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Yony Raúl Santaria Leuyacc*

Faculty of Mathematical Sciences, National University of San Marcos, Lima, Peru

* Correspondence: Email:ysantarial@unmsm.edu.pe.

Abstract: We will focus on the existence of nontrivial, nonnegative solutions to the following
quasilinear Schrödinger equation −div

(
log

e
|x|
∇u

)
− div

(
log

e
|x|
∇(u2)

)
u = g(x, u), x ∈ B1,

u = 0, x ∈ ∂B1,

where B1 denotes the unit ball centered at the origin in R2 and g behaves like exp(es4
) as s tends

to infinity, the growth of the nonlinearity is motivated by a Trudinder-Moser inequality version, which
admits double exponential growth. The proof involves a change of variable (a dual approach) combined
with the mountain pass theorem.
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1. Introduction

This paper deals with the existence of a nontrivial, nonnegative solution for the following quasilinear
stationary Schrödinger equation −div

(
w(x)∇u

)
− div

(
w(x)∇(u2)

)
u = g(x, u), x ∈ B1,

u = 0, x ∈ ∂B1,
(1.1)

where B1 denotes the unit ball centered at the origin, w(x) = log(e/|x|) and the nonlinearity g possesses
maximal growth range. For the case w ≡ 1 the problem (1.1) is reduced to

− ∆u − ∆(|u|2)u = g(x, u), x ∈ B1, (1.2)
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whose solutions are related to the existence of solitary wave solutions ψ(t, x) = eiωtu(x) for the time-
dependent nonlinear Schrödinger equation:

i
∂ψ

∂t
= −∆ψ + W(x)ψ − ∆(|ψ|2)ψ − h(|ψ|2)ψ, (t, x) ∈ R+ ×Ω, (1.3)

where φ : R × Ω → C, λ > 0, W : Ω → R is a continuous potential and for suitable function
h : R+ → R. it was shown that the class of equations of the type (1.3) arise many applications.
Kurihara in [15] showed that the persistence of the solitonic behavior of superfluid films is modeled by
(1.3). Also, The authors in [6, 24] used (1.3) to modeled the propagation of a short intense laser pulse
through an underdense or cold plasma. For examples of other applications see for instance [1,2,24,32].
Equation of the type (1.2) was treated by many authors using several strategies such as via constrained
minimization techniques [10,23], using a change of variable (a dual approach) [7,12,19], a perturbation
method [8, 9], and a Nehari method [13] among others.

The strategy of variational methods considers an Euler-Lagrange functional J : X → R for a suitable
space X, where its critical points result in weak solutions of a nonlinear equation. We say that u is a
weak solution of the problem (1.1) if∫

B1

w(x)∇u∇φ dx +

∫
B1

w(x)∇(u2)∇(uφ) dx =

∫
B1

g(x, u)φ dx,

for all φ ∈ X (for some suitable space X to be determinate), which motivates to consider the following
Euler-Lagrange functional J : X → R

J(u) =
1
2

∫
B1

w(x)|∇u|2 dx +
1
4

∫
B1

w(x)|∇(u2)|2 dx −
∫

B1

G(x, u) dx.

Observe that ∫
B1

w(x)|∇(u2)|2 dx = 4
∫

B1

w(x)|u|2|∇u|2 dx.

Thus, we can rewrite J as

J(u) =
1
2

∫
B1

w(x)(1 + 2|u|2)|∇u|2 dx −
∫

B1

G(x, u) dx. (1.4)

Observe that the energy functional J requires that w(x)|u|2|∇u|2 belongs to L1(B1). However, there
is no a suitable Sobolev space where the above energy functional is well-defined and belongs to the
C1-class. Following the ideas developed by Liu, Wang and Wang [12], we make a change of variable to
reformulate the quasilinear equation (1.1) to obtain a semilinear problem whose associated functional
is well-defined.

