states

(0, 0), (κ1, 0), (y∗, z∗), (3.19)

where (y∗, z∗) is the solution of the following system
ry∗(1 − y∗/κ1) −

β(y∗)2z∗

e1 + ey∗ + e2(y∗)2 = 0,

−r2z∗ +
bβ(y∗)2z∗

e1 + ey∗ + e2(y∗)2 = 0.
(3.20)

We refer to [9] for discussions on the existence and stability of these equilibrium states. However,
we have seen that, by using Theorem 2.3, these equilibrium states can be reached; more precisely, let
z1 = y1 − ye

1, z2 = y2 − ye
2, then the following system

∂z1(t, x, y)
∂t

= ∆z1 + f (z1 + ye
1, z2 + ye

2) − f (ye
1, y

e
2) + v(t)Bz1, (x, y) ∈ Ω, t > 0

∂z2(t, x, y)
∂t

= δ∆z2 + g(z1 + ye
1, z2 + ye

2) − g(ye
1, y

e
2) + v(t)Bz2, (x, y) ∈ Ω, t > 0

∂z1

∂v
=
∂z2

∂v
= 0, (t, x, y) ∈ Σ = (0,∞) × ∂Ω

z1(0, x, y) = z0
1(x, y) := z0

1(x, y) − ye
1, z2(0, x) = z0

2(x, y) := z0
2(x, y) − ye

2, (x, y) ∈ Ω

(3.21)

where BY = (1 − µ(x))Y, ∀Y ∈ L2(Ω) and µ ∈ L∞(Ω), is exponentially stabilizable for all equilibrium
states (y1

e , y
2
e).

Now, let us verify the conditions of Theorem 2.3:
-Following Lemma 14.20 [27], system (3.18) has a non-negative solution for y0

1(x) ≥ 0 and y0
2(x) ≥ 0.

-By simple calculus, there exist positive constants C1,C2,C3 and C4 such that

| f (y1(t, x), y1(t, x))| ≤ C1|y1(t, x)| + C2y2
1(t, x) + C3|y2(t, x)|

and
|g(y1(t, x), y1(t, x))| ≤ C4|y2(t, x)|;

then (H2) holds for r1 = 1, r2 = 2, m0 = 2 and C = max{C1,C2,C3,C4}.

Numerical simulation:
Let Ω = [0, 400] × [0, 400], B = Id, r1 = 1, κ1 = 1, e = 0.7; e1 = 0.5, e2 = 2.5, β = 0.4, δ = 1,
r2 = 0.6 and b = 5. Let explicit the feedback control that stabilizes the solution of (3.21) towards
(ye

1, y
e
2) = (0, 0). The eigenvalues of A := ∆ + aI are

λM,N = 1 − π2[M2/4002 + N2/4002]; M,N = 0, 1, 2...

It is clear that A has a finite number of positive eigenvalues, the largest one being λ0,0 := 1. By simple
calculations we obtain

v(t) = −2.85. (3.22)

Let
y0

1(x, y) = 1 − sin(
π

400
x) sin(

π

500
y), ∀(x, y) ∈ Ω,
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and

y0
2(x, y) = 1 + e−0.4x + e−0.009y, ∀(x, y) ∈ Ω.

Using the 2D finite difference (see [14]), we obtain Figure 7, which shows the densities of the
uncontrolled system, and Figure 8, which shows the densities of the controlled system.

Figure 7. Uncontrolled prey and predator densities at T = 0 and T = 100 with Holling type
IV functional response.
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Figure 8. Controlled prey and predator densities at T = 50 and T = 100 with Holling type
IV functional response.

4. Conclusions

The problem of exponential stabilization of reaction-diffusion systems simulating predatory prey
systems has been investigated. We constructed a multiplicative control that exponentially stabilizes the
solution of the system to its equilibrium state. The designed controller has the advantage of reaching
all equilibrium states. Numerical simulations show the efficiency of the used control.
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