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1. Introduction

In this paper, we first study the existence of mild solutions of Atangana-Baleanu fractional-order
semilinear integro-differential systems (ABFSIDSs) involving state-dependent delay (SDD) in the
model

Dω
ABCw(τ) = Aw(τ) + F

(
τ,wσ(τ,wτ),

∫ τ

0
p(τ, s,wσ(s,ws))ds

)
, τ ∈J = [0,+∞), (1.1)

w(τ) = ϕ(τ) ∈ Ch, (1.2)

where 0 < ω < 1 and A is the infinitesimal generator of the ω-resolvent family Ĥω(τ)τ≥0. Hω(τ)τ≥0 is
the solution operator on a real Banach space (E, | · |). The Atangana-Baleanu-Caputo (ABC) derivative
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is denoted by Dω
ABC, F : J × Ch × E → E, p : D × Ch → E, where D = {(τ, s) ∈J ×J : 0 ≤ s ≤

τ < +∞}, and Ch is the phase space to be described in preliminaries and σ : J × Ch → (−∞,+∞) is a
given function which satisfies certain assumptions to be specified later on.

We make the assumption that the function wτ : (−∞, 0] → E,wτ(δ) = w(τ + δ), δ ≤ 0, belongs to
an abstract phase space Ch.

In the second part of this paper, we also establish the existence results of Atangana-Baleanu
fractional-order semilinear neutral integro-differential systems (ABFSNIDSs) with SDD of the form

Dω
ABC[w(τ) −P(τ,wσ(τ,wτ))] = Aw(τ) + F

(
τ,wσ(τ,wτ),

∫ τ

0
p(τ, s,wσ(s,ws))ds

)
, τ ∈J = [0,+∞),

(1.3)

w(τ) = ϕ(τ) ∈ Ch, (1.4)

where P : J × Ch → E is a given function and the other functions specified in (1.3)–(1.4) are the
same as defined in (1.1)–(1.2).

The usefulness of fractional differential and integral equations has increased significantly as a result
of their extensive use in the modelling of physical processes and events, particularly anomalous systems
with memory (processes with long-range interactions and long-term memory). There are many distinct
kinds of fractional derivatives, including but not limited to Riemann–Liouville fractional derivatives,
Caputo fractional derivatives, and Hadamard fractional derivatives; each of these types of fractional
derivatives has its own specific constraints. For more information on how these fractional operators
have been applied in many mathematical situations, see for example [1,8,12,15–17,26,30–32,36–40].

Over the years, researchers have come a long way in their pursuit for better fractional differential
operators. An alternate definition for fractional derivatives has just been put out by Caputo and
Fabrizio [18], and it is as follows:

CFDω
d+h(τ) =

B(ω)
1 − ω

d
dτ

∫ τ

d
exp

[
−

ω

1 − ω
(τ − ν)

]
h(ν)dν, 0 < ω < 1,

where B(0) = B(1) = 1 and B(ω) is called a normalization function. The authors of this work decided
to use an exponential kernel in place of the more common power law kernel (τ − ν)ω−1 . This may

be written as exp
[
− ω

1−ω (τ − ν)
]
. In addition to this,

1
Γ(1 − ω)

was changed to 1√
2π(1−ω2)

. This current

concept not only provides a better explanation of the dynamics of a non-local phenomenon, but it also
effectively replies to the question of whether it is possible to have a fractional operator that possesses
a non-singular kernel (see [2, 4, 6, 7, 14, 35], and their references for more information). Interestingly,
this fractional differential operator has been useful in modelling some physical phenomena, such as in
HIV/AIDS with the treatment compartment model [42] and in RC-electrical circuits [5].

The novel Atangana-Baleanu (AB) fractional derivative was recently proposed by Atangana and
Baleanu [9] in both the Riemann-Liouville and Caputo meanings. The generalized Mittag-Leffler
function is utilized in the form of a kernel in this specific derivation. The extended Mittag-Leffler
function’s non-local behavior makes it possible to more accurately describe the macroscopic behavior
and memory effects of systems with non-local interactions. Additionally, the fractional derivative
developed by Atangana and Baleanu retains all the properties that were previously recognized to be
connected to other fractional derivatives. This makes it crucial to study fractional systems utilizing AB
fractional derivatives; for example, see [33, 36, 37, 47, 50].
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Functional differential equations with SDD typically emerge in applications as models of equations.
As a result, research into this class of equations has garnered a lot of attention in recent years. This
can be attributed to the fact that these types of equations appear frequently in applications. For more
details on the applications of this theory, we suggest the reader to refer to [15, 23, 39, 43, 44, 49].
Systems with memory have the characteristic that the mathematical physics description of their state at
a certain moment includes those states that the systems had been in at earlier times. As a result, a partial
integro-differential equation is produced by adding an integral component to the fundamental partial
differential equation. The concept of an “aftereffect”, which was first proposed in physics, is widely
acknowledged to be crucial. It is not sufficient to use conventional or partial differential equations
to represent processes having an “aftereffect”. Using integro-differential equations is one method for
solving this issue. Conceptually, modelling climatic systems has been done effectively in the past using
delay differential equations (DDEs). The existence of feedback loops with a delay period, often related
to the amount of time needed to move energy across the world via oceans and/or the atmosphere,
is a crucial component of these models. As of now, it is generally believed that these delays are
constant. Recent research has shown that even simple DDEs with non-constant delay times—that is,
delay times that change depending on the state of the system—can create dynamic behaviour that is
surprisingly complex. The notion of heat conduction in fading memory materials gives rise to partial
neutral differential equations with non-constant delay (or SDD) like (1.3)–(1.4). The internal energy
and the heat flux are thought to depend linearly on the temperature u(·) and its gradient ∆u(·) in the
conventional theory of heat conduction. In these circumstances, the classical heat equation provides
an adequate description of the temperature development in many types of materials. This explanation,
however, falls short when it comes to fading memory materials. This phenomenon has commonly been
described by using the following equation

dω

dτω

[
u(τ, p) +

∫ τ

−∞

k1(τ − s)u(s, p)ds
]

= c∆u(τ, p) +

∫ τ

−∞

k2(τ − s)∆u(s, p)ds, 0 < ω < 1,

u(τ, p) = 0, p ∈ ∂Ω.

In this system, Ω ⊂ Rn is open, bounded and has a smooth boundary, (τ, p) ∈ [0,∞) × Ω, u(τ, p)
represents the temperature in p at the time τ, c is a physical constant and ki : R → R, i = 1, 2, are the
internal energy and the heat flux relaxation respectively. If we assume that a solution u(·) of the above
system is known on (−∞, 0] and that u(·) is smooth enough, we can re-write the above system in the
form of

dω

dτω

[
u(τ, p) +

∫ τ

−∞

k1(τ − s)u (s, p(s − θ(s, p(s)))) ds
]

= c∆u(τ, p)

+

∫ τ

−∞

k2(τ − s)∆u
(
s, p(s − θ(s, p(s))),

∫ s

0
e(s, η, p(η − θ(η, p(η))))dη

)
ds,

u(τ, p) = 0, p ∈ ∂Ω,

where θ(τ, p(τ)) ≥ 0 is a given function. It is easy to see that this system can be represented in the
abstract form given by (1.3)–(1.4).