Nonlinearities of the form g(x, u) ∼ |u|p−2u for p ∈ (4, 2 · 2∗) where 2∗ denotes the critical Sobolev
exponent, this is, 2∗ = 2N/(N − 2) if N ≥ 3 and 2∗ = +∞ if N = 2, were considered by several authors,
see [10,11,23]. It is important to mention that the presence of the term u∆(u2) allow us to consider p in
a double range of values as in the standard case. In dimension N = 2, we notice that every polynomial
growth is admitted on g. However, the embedding H1

0(Ω) ↪→ L∞(Ω) does not hold. In this case,
another kind of maximal growth was obtained independently by Yudovich [31], Pohozaev [22], and
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Trudinger [25]. It was proved that eα|u|
2
∈ L1(Ω) for all u ∈ H1

0(Ω) and α > 0. Furthermore, Moser [18]
improved this result by finding the best exponent α. More precisely, it was showed that

sup
u∈H1

0 (Ω),‖∇u‖2=1

∫
Ω

eα|u|
2

dx,

is finite for α ≤ 4π and infinite if α > 4π. Above statements are well known as Trudinger-Moser
inequalities.

Motivated for the above results Eq (1.2) involving exponential growth was treated in [17,20,27,28]
among others. More precisely, the above papers considered the following condition on g: there exists
a constant α0 > 0 such that

lim
s→+∞

g(x, s)
eα|s|4

=

{
+∞ for α < α0,

0 for α > α0.
(1.5)

Similarly to the polynomial growth the expression eα|s|
2

is replace by eα|s|
4

due to the appearance
of the term ∆(|u|2)u. Trudinger-Moser inequalities were extended in many directions [3–5, 16, 26]
among others. Calanchi and Ruf in [4] established a Trudinger-Moser version which admits double
exponential growth using a Sobolev weighted space.

Let H1
0,rad(B1,w) be the Sobolev weighted space defined as the subspace of the radially symmetric

functions in the closure of C∞0 (B1) with respect to the norm

‖u‖ :=
( ∫

B1

|∇u|2w(x) dx
) 1

2
.

where w(x) = log
( e
|x|

)
. The space H1

0,rad(B1,w) is a separable Banach space (see [14]). Moreover, we

note that H1
0,rad(B,w) is a Hilbert space endowed with inner product

〈u, v〉 :=
∫

B1(0)
w(x)∇u∇v dx, for all u, v ∈ H1

0,rad(B,w).

In what follows, we denote by E the space H1
0,rad(B,w) and by E∗ the dual space of E with the usual

norm. We start with the next embedding result.

Lemma 1.1. The space E is continuously embedded in Lp(B1) for 1 ≤ p < +∞, and compactly
embedded in Lp(B1) for 1 < p < +∞.

Proof. From the radial lemma version on the space E (see [4]), we have

|u(x)| ≤
1
√

2π
log1/2

(
log

( e
|x|

))
‖u‖.

Let consider p > 2. Then,∫
B1

|u(x)|p dx ≤
‖u‖p

(2π)p/2−1

∫ 1

0
r logp/2

(
log

(e
r
))

dx. (1.6)
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Observe that the function Φ(r) = r logp/2
(

log
(e
r
))

is continuous in (0, 1] and

lim
r→0+

Φ(r) = e lim
r→0+

logp/2
(

log
(e
r
))

logp/2 (e
r
) ·

logp/2 (e
r
)

e
r

= e
[

lim
t→+∞

log t
t

]p/2

·

[
lim

s→+∞

lnp/2 s
s

]
= 0.

Therefore, the integral of the right hand of (1.6) is finite. Then, there exists C > 0 such that ‖u‖p ≤

C‖u‖ for every p > 2. Using the fact that the domain B1 is bounded, we get H1
0,rad(B1,w) ↪→ Lp(B1)

for every p ≥ 1. In order to prove compactness, we consider a sequence (un) ⊂ E such that un ⇀ 0 in
E and un → 0 almost everywhere in B1. Setting P(s) = |s|p and Q(s) = |s|p−ε + |s|p+ε where p > 1 and
0 < ε < p − 1.

We observe that P(s)/Q(s) → 0, as |s| → ∞, and P(s)/Q(s) → 0, as |s| → 0. Using the continuous
embeddings E ↪→ Lq−ε(B1) and E ↪→ Lq+ε(B1), we obtain supn≥1

∫
B1
|Q(un)| dx < +∞. Moreover,

P(un) → 0 for almost everywhere in B1. Applying the Strauss compactness lemma (see [29]), we get∫
B1

P(un) dx→ 0, as n→ +∞. Hence, un → 0 in Lp(B1) for p > 1. �

Next, we state the Trudinger-Moser version inequality which we will use throughout this paper.

Proposition 1.1. (See [4]) It holds∫
B1

exp
(
αeu2)

dx < +∞, for all u ∈ E and α > 0. (1.7)

Furthermore, if α ≤ 2, there exists a positive constant C such that

sup
u∈E, ‖u‖≤1

∫
B1

exp
(
αe2πu2)

dx ≤ C. (1.8)

Concerning to the nonlinearity g, we assume the following conditions.

(g1) g ∈ C(B1 × R) and g(x, s) = o(s) near the origin and g(x, s) = 0 for all x ∈ B1 and s ≤ 0.
(g2) There exists a constant µ > 2 such that

0 < 2µG(x, s) ≤ sg(x, s), for all x ∈ B1 and s > 0,

where G(x, s) =
∫ s

0
g(x, t) dt.

(g3) There exist constants s0 > 0 and M > 0 such that

0 < G(x, s) ≤ Mg(x, s), for all s > s0.

(g4) There exists a constant α0 > 0 such that

lim
s→+∞

g(x, s)
exp

(
eαs4) =

0, α > α0,

+∞, α < α0,

uniformly in x ∈ B1.
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(g5) There exist constants p > 4 and Cp > 0 such that

g(x, s) ≥ Cpsp−1, for all x ∈ B1 and s ≥ 0,

where

Cp > max

30, p
[(α0(µ − 2)

4πµ

)(
9 · 182/(p−2) − 18p/(p−2)

)](p−2)/2
 .

The following theorem contains our main result.

Theorem 1.1. Suppose that (g1)–(g5) holds. Then, the quasilinear equation (1.1) possesses a nontrivial
nonnegative weak solution.

The main difference of our result with previous works is the assumption (g3) which says that g
has double exponential critical growth in the sense of Proposition 1.1, we consider the term exp

(
eαs4)

instead of exp
(
eαs2)

in analogy to (1.5). In order to prove the existence of solution of the Eq (1.1)
we make a change a variable to reformulate the energy functional (1.4) and apply the mountain pass
theorem in the new energy functional.

The paper is organized as follows: Section 2 contains some preliminaries results and we set up the
reformulate energy functional. In Section 3, we show that the reformulate energy functional possesses
the pass mountain geometry. In Section 4, we estimate the Palais-Smale sequences and minimax levels
of the new functional. Finally, in Sections 5, we present the proof of our main theorem.

2. Preliminaries

Following [7, 12], we make a change of variable v = f −1(u) where f is an invertible function
satisfying

f ′(t) =
1√

1 + 2 f 2(t)
and f (−t) = − f (t).

Then, J is reformulate as follows

I(v) := J
(
f (v)

)
=

1
2

∫
B1

w(x)|∇v|2 dx −
∫

B1

G(x, f (v)) dx,

for all v ∈ E, and by standard arguments, one can verify that

I′(v)φ =
1
2

∫
B1

w(x)∇v · ∇φ dx −
∫

B1

g(x, f (v)) f ′(v)φ dx,

for all v, φ ∈ E. Moreover, I(v) is the energy functional associated to the semilinear equation −div
(

log
e
|x|
∇v

)
= g(x, f (v)) f ′(v), x ∈ B1(0),

v = 0, x ∈ ∂B1(0).
(2.1)

It was observed in [7], if v is a weak solution of the problem (2.1) then v = f −1(u) is a weak solution
of the problem (1.1).

The function f satisfies the following properties (see [7, 21]).
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Lemma 2.1. The function f satisfies the following properties

(i) f ∈ C1(R) is strictly increasing, in particular, it is invertible.
(ii) | f (t)| ≤ |t| and 0 < | f ′(t)| ≤ 1 for all t ∈ R.

(iii) f (t)/t → 0 as t → 0 and 0 < f ′(t) ≤ 1 for all t ∈ R.
(iv) f (t)/

√
t → 21/4 as t → +∞.

(v) f (t)/2 ≤ t f ′(t) ≤ f (t) for all t ≥ 0.
(vi) | f (t)| ≤ 21/4|t|1/2 for all t ∈ R.

3. Geometry of the pass mountain theorem

This section is devoted to set the geometry of the linking theorem of the functional I.

Lemma 3.1. Let v ∈ E, α > 0 and q > 1 with 2α‖v‖2 < π, then there exists C > 0 such that∫
B1

| f (v)|qexp(eα| f (v)|4) dx ≤ C‖ f (v)‖q.