Due to the extensive usage highlighted in many domains ( for example see [11, 25, 33, 34, 36–39,
47, 50]) the study on qualitative behaviors of AB fractional differential equations has recently been
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published in the literature. In [34, 47], the authors studied the existence and uniqueness results for
fractional neutral integro-differential equations with an AB derivative under the Banach contraction
principle. Further, they developed the Ulam-Hyer stability of the addressing systems. In [33], the
authors analyzed the existence results for AB fractional differential equations with non-instantaneous
impulses. Results are obtained via non-compactness of the semigroup and fixed point theory. Then,
in [38], the authors extended the works of [33] to integro-differential systems in Banach spaces through
the use of Kuratowski’s measure of non-compactness (KNMC) of the semigroup and fixed point theory.
Later, in [11], the author analyzed the existence results for AB fractional neutral systems with non-
instantaneous impulses through measures of non-compactness and the K-set contraction principle.
As further research, in [37], the authors studied the existence of solutions of AB fractional Volterra-
Fredholm integro-differential inclusions through Martelli’s fixed point theorem. They generalized the
results of [33, 38]. In [36], the authors initiated a study of the existence results of AB fractional
neutral differential systems with infinite delay via Banach contraction principle, nonlinear alternative
of Leray-Schauder type and Krasnoselskii-Schaefer fixed point theorem joined with ρ-resolvent
operators in Banach spaces. In their work, the authors improved and generalized the existing results
of [33,34,38,47]. Later, in [50], the authors extended the existence results into the controllability of AB
semilinear fractional integro-differential equations with non-instantaneous impulses. The outcomes
are proved through Darbo’s fixed point theorem. Then, in [25], the authors studied the approximate
controllability results of AB neutral fractional stochastic hemivariational inequality under a suitable
fixed point theorem on multivalued maps. Recently, Mallika Arjunan et al. [39] examined the existence
results of AB fractional fractional differential inclusions with SDD and a Mittag-Leffler kernel in
Banach space. The results were obtained by using contractive and condensing maps. A study of recent
work shows that the problem of fractional integro-differential equations with the form of (1.1)–(1.4)
with AB derivatives and Monch’s fixed point theorem has not yet been addressed. This is the main
motivation for this work.

We will now proceed to a description of the work. Section 2 presents the concept of phase space
axioms, measures of non-compactness, and the AB fractional derivative, as well as several notations
and a review of some concepts and previous findings. The results are based on Monch’s fixed point
theorem, which we give in Section 3. In Section 4, we provide an example to illustrate the validity of
our primary findings.

2. Preliminaries

In this section, we will briefly discuss a few lemmas, definitions of fractional differential equations
[3, 9, 36, 37, 39], Hale and Kato axioms [29] and KMNC, which will be applied throughout the
remainder of the paper.

Let BUC : (−∞, 0]→ E be the space of bounded uniformly continuous functions.
Let BC : (−∞,+∞) → E be the Banach space of all bounded and continuous functions (BCFs)

equipped with the general norm
‖w‖BC = sup

τ∈(−∞,+∞)
|w(τ)|.

Lastly, let BC′ : [0,+∞)→ E be the Banach space of all BCFs equipped with the general norm

‖w‖BC′ = sup
τ∈[0,+∞)

|w(τ)|.
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Denote Yτ and Y ′τ as the space of all BCFs of BC and BC′ respectively.
It is important to note that when the delay reaches an infinite value, we should constructively discuss

the theoretical phase space Ch. We discuss phase spaces Ch in this paper, which are identical to those
defined in our previous work [19]. In light of this, we will not go into further detail.

As a direct result of the work done by Hale and Kato [28, 29], we assume that the phase space
(Ch, ‖ · ‖Ch) will be a semi-normed linear space of functions mapping (–∞, 0] into E and meeting the
subsequent elementary axioms.

If w : (−∞, b) → E, b > 0 in a way that w0 ∈ Ch, for every τ ∈ J , the following presumptions
should be valid:

(C1) wτ ∈ Ch.
(C2) ‖wτ‖Ch

≤ Q1(τ) sup
0≤y≤τ

‖w(y)‖ + Q2(τ) ‖w0‖Ch
.

(C3) ‖w(τ)‖ ≤ Z ‖wτ‖Ch
, where Z > 0 is a constant and Q1 : [0,∞) → [0,∞) is continuous, Q2 :

[0,∞) → [0,∞) is locally bounded and Q1 and Q2 are independent of w(·). In addition to this,
‖ϕ(0)‖ ≤ Z‖ϕ‖Ch can be deduced for all ϕ ∈ Ch. For further information, refer to [22].

(C4) wτ is a Ch-valued continuous function on J and Ch is complete.
(C5) The function τ→ ϕτ is well described and continuous from the set

R
(
σ−

)
=

{
σ(s, ϕ) : (s, ϕ) ∈J × Ch, σ(s, ϕ) ≤ 0

}
into Ch and there is a BCF Zϕ : R (σ−) → (0,∞) to confirm that ‖ϕτ‖Ch

≤ Zϕ(τ) ‖ϕ‖Ch
for each

τ ∈ R (σ−).

For simplicity, we denote

Q∗1 = sup{Q1(τ) : τ ∈J } and Q∗2 = sup{Q2(τ) : τ ∈J }.

Definition 2.1. A function F : J × Ch → E is said to be of the Caratheodory if

(i) τ→ F (τ, ν) is measurable for all ν ∈ Ch;
(ii) ν→ F (τ, ν) is continuous for almost each τ ∈J .

Lemma 2.2. [43] Let w : (−∞,+∞) → E be a function in such a way that w0 = ϕ and if (C5) holds,
then

‖wν‖Ch
≤

(
Q∗2 + Zϕ

)
‖ϕ‖Ch

+ Q∗1 sup {‖w(Θ)‖E : Θ ∈ [0,max{0, ν}]} ν ∈ R (σ−) ∪J ,

where Zϕ = sup
τ∈R(σ−)

Zϕ(τ).

Now, let us review some of the fundamental aspects of the concept of the AB fractional derivative.