Proof. Using the Cauchy-Schwarz inequality and Lemma 2.1-(vi), we have∫
B1

| f (v)|qexp(eα| f (v)|4) dx ≤ ‖ f (v)‖q2q

(∫
B1

exp(2e2α|v|2) dx
)1/2

≤ | f (v)‖q2q

(∫
B1

exp
(
2e2α‖v‖2

(
|v|
‖v‖

)2)
dx

)1/2

≤ C| f (v)‖q,

where we have used Proposition 1.1 and Lemma 1.1. �

Lemma 3.2. Suppose that (g1) and (g4) are hold. Then, there exist ρ > 0 and σ > 0 satisfying

I(v) ≥ σ, for all u ∈ E with ‖v‖ = ρ.

Proof. From (g1) and (g4), α > 0 and q > 2, we can find c > 0 such that

|G(x, s)| ≤ ε |s|2 + c|s|qexp(eα|s|
4
) for all s ∈ R.

Then,

I(v) =
1
2
‖v‖2 −

∫
B1

G(x, f (v)) dx ≥
1
2
‖v‖2 −

∫
B1

(
ε| f (v)|2 + c| f (v)|qexp(eα| f (v)|4

)
dx.

Using Lemma 3.1, Lemma 2.1-(ii) and Lemma 1.1, we obtain

I(v) ≥
(1
2
− εC

)
‖v‖2 −C‖ f (v)‖q ≥

(1
2
− εC

)
‖v‖2 −C0‖v‖q,

provided that ‖u‖ ≤ ρ0 for some ρ0 > 0 such that 2αρ2
0 < π. Now, taking 0 < ε < 1/4C and ρ1 > 0 such

that (1/2 − εC)ρ2
1 −C0ρ

q
1 > ρ

2
1/4. The result follows considering ρ = min{ρ0, ρ1} and σ = ρ2

1/4. �
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Lemma 3.3. Suppose that (g1), (g3) and (g4) are hold. Then, there exists e ∈ E with ‖e‖ > ρ such that

I(e) < 0 < σ ≤ inf
‖v‖=ρ

I(v),

where ρ is given by Lemma 3.2.

Proof. Using (g3), we can find constants positives C1 and C2 such that G(x, s) ≥ C1|s|2µ − C2 for all
x ∈ B1 and s ≥ 0. Let 0 , φ ∈ C∞0 (B1) such that 0 < φ(x) ≤ 1. Then,

I(tφ) =
t2

2
‖φ‖2 −

∫
B1

G(x, f (tv)) dx ≤
t2

2
‖φ‖2 −

∫
B1

(
C1| f (tφ)|2µ −C2

)
dx.

By Lemma 2.1-(v) the function f (t)/t is non-increasing for t > 0. Since, 0 ≤ φ(|x|)t ≤ t, we get
f (tφ(|x|)) ≥ f (t)φ(|x|) for all t > 0 and x ∈ B1. Then,

I(tv) ≤
t2

2
‖φ‖2 + C2|B1| −C1

∫
B1

| f (t)|2µφ2µ dx =
t2

2

(
‖φ‖2 − 2C1

| f (t)|2µ

t2 ‖φ‖
2µ
2µ

)
+ C2|B1|.

By Lemma 2.1-(iv) and the fact that µ > 2, we obtain

lim
t→+∞

| f (t)|2µ

t2 = lim
t→+∞

( f (t)
√

t

)2µ
tµ−2 = +∞.

Thus, there exists T > 0 such that ‖φ‖2 − 2C1
| f (t)|2µ

2t2 ‖φ‖
2µ
2µ ≤ −1 for t ≥ T . Therefore, taking t0 > T

sufficiently large we can get e = t0φ, satisfying I(e) < 0 and ‖e‖ > ρ. �

4. On Palais-Smale sequences

Lemma 4.1. Suppose that (g1), (g2) and (g4) are hold. Let (vn) be a Palais-Smale sequence of I at level
d, that is, I(vn)→ d and ‖I′(vn)‖E∗ → 0 as n→ +∞. Then, ‖un‖ ≤ c for all n ∈ N and some c > 0.

Proof. Observe that

I(vn) −
1
µ

I′(vn)vn =
(1
2
−

1
µ

)
‖u‖2 −

∫
B1

G(x, f (vn)) dx +
1
µ

∫
B1

g(x, f (vn)) f ′(vn)vn dx.

By Lemma 2.1-(v), we have f (t)/2 ≤ t f ′(t). Then,

I(vn) −
1
µ

I′(vn)vn ≥
(1
2
−

1
µ

)
‖u‖2 −

1
2µ

( ∫
B1

(
2µG(x, f (vn)) − g

(
x, f (vn)

)
vn

)
dx.

Using (g2), we get

I(vn) −
1
µ

I′(vn)vn ≥
(1
2
−

1
µ

)
‖vn‖

2.

On the other hand, using the fact that I(vn) → d and ‖I′(vn)‖E∗ → 0 as n → +∞. We may assume
that |I(vn)| ≤ d + 1 and ‖I(vn)‖E∗ ≤ µ for all n ∈ N. Hence,(1

2
−

1
µ

)
‖vn‖

2 ≤ d + 1 + ‖vn‖, for all n ∈ N,

which implies the assertion of the lemma. �
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Lemma 4.2. Supposed that (g1)–(g4) are hold. Let vn be a Palais-Smale sequence for the functional I.
Then, there exists a subsequence (not renamed) of (vn) such that∫

B1

g(x, f (vn)) f ′(vn)φ dx→
∫

B1

g(x, f (v)) f ′(v)φ dx,

for all φ ∈ C∞0 (B1), as n→ +∞, where v is the weak limit of (vn) in E.

Proof. From Lemma 4.1, we have that (vn) is bounded. Thus, we can assume that vn converge weakly
to v ∈ E. According to Lemma 1.1, we can assume that vn → v in Lp(B1) for all p ≥ 1, using
Lemma 2.1-(ii) and Dominated convergence theorem we have f (vn) → f (v) in Lp(B1) for all p ≥ 1.
Combining Proposition 1.1 with the inequality | f ′(t)| ≤ 1 for all t ∈ R given by Lemma 2.1-(ii), we
obtain g(x, f (v)) f ′(v) ∈ L1(B1). On the other hand, using the boundedness of the sequence (vn) in E,
we have

I′(vn)vn =
‖vn‖

2

2
−

∫
B1

g(x, f (vn)) f ′(vn)vn dx→ 0 as n→ +∞.

where we have used that (vn) is a Palais-Smale sequence. Thus, there exists some positive constant C
such that ∫

B1

g(x, f (vn)) f ′(vn)vn dx ≤ C for all n ≥ 1. (4.1)

Given ε > 0 there exists δ > 0 such that for any measurable subset A ⊂ B1∫
A
| f (v)| dx < ε and

∫
A

g(x, f (v)) f ′(v)v dx < ε if |A| < δ.

Using the fact that f (v) ∈ L1(B1) there exists M0 > 0 satisfying

|{x ∈ B1 : | f (v(x))| ≥ M0}| ≤ δ. (4.2)

Setting M = max{M0,C/ε} where C and M0 are given by (4.1) and (4.2) respectively. Note that, we
can write ∣∣∣∣∣∣

∫
B1

|g(x, f (vn)) f ′(vn)| dx −
∫

B1

|g(x, f (v)) f ′(v)| dx

∣∣∣∣∣∣ ≤ I1,n + I2,n + I3,n,

where

I1,n =

∫
{x∈B1: f (v(x))≥M}

|g(x, f (vn)) f ′(vn)| dx,

I2,n =

∣∣∣∣∣∣
∫
{x∈B1: f (vn(x))<M}

|g(x, f (vn)) f ′(vn)| dx −
∫
{x∈B1: f (v(x))<M}

|g(x, f (v)) f ′(v)| dx

∣∣∣∣∣∣ ,
and

I3,n =

∫
{x∈B1: f (v(x))≥M}

|g(x, f (v)) f ′(v)| dx.

As in [28] we can show that I1,n, I2,n and I3,n go to 0, as n→ +∞. Therefore,

g(x, f (vn)) f ′(vn)→ g(x, f (v)) f ′(v), in L1(B1).

AIMS Mathematics Volume 8, Issue 1, 1682–1695.
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Now, taking φ ∈ C∞0 (B1). Then,∫
B1

∣∣∣g(x, f (vn)) f ′(vn)φ − g(x, f (v)) f ′(v)φ
∣∣∣ dx ≤ ‖φ‖∞‖g(x, f (vn)) f ′(vn) − g(x, f (v)) f ′(v)‖1 → 0,

as n→ +∞, and the assertion of the lemma follows. �

Lemma 4.3. Supposed that (g1)–(g4) are hold. Let (vn) be a Palais-Smale sequence for the functional
I. Then, there exists a subsequence (not renamed) of (vn) such that∫

B1

G(x, f (vn)) dx→
∫

B1

G(x, f (v)) dx, as n→ +∞,

where v is the weak limit of (vn) in E.