Definition 2.3. [9] The AB fractional integral of order ω ∈ (0, 1) of a function w : (d, ξ) → R is
defined by

ABIωd+w(τ) =
1 − ω
B(ω)

w(τ) +
ω

B(ω)Γ(ω)

∫ τ

d
(τ − y)ω−1w(y)dy,

where the normalizing function B(ω) = (1 − ω) + ω
Γ(ω) is the one that satisfies the criterion B(0) =

B(1) = 1.
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Definition 2.4. [9] Let w ∈ H1(0,+∞), 0 < +∞. The AB fractional derivative of a function w of order
ω ∈ (0, 1), is described in the Caputo sense with the base 0 at τ ∈ (0,+∞) by

Dω
ABCw(τ) =

B(ω)
1 − ω

∫ τ

0
w′(s)Eω

(
−

ω

1 − ω
(τ − y)ω

)
dy.

The Mittag-Leffler function is denoted by Eω(·) in this expression.

Definition 2.5. [45] Consider ρ(A) = {λ ∈ C : (λI − A) : D(A) → E is bijective }. The spectrum
of A is described as the complement C\ρ(A) denoted by σ(A). By the closed graph theorem, for a
bounded linear operator A on E, the resolvent of the operator A is defined by R(λ, A) = (λI− A)−1,
where λ ∈ ρ(A).

Definition 2.6. [45] Closed and linear operator A is said to be sectorial if there exist constants M >

0, ω ∈ R and α ∈
[
π
2 , π

]
, such that the following conditions are satisfied:

(i) Σ(α,ω) = {λ ∈ C : λ , ω, | arg(η − ω)| < α} ⊂ ρ(A),
(ii) ‖R(λ, A)‖ ≤ M

|λ−ω|
, λ ∈ Σ(α,ω).

To avoid repetitions of various terminology used in this work, we recommend that the readers refer
to [27, 36, 37]: sectorial operator [27] and solution operator (see Definitions 2.6 and 2.7 in [36]). We
recommend that the reader read [3,9,33,46,48] for further information on this topic and its applications.

The idea that there exist measures of non-compactness is the foundation for more than one of our
conclusions. Keeping this in mind, let us review some of the characteristics that are associated with
this idea. When looking for essential knowledge, the reader should refer to [13, 24, 49]. We employ
KMNCs exclusively throughout this paper.

Definition 2.7 ( [13, 24] (KMNC)). Let a family of bounded subsets of E be denoted by the symbol
V(E). If this is the case, then χ : V(E)→ R+ can be characterized as

χ(C) := inf{δ > 0 : C = ∪n
`=1C` with diam(C`) ≤ δ for ` = 1, 2, . . . , n}, C ∈ V(E).

Lemma 2.8 ( [13,24]). We establish the following results for any bounded sets C,C1, and C2 containing
the element E:

(i) χ(C) = 0 if and only if C is a compact set in E;
(ii) χ(C) = χ(C), where C means the closure of C;

(iii) Each C1 ⊂ C2 implies χ(C1) ≤ χ(C2);
(iv) χ(C1 + C2) ≤ χ(C1) + χ(C2);
(v) χ(C1 ∪ C2) = max{χ(C1), χ(C2)};

(vi) χ(µC) = |µ|χ(C) for any µ ∈ R.

Lemma 2.9. [20] If C ⊂ E is bounded for a Banach space E, then a countable subset C0 ⊂ C exists,
for which χ(C) ≤ 2χ(C0) exists.

Lemma 2.10 ( [20,21]). Let E be a Banach space, and let C = {wn} ⊂ C ([τ1, τ2], E) be a bounded and
countable set for the constants −∞ < τ1 < τ2 < +∞. Then χ(C(τ)) is a Lebesgue integral on [τ1, τ2]
and

χ
({ ∫ τ2

τ1

wn(τ)dτ : n ∈ N
})
≤ 2

∫ τ2

τ1

χ(C(τ))dτ.

AIMS Mathematics Volume 8, Issue 1, 1384–1409.



1390

Given [36, Lemma 1], we will now describe the mild solution of the systems (1.1)–(1.2) and (1.3)–
(1.4).

Definition 2.11. A function w : (−∞,+∞) → E is said to be a mild solution of the system (1.1)–(1.2)
when the following conditions are satisfied: w0 = ϕ ∈ Ch on (−∞, 0] and the limitation of w(·) to
[0,+∞) is continuous and satisfies the subsequent equation:

w(τ) =


ϕ(τ), τ ∈ (−∞, 0]

EHϑ(τ)ϕ(0) +
EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds, τ ∈J ,

(2.1)

where E = η(ηI − A)−1 and F = −η̃A(ηI − A)−1 with η =
B(ω)
1−ω , η̃ = ω

1−ω and

Hω(τ) = Eω(−Fτω) =
1

2πi

∫
Γ

eyτyω−1(yωI − F)−1dy, (2.2)

Ĥω(τ) = τω−1Eω,ω(−Fτω) =
1

2πi

∫
Γ

eyτ(yωI − F)−1dy; (2.3)

Γ denotes the Bromwich path [10].

Definition 2.12. A function w : (−∞,+∞) → E is said to be a mild solution of the system (1.3)–(1.4)
when the following conditions are satisfied: w0 = ϕ ∈ Ch on (−∞, 0] and the limitation of w(·) to
[0,+∞) is continuous and satisfies the subsequent equation:

w(τ) =



ϕ(τ), τ ∈ (−∞, 0]
EHϑ(τ)[ϕ(0) −P(0, ϕ)]

+
EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds

+
EF

Γ(ω)

∫ τ

0
(τ − s)ω−1P(s,wσ(s,ws))ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds

−EF

∫ τ

0
Ĥω(τ − s)P(s,wσ(s,ws))ds, τ ∈J ,

(2.4)

where E = η(ηI − A)−1 and F = −η̃A(ηI − A)−1 with η =
B(ω)
1−ω , η̃ = ω

1−ω and

Hω(τ) = Eω(−Fτω) =
1

2πi

∫
Γ

eyτyω−1(yωI − F)−1dy,

Ĥω(τ) = τω−1Eω,ω(−Fτω) =
1

2πi

∫
Γ

eyτ(yωI − F)−1dy;

Γ denotes the Bromwich path [10].
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Remark 2.13. We must first define the operator estimates that are addressed in (2.2) and (2.3),
respectively, in order to examine and demonstrate the main conclusions of this paper.

As a direct result of our previous work [36], we are able to write the operator estimates as

‖Hω(τ)‖ ≤ ĈH and ‖Ĥω(τ)‖ ≤ τω−1ĈĤ .

Please refer to [27, 33, 48] for further information.

At the conclusion of this section, we present the significant fixed-point theorem, which is a
particularly helpful tool for presenting our findings [15, 41].

Theorem 2.14. (Monch fixed point)
Let us assume that B is a bounded, closed, and convex subset of a Banach space such that 0 ∈ B,

and let us further assume that Υ is a continuous mapping of B into itself. Then Υ has a fixed point, if
the assumption

K = conv Υ(K) or K = Υ(K) ∪ 0 =⇒ χ(K) = 0

holds for every subset K of B.