Proof. From Lemma 4.1, we have that (vn) is bounded. Thus, we can assume that vn converge weakly
to v ∈ E. According to Lemma 1.1, we can assume that vn → v in Lp(B1) for all p ≥ 1 and vn → v
almost everywhere in B1. Using (g2)–(g3) there exists M > 0 such that

|G(x, f (vn))| ≤ Mg(x, f (vn)) for all x ∈ B1. (4.3)

As in Lemma 4.2, we can get ∫
B1

g(x, f (vn)) dx→
∫

B1

g(x, f (v)) dx.

Since g(x, f (vn)) → g(x, f (v)) almost everywhere in B1. By (4.3) and the generalized dominated
convergence theorem, we obtain∫

B1

G(x, f (vn)) dx→
∫

B1

G(x, f (v)) dx.

�

Let φ be a function in C∞0,rad(B1) satisfying

(i) φ ≡ 1 in B1/2(0) and φ ≡ 0 in Bc
1/
√

2
(0).

(ii) 0 ≤ φ(x) ≤ 1 for all x ∈ B1.
(iii) 0 ≤ |∇φ(x)| ≤ 1 for all x ∈ B1.

Lemmas 3.2 and 3.3 with φ satisfying (i)–(iii), it follows that I satisfies the mountain pass theorem
(see [30]). Therefore, there exists a Palais-Smale sequence (vn) ⊂ E such that

I(vn)→ 0 and ‖I′(vn)‖E∗ → 0, as n→ +∞, (4.4)

where d can be characterized as
d = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)), (4.5)

and
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

Moreover, by Lemma 3.2, we have thar d ≥ σ > 0.
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Lemma 4.4. Supposed that (g1)–(g5) are hold. Then, the minimax level d given by (4.5) satisfies

d <
π

2α0
·

2µ
µ − 2

.

Proof. Let φ be a function in C∞0,rad(B1) satisfying (i)–(iii). Then,

max
t≥0

I(tφ) ≤
t2

2

∫
B1

w(x)|∇φ|2 dx + t4
∫

B1

w(x)|φ|2|∇φ|2 dx −
∫

B1

G(x, tφ) dx

≤
t2

2

∫
B1

w(x)|∇φ|2 dx + t4
∫

B1

w(x)|∇φ|2 dx −
Cptp

p

∫
B1

|φ|p dx

≤
t2

2

∫
B1

w(x) dx + t4
∫

B1

w(x) dx −
Cptp

p

∫
B1/2

1 dx

≤
3πt2

4
+

3πt4

2
−
πCptp

4p
=
π

4

(
3t2 + 6t4 −

Cp

p
tp
)
.

From the intermediate value theorem, the function

Φ(t) = 3t2 + 6t4 −
Cp

p
tp for t ≥ 0,

attained its maximum in t0 ∈ (0, 1) provided Cp > 30. Therefore,

max
t≥0

Φ(t) ≤ max
t∈[0,1]

Φ(t) ≤ max
t∈[0,1]

(
9t2 −

Cp

p
tp
)

=
(
9t2 −

Cp

p
tp
)∣∣∣∣∣∣

(18p/Cp)1/(p−2)

.

Hence, by assumption on Cp, we have

max
t≥0

I(tφ) ≤
π

4

(
9 · 182/(p−2) − 18p/(p−2)

)( p
Cp

)2/(p−2)
<

π

2α0
·

2µ
µ − 2

.

Setting γ0 ∈ Γ, defined by γ0(t) = tt0φ = te, where t0 is given by Lemma 3.3. Thus,

d ≤ max
t∈[0,1]

I(γ0(t)) ≤ max
t≥0

I(tφ) <
π

2α0
·

2µ
µ − 2

.

�

5. Proof of the main theorem

First, we show the existence of a nontrivial, nonnegative critical point of the functional I. Let (vn)
be the Palais-Smale sequence given by (4.4). From Lemma 4.1 the sequence (vn) is bounded in E.
Then, we can find a subsequence (not renamed) and v ∈ E such that vn converges weakly to v in E. In
particular,

lim
n→+∞

∫
B1

w(x)∇vn∇φ dx =

∫
B1

w(v)∇v∇φ dx, for all φ ∈ C∞0,rad(B1).
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From Lemma 4.2, we have

lim
n→+∞

∫
B1

g(x, f (vn)) f ′(vn)φ dx =

∫
B1

g(x, f (v)) f ′(v)φ dx, for all φ ∈ C∞0,rad(B1).