3. Existence results for ABFSDSs and ABFSNDSs

This section provides and demonstrates the existence results for the models (1.1)–(1.2) and (1.3)–
(1.4) in accordance with Monch’s fixed-point theorem.

We will start by imposing some essential restrictions on p,F ,E, and F.

(A0) The function p : D× Ch → E fulfills the following:

(i) For every (τ, s) ∈ D, the function p(τ, s, ·) : Ch → E is continuous and for each u ∈ Ch, the
function p(·, ·, u) : D → E is strongly measurable.

(ii) There exists an integrable function Ω1 : J → [0,∞) to ensure that

|p(τ, s, u)| ≤ Ω1(τ)‖u‖Ch for a.e. τ, s ∈J , u ∈ Ch.

Assume that the finite bound of
∫ τ

0
Ω1(s)ds is P̃0.

(iii) There exists an integrable function µ : J ×J → (0,+∞) to ensure that

χ(p(τ, s,C1)) ≤ µ(τ, s)
[

sup
−∞<x≤0

χ(C1(x))
]

for a.e. τ, s ∈J ,

where C1(x) = {v(x) : v ∈ C1}; χ is the KMNC and denote µ̃∗ =

∫ s

0
µ(s, ν)dν < ∞.

(A1) The Caratheodory function F : J × Ch × E → E fulfills the subsequent assumptions:
There exists an integrable function Ω : (−∞,+∞)→ [0,+∞) in a way that:

|F (τ, u, v)| ≤ Ω(τ)(‖u‖Ch + ‖v‖), τ ∈J , u ∈ Ch, v ∈ E

and
Ω∗ := sup

τ∈J

∫ τ

0
(τ − s)ω−1Ω(s)ds < ∞.

AIMS Mathematics Volume 8, Issue 1, 1384–1409.



1392

(A2) Let C2 ⊂ Ch,C ⊂ E and each τ ∈J ; we have

χ(F (τ,C2,C)) ≤ Ω(τ)
[

sup
−∞<x≤0

χ(C2(x)) + χ(C)
]
,

where C2(x) = {u(x) : u ∈ C2}.
(A3) E and F are the bounded linear operators and there exist positive constants E and F such that

‖E‖ ≤ ρ and ‖F‖ ≤ ρ.

Theorem 3.1. If the assumptions (A0)–(A3) hold and

M̂ =

2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗

 < 1, (3.1)

then the system (1.1)–(1.2) has at least one mild solution on Yτ.

Proof. The operator Υ : Yτ → Yτ is defined as follows:

(Υw)(τ) =


ϕ(τ), τ ≤ 0,

EHϑ(τ)ϕ(0) +
EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds, τ ∈J .

Let u(·) : (−∞,+∞)→ E be the function described by

u(τ) =

ϕ(τ), τ ≤ 0
EHω(τ)ϕ(0), τ ∈J .

Then u0 = ϕ. Let v ∈ C (J , E) with v0 = 0; we denote by v the function given by

v(τ) =

0, τ ≤ 0
v(τ), τ ∈J .

If w(·) satisfies (2.1), we can decompose w(·) as w(τ) = v(τ) + u(τ), τ ≥ 0 which implies wτ = vτ + uτ
and the function v(·) satisfies

v(τ) =



EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1F

(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)F

(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds,

τ ∈J .

Let Y0
τ = {v ∈ Y ′τ : v0 = 0 ∈ Ch}. Let v ∈ Y0

τ ; then

‖v‖Y0
τ

= ‖v0‖Ch + sup{|v(x)| : 0 ≤ x < +∞} = sup{|v(x)| : 0 ≤ x < +∞}.

AIMS Mathematics Volume 8, Issue 1, 1384–1409.



1393

Thus (Y0
τ , ‖ · ‖Y0

τ
) is a Banach space. Next, the operator Υ : Y0

τ → Y0
τ is defined by:

(Υv)(τ) =



EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1

(×)F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)

(×)F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds, τ ∈J .

The operator Υ has a fixed point equal to one Υ, so it is time to prove that Υ has a fixed point as
well.

In order to demonstrate the result, we must initially get an approximation of the phase space axioms.
As a result of the phase space axioms and Lemma 2.2, we have for every t ∈J ,

‖vσ(τ,vτ+uτ) + uσ(τ,vτ+uτ)‖Ch ≤ ‖vσ(τ,vτ+uτ)‖Ch + ‖uσ(τ,vτ+uτ)‖Ch

≤ Q1(τ)|v(τ)| + Q2(τ)‖v0‖Ch + Q1(τ)‖u(τ)‖E + Q2(τ)‖u0‖Ch

≤ Q1(τ)|v(τ)| + Q1(τ)[‖EHω(τ)ϕ(0)‖E] + (Q2(τ) + Jϕ)‖ϕ‖Ch

≤ Q∗1|v(τ)| + Q∗1ρĈH Z‖ϕ‖Ch + (Q∗2 + Zϕ)‖ϕ‖Ch

= Q∗1|v(τ)| + (Q∗1ρĈH Z + Q∗2 + Zϕ)‖ϕ‖Ch .

Then, we have

‖vσ(τ,vτ+uτ) + uσ(τ,vτ+uτ)‖Ch ≤ e + Q∗1|v(τ)| = e + Q∗1q = Q′, (3.2)

where e = (Q∗1ρĈH Z + Q∗2 + Zϕ)‖ϕ‖Ch and |v(τ)| = ‖v‖Y0
τ
≤ q.

We shall show that the operator Υ satisfies all conditions of Monch’s theorem. For better readability,
we break the proof into several steps.

Step 1: Υ maps Y0
τ into Y0

τ .
Evidently the map Υ(v) is continuous on [0,+∞) for any v ∈ Y0

τ and for every τ ∈J , we have

|(Υv)(τ)| ≤
‖E‖‖F‖(1 − ω)

B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds

+
ω‖E‖2

B(ω)

∫ τ

0
Ĥω(τ − s)

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds

≤
‖E‖‖F‖(1 − ω)

B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1
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(×)Ω(s)
(
‖vσ(s,vs+us) + uσ(s,vs+us)‖Ch +

∫ s

0
Ω1(ν)(‖vσ(ν,vν+uν) + uσ(ν,vν+uν)‖Ch)dν

)
ds

+
ω‖E‖2

B(ω)

∫ τ

0
Ĥω(τ − s)

(×)Ω(s)
(
‖vσ(s,vs+us) + uσ(s,vs+us)‖Ch +

∫ s

0
Ω1(ν)(‖vσ(ν,vν+uν) + uσ(ν,vν+uν)‖Ch)dν

)
ds

≤
ρρ(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1Ω(s)

[
e + Q∗1|v(s)| + P̃0(e + Q∗1|v(s)|)

]
ds

+
ωρ2ĈĤ

B(ω)

∫ τ

0
(τ − s)ω−1Ω(s)

[
e + Q∗1|v(s)| + P̃0(e + Q∗1|v(s)|)

]
ds

≤

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 ∫ τ

0
(τ − s)ω−1Ω(s)

[
e + Q∗1|v(s)| + P̃0(e + Q∗1|v(s)|)

]
ds

≤

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)e +

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)Q∗1‖v‖Y0
τ
.

Therefore Υ(v) ∈ Y0
τ .

Furthermore, let q > 0 be such that

q ≥

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)e

1 −

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)Q∗1

,

andBq be the closed ball in Y0
τ centered at the origin and of radius q. Now, take v ∈ Bq and τ ∈ [0,+∞);

then

|(Υv)(τ)| ≤

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)e +

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)Q∗1q.

Hence
‖Υv‖Y0

τ
≤ q.

Step 2: Υ is continuous in Bq.
Let {vn} be a sequence such that vn → v occurs in Bq. Initially, we analyze the convergence of the

sequences
(
vn
σ(s,vn

s)

)
n∈N

, s ∈J .

If s ∈J is such that σ (s, vs) > 0, then we have,∥∥∥∥vn
σ(s,vn

s) − vσ(s,vs)

∥∥∥∥
Ch

≤

∥∥∥∥vn
σ(s,vn

s) − vσ(s,vn
s)
∥∥∥∥
Ch

+
∥∥∥∥vσ(s,vn

s) − vσ(s,vs)

∥∥∥∥
Ch

≤ Q∗1 ‖vn − v‖Ch
+

∥∥∥∥vσ(s,vn
s) − vσ(s,vs)

∥∥∥∥
Ch
.

From this, we notice that vn
σ(s,vn

s) → vσ(s,vs) in Ch as n→ ∞ for every s ∈J such that σ (s, vs) > 0.
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In a similar manner, if σ (s, vs) < 0, we obtain∥∥∥∥vn
σ(s,vn

s) − vσ(s,vs)

∥∥∥∥
Ch

=
∥∥∥∥ϕn

σ(s,vn
s) − ϕσ(s,vs)

∥∥∥∥
Ch

= 0.

From the above discussion, we realize that vn
σ(s,vn

s) → vσ(s,vs) in Ch as n → ∞ for every s ∈J such
that σ (s, vs) < 0.

Based on the above estimations, we can easily demonstrate that vn
σ(s,vs)

→ ϕ for every s ∈ J such
that σ (s, vs) = 0.

Conclusively

|(Υvn)(τ) − (Υv)(τ)| ≤

µµ(1 − ω)
B(ω)Γ(ω)

+
M̂B̂ωµ

2

B(ω)

 ∫ τ

0
(τ − s)ω−1

(×)

∣∣∣∣∣∣F
(
s, vn

σ(s,vn
s+us) + uσ(s,vn

s+us),
∫ s

0
p(s, ν, vn

σ(ν,vn
ν+uν) + uσ(ν,vn

ν+uν))dν
)

− F

(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

) ∣∣∣∣∣∣ds.

Since F satisfies the Caratheodory conditions, we have

F

(
s, vn

σ(s,vn
s+us) + uσ(s,vn

s+us),
∫ s

0
p(s, ν, vn

σ(ν,vn
ν+uν) + uσ(ν,vn

ν+uν))dν
)

→ F

(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
as n→ ∞.

From the Lebesgue dominated convergence theorem, we obtain

‖(Υvn) − (Υv)‖Ch → 0 as n→ ∞.

Therefore the operator Υ is continuous in Bq.
Further, in view of Step 1, we notice that Υ(Bq) ⊂ Bq.
Next, we demonstrate that the operator Υ is equi-continuous on every compact interval [0, ξ] of

[0,+∞), for ξ > 0; and is equi-convergent in Bq.
Step 3: Υ maps bounded sets into equi-continuous sets in Bq.

Take 0 ≤ ν1 < ν2 ≤ ξ and for each v ∈ Bq, we sustain

|(Υv)(ν2) − (Υv)(ν1)|E

≤
‖E‖‖F‖(1 − ω)

B(ω)Γ(ω)

∫ ν1

0
[(ν2 − s)ω−1 − (ν1 − s)ω−1]

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds

+
‖E‖‖F‖(1 − ω)

B(ω)Γ(ω)

∫ ν2

ν1

(ν2 − s)ω−1

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds
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+
ω‖E‖2

B(ω)

∫ ν1

0
[Ĥω(ν2 − s) − Ĥω(ν1 − s)]

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds

+
ω‖E‖2

B(ω)

∫ ν2

ν1

Ĥω(ν2 − s)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds.

By (A1) and (3.2), we have∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣
≤ Ω(s)

(
‖vσ(s,vs+us) + uσ(s,vs+us)‖Ch +

∫ s

0
Ω1(ν)(‖vσ(ν,vν+uν) + uσ(ν,vν+uν)‖Ch)dν

)
≤ Ω(s)(Q′ + P̃0Q′)

≤ Ω(s)(1 + P̃0)Q′.

Then, we have

|(Υv)(ν2) − (Υv)(ν1)|E

≤
ρρ(1 − ω)
B(ω)Γ(ω)

(1 + P̃0)Q′
∫ ν1

0
[(ν2 − s)ω−1 − (ν1 − s)ω−1]Ω(s)ds

+
ρρ(1 − ω)
B(ω)Γ(ω)

(1 + P̃0)Q′
∫ ν2

ν1

(ν2 − s)ω−1Ω(s)ds

+
ωρ2

B(ω)
(1 + P̃0)Q′

∫ ν1

0
[Ĥω(ν2 − s) − Ĥω(ν1 − s)]Ω(s)ds

+
ωρ2

B(ω)
(1 + P̃0)Q′

∫ ν2

ν1

Ĥω(ν2 − s)Ω(s)ds.

When ν2 → ν1, the right-hand side of the above inequality tends to zero, since Hω(τ) and Ĥω(τ)
are strongly continuous operators and the compactness of Hω(τ) and Ĥω(τ) for τ > 0 implies the
continuity in the uniform operators topology. So Υ

(
Bq

)
is equi-continuous.

Step 4: Υ(Bq) is equi-convergent.
Let τ ∈ [0,+∞) and v ∈ Bq, we obtain

|(Υv)(τ)| ≤

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 (1 + P̃0)Q′
∫ τ

0
(τ − s)ω−1Ω(s)ds.

Then, we sustain

lim
τ→+∞

|(Υv)(τ)| ≤

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 (1 + P̃0)Q′Ω∗.