Since, ‖I′(vn)‖E∗ → 0 as n → +∞, we have I′(v)φ = 0 for all φ ∈ C∞0,rad(B1). Using the density of
C∞0,rad(B1) in E, we obtain I′(v)φ = 0, for all φ ∈ E. Hence, v ∈ E is a critical point of I. Now, we prove
that v is nontrivial. Suppose that vn ⇀ 0 in E. By Lemma 1.1, we have that

vn → 0, in Lp(B1) for all p ≥ 1. (5.1)

Since (vn) is a Palais-Smale sequence as in Lemma 4.1, we get(1
2
−

1
µ

)
‖vn‖

2 ≤ I(vn) −
1
µ

I′(vn)vn.

From (4.5), the boundedness of (vn) in E and Lemma 4.4, we can assume that

‖vn‖
2 ≤

π

2α0
− 2δ for all n ≥ 1,

for some δ > 0. Moreover, we can take α > α0 such that

α‖vn‖
2 ≤

π

2
− δ for all n ≥ 1. (5.2)

Using (g1)–(g4) and the fact that | f ′(t)| ≤ 1, we can find ε > 0 and C > 0 such that

|g(x, f (vn)) f ′(vn)vn| ≤ ε | f (vn)vn| + Cexp
(
eα| f (vn)|4)|vn|, for all n ≥ 1.

From Lemma 2.1-(ii) and (vi), we obtain

|g(x, f (vn)) f ′(vn)vn| ≤ ε |vn|
2 + Cexp

(
e2α|vn |

2)
|vn|, for all n ≥ 1.

Applying the Cauchy-Schwarz inequality∫
B1

|g(x, f (vn)) f ′(vn)vn| ≤ ε‖vn‖
2
2 + C‖vn‖2

(∫
B1

exp
(
2e2α|vn |

2)
dx

)1/2

, for all n ≥ 1.

Then, ∫
B1

|g(x, f (vn)) f ′(vn)vn| dx ≤ ε‖vn‖
2
2 + C‖vn‖2

(∫
B1

exp
(
2e2α‖vn‖

2
(
|vn |
‖vn‖

)2)
dx

)1/2

.

Using Proposition 1.1, (5.1) and (5.2), we have∫
B1

|g(x, f (vn)) f ′(vn)vn| dx→ 0, as n→ +∞. (5.3)

Note that
d + on(1) = I(vn) =

1
2

∫
B1

w(x)|∇vn|
2 dx −

∫
B1

G(x, f (vn)) dx
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and

on(1) = I′(vn)vn =

∫
B1

w(x)|∇vn|
2 dx −

∫
B1

g(x, f (vn)) f ′(vn)vn dx.

From Lemmas 4.3 and 5.3, we obtain d = 0 which represents a contradiction. Therefore, v is a
nontrivial critical point. Taking v− = max{0,−v}, in particular, we have that −v− ∈ E. Hence,
I′(v)(−v−) = 0, since g is nonnegative and f ′(s) > 0 for all s ∈ R, we obtain

‖∇v−‖2 = −

∫
B1

g(x, f (v)) f ′(v)v− dx ≤ 0.

Then, v− = 0, which implies that v ≥ 0. Finally, u = f (v) result a nontrivial nonnegative weak
solution of the problem (1.1).

6. Conclusions

In this paper, a dual approach has been applied in order to reformulate the proposed quasilinear
equation into a semilinear equation that is suitable for using variational methods. Next, we used a
Trudinger-Moser inequality to prove that the geometry of the pass mountain theorem is satisfied. Thus,
we obtain a nontrivial, nonnegative weak solutions for the new energy functional. Finally, we recover
the solution to our problem through the change of the variable used. To the best of our knowledge,
this is the first result to demonstrate the existence of solutions for a quasiliner Schrödinger equation
involving double exponential growth in the literature. Observe that we required a nonnegative weight.
According to our definition of logarithm weight, we restricted the domain to the unit ball. It is of
interest to further our results to find standing waves for quasilinear Schrödinger equations involving
double exponential growth on the whole space R2 and considering a potential function.
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21. J. M. do Ó, U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension
two, Calculus Var. Partial Differ. Equ., 38 (2010), 275–315. https://doi.org/10.1007/s00526-009-
0286-6
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