Hence,
|(Υv)(τ) − (Υv)(+∞)| → 0 as t → +∞.

AIMS Mathematics Volume 8, Issue 1, 1384–1409.



1397

Now, let K be a subset of Bq such that K ⊂ conv (Υ(K)∪ {0}). In addition, by Lemma 2.9, we know
that there is a countable set C0 = {wn} ⊂ C such that χ(Υ(C)) ≤ 2χ(Υ(C0)) for any bounded set C.
Thus for {wn} ⊂ C, for the appropriate choice of K. For every τ ∈ [0, ξ], by utilizing Lemma 2.10 and
conditions (A0)–(A2) and the properties of the measure χ, we obtain

χ(Υ(wn)) = χ

({
EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1

(×)F
(
s,wnσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν,wnσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

})
+ χ

({
ωE2Λ1

B(ω)

∫ τ

0
(τ − s)ω−1

(×)F
(
s,wnσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν,wnσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

})
= χ

({
ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

}∫ τ

0
(τ − s)ω−1

(×)F
(
s,wnσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν,wnσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

)
≤ 2

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 ∫ τ

0
(τ − s)ω−1Ω(s)

(×)
[

sup
−∞<θ≤0

χ(wn(θ + s) + u(θ + s)) +

∫ s

0
µ(s, ν) sup

−∞<θ≤0
χ(wn(θ + s) + u(θ + s))dν

]
ds

≤ 2

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 ∫ τ

0
(τ − s)ω−1Ω(s)

[
sup

0<µ≤s
χ(wn(µ)) + µ̃∗ sup

0<µ≤s
χ(wn(µ))

]
ds

≤ 2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 ∫ τ

0
(τ − s)ω−1Ω(s) sup

0<s≤ξ
χ(wn(s))ds

≤ 2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 χ({wn})
∫ τ

0
(τ − s)ω−1Ω(s)ds

≤ 2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗χ({wn})

which ensures that

χ(Υ(K)) ≤

2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗

 χ(K).

Then
χ(K) ≤ χ(Υ(K)) ≤ M̂χ(K).

That is to say
χ(K)(1 − M̂) ≤ 0.
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From (3.1), we observe that χ(K)=0 and for each τ ∈J ; then K(τ) is relatively compact in E. As
a result of Steps 1–4 and Theorem 2.14, we conclude that Υ has a fixed point v∗. Then w∗ = v∗ + u is a
fixed point of the operator Υ, which is a mild solution of the model (1.1)–(1.2). �

Next, we establish the existence result for the system (1.3)–(1.4). Now, we list the additional
subsequent hypotheses:

(A4) Let P : J × Ch → E be a Caratheodory function and we can find a continuous function
ΩP : (−∞,+∞)→ [0,+∞) in a way that:

|P(τ, u)| ≤ ΩP(τ)‖u‖Ch , τ ∈J , u ∈ Ch

and

Ω∗P := sup
τ∈J

∫ τ

0
(τ − s)ω−1ΩP(s)ds < ∞.

(A5) Let C be a bounded set, C ⊂ Ch and every τ ∈ [0,+∞); we have

χ(P(τ,C)) ≤ ΩP(τ)χ(C).

(A6) Suppose C ⊂ Ch, where C is a bounded set; then, the function {τ→P (τ, uτ) : u ∈ C} is equi-
continuous on every compact interval [0, ξ] of [0,+∞), for every ξ > 0.

Theorem 3.2. If the assumptions (A0)–(A6) hold and

M̂1 = 2

(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗ +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P

 < 1, (3.3)

then the system (1.3)–(1.4) has at least one mild solution on Yτ.

Proof. Consider the operator Υ1 : Yτ → Yτ defined by

(Υ1w)(τ) =



ϕ(τ), τ ≤ 0,
EHω(τ)[ϕ(0) −P(0, ϕ)]

+
EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds

+
EF

Γ(ω)

∫ τ

0
(τ − s)ω−1P(s,wσ(s,ws))ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)F

(
s,wσ(s,ws),

∫ s

0
p(s, ν,wσ(ν,wν))dν

)
ds

−EF

∫ τ

0
Ĥω(τ − s)P(s,wσ(s,ws))ds, τ ∈J .
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In view of Theorem 3.1, define the operator Υ1 : Y0
τ → Y0

τ as

(Υ1v)(τ) =



−EHω(τ)P(0, ϕ) +
EF(1 − ω)
B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1

(×)F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

+
EF

Γ(ω)

∫ τ

0
(τ − s)ω−1P(s, vσ(s,vs+us) + uσ(s,vs+us))ds

+
ωE2

B(ω)

∫ τ

0
Ĥω(τ − s)

(×)F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)
ds

−EF

∫ τ

0
Ĥω(τ − s)P(s, vσ(s,vs+us) + uσ(s,vs+us))ds, τ ∈J .

Obviously Υ1 has a fixed point equal to one Υ1, so it stands to show that Υ1 has a fixed point.
We need to demonstrate that all assumptions of Theorem 2.14 are fulfilled by the operator Υ1.

|(Υ1v)(τ)| ≤ ‖E‖‖Hω(τ)‖‖P(0, ϕ)‖ +
‖E‖‖F‖(1 − ω)

B(ω)Γ(ω)

∫ τ

0
(τ − s)ω−1

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds

+
ω‖E‖2

B(ω)

∫ τ

0
‖Ĥω(τ − s)‖

(×)

∣∣∣∣∣∣F
(
s, vσ(s,vs+us) + uσ(s,vs+us),

∫ s

0
p(s, ν, vσ(ν,vν+uν) + uσ(ν,vν+uν))dν

)∣∣∣∣∣∣ ds

+
‖E‖‖F‖

Γ(ω)

∫ τ

0
(τ − s)ω−1|P(s, vσ(s,vs+us) + uσ(s,vs+us))|ds

+ ‖E‖‖F‖

∫ τ

0
‖Ĥω(τ − s)‖|P(s,wσ(s,ws))|ds

≤ ρĈH ‖P(0, ϕ)‖

+

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 ∫ τ

0
(τ − s)ω−1Ω(s)

[
e + Q∗1|v(s)| + P̃0(e + Q∗1|v(s)|)

]
ds

+

(
ρρ

Γ(ω)
+ ρρĈĤ

) ∫ τ

0
(τ − s)ω−1ΩP(s)[e + Q∗1|v(s)|]ds

≤ ρĈH ‖P(0, ϕ)‖ +

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)e

+

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)Q∗1‖v‖Y0
τ

+

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗Pe +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P Q∗1‖v‖Y0

τ
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≤ Ã1 + Q∗1

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0) +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P

 ‖v‖Y0
τ
,

where

Ã1 = ρĈH ‖P(0, ϕ)‖ +

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0)e +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗Pe.

Therefore Υ1(v) ∈ Y0
τ .

Furthermore, let q > 0 be such that

q ≥
Ã1

1 − Q∗1


ρρ(1 − ω)

B(ω)Γ(ω)
+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0) +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P


,

and Bq be the same as defined in Theorem 3.1. Now, take v ∈ Bq and τ ∈ [0,+∞); then

|(Υ1v)(τ)| ≤ Ã1 + Q∗1

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0) +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P

 q.

Hence
‖Υ1v‖Y0

τ
≤ q.

Step 2: Υ1 is continuous and equi-continuous in Bq.
By thinking of Steps 2 and 3 of Theorem 3.1 and the conditions (A4) and (A6), we have come to

the conclusion that the operator Υ1 is both continuous and equi-continuous in the space Bq.
Further, in view of Step 1, we notice that Υ1(Bq) ⊂ Bq.
Next, we demonstrate that the operator Υ1 is equi-convergent in Bq.

Step 4: Υ1(Bq) is equi-convergent.
Let τ ∈ [0,+∞) and v ∈ Bq; we get

|(Υ1v)(τ)| ≤ Ã1 + Q∗1(1 + P̃0)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 ∫ τ

0
(τ − s)ω−1Ω(s)|v(s)|ds

+

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Q∗1

∫ τ

0
(τ − s)ω−1ΩP(s)|v(s)|ds

Then, we have

lim
τ→+∞

|Υ1(v)(τ)| ≤ Ã1 + Q∗1

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗(1 + P̃0) +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P

 q.

Hence,
|(Υ1v)(τ) − (Υ1v)(+∞)| → 0 as t → +∞.

As a result of Step 4 of Theorem 3.1 and the conditions (A4)–(A5), we have

χ(Υ1(wn)) ≤ 2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 χ({wn})
∫ τ

0
(τ − s)ω−1Ω(s)ds
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+ 2
(
ρρ

Γ(ω)
+ ρρĈĤ

)
χ({wn})

∫ τ

0
(τ − s)ω−1ΩP(s)ds

≤ 2

(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 χ({wn})Ω∗ +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
χ({wn})Ω∗P


which ensures that

χ(Υ1(K)) ≤ 2

(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗ +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P

 χ(K).

Then
χ(K) ≤ χ(Υ1(K)) ≤ M̂1χ(K).

That is to say
χ(K)(1 − M̂1) ≤ 0.

From (3.3), we observe that χ(K)=0 for each τ ∈ J ; then, K(τ) is relatively compact in E. As a
result of Steps 1–4 and Theorem 2.14, we conclude that Υ1 has a fixed point v∗. Then w∗ = v∗ + u is a
fixed point of the operator Υ1, which is a mild solution of the model (1.3)–(1.4). �

4. Example

Consider the following partial integro-differential system, which includes an ABC derivative of the
model

D
1
2

ABC

[
u(τ, y) + e−τ

∫ τ

−∞

e2(s−τ) u(s − σ1(s)σ2(‖u(s)‖), y)
49

ds
]

=
∂2

∂y2 u(τ, y)

+ e−τ
∫ τ

−∞

e2(s−τ) u(s − σ1(s)σ2(‖u(s)‖), y)
64

ds

+ e−τ
∫ τ

0
sin(τ − s)

∫ s

−∞

e2(ν−s) u(ν − σ1(ν)σ2(‖u(ν)‖), y)
16

dνds, (4.1)

u(τ, 0) = 0 = u(τ, π), τ ∈ [0,+∞), (4.2)
u(τ, y) = ϕ(τ, y), −∞ < τ ≤ 0, 0 ≤ y ≤ π, (4.3)

where Dϑ
ABC is the ABC derivative of order 0 < ω < 1;σi : R → R+, i = 1, 2 and ϕ ∈ Ch. We consider

E = L2[0, π] having the norm | · |L2 and determine the operator A : D(A) ⊂ E → E by Aw = w′′ with
the domain

D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}.

Then

Aw =

∞∑
n=1

n2〈w,wn〉wn, w ∈ D(A),
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in which wn(s) =

√
2
π

sin(ns), n = 1, 2, . . . , . is the orthogonal set of eigenvectors of A. It is well-known
that A is the infinitesimal generator of an analytic semigroup (T (τ))τ≥0 in E and is provided by

T (τ)w =

∞∑
n=1

e−n2τ〈w,wn〉wn, for all w ∈ E, and every τ > 0.

As R(λ, A) = (λI− A)−1 is a compact operator for all λ ∈ ρ(A), {T (τ)}τ≥0 is a uniformly bounded
compact semigroup, which means that A ∈ A ω(ω0,w0). Also, subordination principle of the solution
operator Hω(τ)τ≥0 is such that ‖Hω(τ)τ≥0‖ ≤ M for τ ∈ [0, 1] ⊂ [0,+∞).

For the phase space, we choose h = e2s, s < 0; then, we set l =

∫ 0

−∞

h(s)ds =
1
2
< ∞, for t ≤ 0 and

determine

‖ψ‖Ch =

∫ 0

−∞

h(s) sup
θ∈[s,0]

‖ψ(θ)‖L2ds.

We assume the following assumptions in order to put the system (4.1)–(4.3) into the abstract form
given by (1.3)–(1.4):

Let (τ, ψ) ∈ [0, 1] ⊂ [0,+∞) × Ch, where ψ(θ)(y) = ψ(θ, y), (θ, y) ∈ (−∞, 0] × [0, π]. Set

u(τ)(y) = u(τ, y), σ(τ, ψ) = σ1(τ)σ2(‖ψ(0)‖);

we have

P(τ, ψ)(y) = e−τ
∫ 0

−∞

e2(s) ψ

49
ds,

F (τ, ψ, Ĥ ψ)(y) = e−τ
∫ 0

−∞

e2(s) ψ

64
ds + (Ĥ ψ)(x),

where

(Ĥ ψ)(y)(= p(τ, s, u)(y)) = e−τ
∫ τ

0
sin(τ − s)

∫ 0

−∞

e2(ν) ψ

16
dνds.

Then the problem (1.3)–(1.4) is an abstract formulation of the system (4.1)–(4.3).
Next, we verify the assumptions (A0)–(A6) for the above system (4.1)–(4.3) one by one.

Verification of A0:
The function p(τ, s, u)(y) is Caratheodory and for τ ∈ [0, 1] ⊂ [0,+∞), ψ ∈ Ch, we have

|p(τ, s, u)|L2 ≤

∫ π

0

(
e−τ

∫ τ

0
‖ sin(τ − s)‖

∫ 0

−∞

e2(ν)
∥∥∥∥∥ ψ16

∥∥∥∥∥ dνds
)2

dy


1
2

≤

∫ π

0

(
1

16
e−τ

∫ 0

−∞

e2(s) sup ‖ψ‖ds
)2

dy


1
2

≤

√
π

16
e−τ‖ψ‖Ch
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≤ Ω1(τ)‖ψ‖Ch ,

where Ω1(τ) =

√
π

16
e−τ and

√
π

16
sup

τ∈[0,1]⊂[0,+∞)

∫ τ

0
e−sds = 0.070 = µ̃∗. Also, we can see that each bounded

set C1 ⊂ Ch and

χ(p(τ, s,C1)) ≤
√
π

16
e−τ sup

−∞<x≤0
χ(C1(x)) for a.e. τ, s ∈ [0, 1] ⊂ [0,+∞).

Therefore p satisfies the condition (A0).
Verification of A1 and A2:

The function F (τ, s, u)(y) is Caratheodory and for τ ∈ [0, 1] ⊂ [0,+∞), ψ ∈ Ch, we have

|F (τ, s, u)|L2 ≤

∫ π

0

(
e−τ

∫ 0

−∞

e2(s)
∥∥∥∥∥ ψ64

∥∥∥∥∥ ds + e−τ
∫ τ

0
‖ sin(τ − s)‖

∫ 0

−∞

e2(ν)
∥∥∥∥∥ ψ16

∥∥∥∥∥ dνds
)2

dy


1
2

≤

∫ π

0

(
1

64
e−τ

∫ 0

−∞

e2(s) sup ‖ψ‖ds +
1
16

e−τ
∫ 0

−∞

e2(s) sup ‖ψ‖ds
)2

dy


1
2

≤
5
√
π

64
e−τ‖ψ‖Ch

≤ Ω(τ)‖ψ‖Ch ,

where Ω(τ) =
5
√
π

64 e−τ and
5
√
π

64
sup

τ∈[0,1]⊂[0,+∞)

∫ τ

0
(τ−s)−

1
2 e−sds =

10
√
π

64
F(
√
τ) = 0.145 = Ω∗, where F(z)

is the Dawson integral. Also, we can see that each bounded set C2 ⊂ Ch,C ⊂ E, τ ∈ [0, 1] ⊂ [0,+∞)
and

χ(F (τ,C2,C)) ≤
5
√
π

64
e−τ

[
sup
−∞<x≤0

χ(C2(x)) + χ(C)
]
,

where C2(x) = {u(x) : u ∈ C2}.
From the above discussion, we notice that the assumptions (A1) and (A2) are verified.

Verification of A3:
In view of Definition 2.11, we have
E = η(ηI−A)−1 and F = −η̃A(ηI−A)−1 with η =

B(ω)
1−ω , η̃ = ω

1−ω and B(ω) = 1−ω+ ω
Γ(ω) . From (4.1),

we know that ω = 1
2 .

Therefore

B
(
1
2

)
=

(
1 −

1
2

)
+

1
2

Γ
(

1
2

) = 0.7821.

From the above normalization function value, we have

η =
B(ω)
1 − ω

=
0.7821

0.5
= 1.5642 and η̃ =

ω

1 − ω
=

0.5
0.5

= 1.

From the boundedness on A and along with the above, we conclude that E and F are bounded linear
operators and there are positive constants ρ and ρ such that ‖E‖ ≤ ρ and ‖F‖ ≤ ρ, respectively.
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Verification of A4–A6:
The function P(τ, ψ)(y) is Caratheodory and for τ ∈ [0, 1] ⊂ [0,+∞), ψ ∈ Ch, we have

|P(τ, ψ)|L2 ≤

∫ π

0

(
e−τ

∫ 0

−∞

e2(s)
∥∥∥∥∥ ψ49

∥∥∥∥∥ ds
)2

dy


1
2

≤

∫ π

0

(
1

49
e−τ

∫ 0

−∞

e2(s) sup ‖ψ‖ds
)2

dy


1
2

≤

√
π

49
e−τ‖ψ‖Ch

≤ ΩP(τ)‖ψ‖Ch ,

where ΩP(τ) =

√
π

49
e−τ and

√
π

49
sup

τ∈[0,1]⊂[0,+∞)

∫ τ

0
(τ − s)−

1
2 e−sds =

2
√
π

49
F(
√
τ) = 0.039 = Ω∗P , where

F(z) is the Dawson integral. Also, we can see that each bounded set C ⊂ Ch and

χ(P(τ,C)) ≤
√
π

49
e−τ sup

−∞<x≤0
χ(C(x)) for a.e. τ ∈ [0, 1] ⊂ [0,+∞).

For any 0 ≤ ν1 < ν2 ≤ ξ and for each ν ∈ Bq, we have

|P(ν2, ψ)(y) −P(ν1, ψ)(y)|L2 ≤

√
π

49
(e−ν2 − e−ν1)‖ψ‖Ch

→ 0 as ν2 → ν1.

From this, we observe that the assumptions (A4)–(A6) are verified.
Since µ̃∗ = 0.070,Ω∗ = 0.145, ρ = ρ = 0.5, ω = 1

2 , B(ω) = 0.7821,Γ
(

1
2

)
= 1.7724,Ω∗P =

0.039, ĈĤ = 1.
Furthermore, from Theorem 3.1, we obtain

M̂ =

2(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗


= 0.5329 < 1

and from Theorem 3.2, we obtain

M̂1 = 2

(1 + µ̃∗)

ρρ(1 − ω)
B(ω)Γ(ω)

+
ωρ2ĈĤ

B(ω)

 Ω∗ +

(
ρρ

Γ(ω)
+ ρρĈĤ

)
Ω∗P


= 0.5634 < 1.

Clearly, all assumptions of Theorems 3.1 and 3.2 are satisfied. Hence by the conclusion of Theorems
3.1 and 3.2, it follows that the system (4.1)–(4.3) has a mild solution.
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5. Conclusions

The primary purpose of this investigation was to demonstrate that the ABC derivative, which is
one of the most recent non-local derivatives with a non-singular kernel, is used extensively, and to
encourage further development in the process of forming deep connections between this derivative and
other scientific studies. This theory paved the way for new lines of inquiry in the scientific community,
such as the analysis of qualitative and quantitative behavior in a variety of systems. The existence,
stability and controllability outcomes for a variety of systems under a variety of assumptions are now
being discussed by a large number of scholars.

In this paper, we applied the ABC derivative, which can be found in [9], to the differential structures
(1.1)–(1.2) and (1.3)–(1.4) that were taken into consideration. By using the Monch fixed point theorem,
it is possible to establish Theorems 3.1 and 3.2, which examine the existence of mild solutions to the
systems (1.1)–(1.2) and (1.3)–(1.4). With an appropriate fixed point theorem, the effectiveness of such
existing research may be developed for controllability with non-instantaneous impulses for suitable
models.
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