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1. Introduction

The notion of complex valued metric space is introduced by Azam et al. [1] in 2011 and
established common fixed points of self mappings satisfying rational contractions. Later on,
Rouzkard et al. [2] gave generalized contraction and extended the leading theorem of Azam et al. [1].
Subsequently, Sintunavarat et al. [3] replaced the constants involved in the contraction with control
functions of one variable and generalized the results of Azam et al. [1] and Rouzkard et al. [2].
Sitthikul et al. [4] used control functions of two vaiables in the contraction and established common
fixed point theorems in context of complex valued metric space. Although many researchers [5—10]
worked in this space and proved different generalized results. Mukheimer [11] gave the notion of
complex valued b-metric space (CVHAMS) by involving a constant 7 > 1 in the triangle inequality and
generalized the concept of complex valued metric space (CVMS). Kumar [12] and Rao et al. [13]
proved common fixed point results in CVOMS for generalized contractions. Naimatullah et al. [14]
replaced contant with a control function and extended the concept of complex valued b-metric space
(CVbMS) to complex valued extended b-metric space (CVEbDMS). They proved fixed points of
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multivalued mappings for contractions involving rational expressions in CVEbPMS. For more details
in this direction, we refer the readers to [15-22].

In this paper, we obtain common fixed point theorems in complex valued extended b-metric spaces
(CVEbMYS) for rational contractions with contractiveness on a closed ball. We also provide a significant
example to show the originality of obtained results.

2. Preliminaries

Azam et al. [1] gave the notion of complex valued metric space (CVMS) in this way.

Definition 1. (See [1])Let w,w, € C (set of complex numbers). A partial order < on C is defined as
follows
w; Swy © Re(w)) < Re(wy), Im(wy) < Im(w,).

It follows that
w1 S Wy,

if one of these assertions is satisfied:

(@) Re(w1) = Re(wy), Im(wy) < Im(w,),
(b) Re(w;) < Re(wy), Im(wy) =Im(w,),
(c)Re(w;) < Re(wy), Im(wy) < Im(w,),
(dRe(w) = Re(wy), Im(w;) =Im(w,).

Definition 2. (See [1]) Let W # 0 and d : W X W — C satisfy

(1) 0 s d(w,p) and d(w, p) = 0 if and only if w = p;
(i) d(w, 0) = d(o, w);
(i) d(w,0) 3 d(w,v) +d(v,0);

for all w,p,v € W, then (W, d) is said to be complex valued metric space (CVMS).
Example 3. (See [1]) Let W = [0, 1]. Defined : W x W — C by

0, ifw = o,

d((,(),Q):{ i
3 lf(l)?&Q,

for all w,0 € W, then (W,d) is CVMS.
Mukheimer [11] gave the conception of complex valued b-metric space (CVHOMS) in this way.

Definition 4. (See [11]) Let W # 0 and n > 1 be a real number. If a mapping d : W xW — C satisfy

(1) 0 3 d(w,0) and d(w, ) = 0 if and only if w = g;
(i) d(w,0) = d(o, w);
(iii) d(w,0) 3 7[d(w,v) +d(v,0)];

for all w, o,v € W, then (W, d) is called a complex valued b- metric space (CVHMS).
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Example 5. (See [11]) Let W = [0, 1]. Define d : W x W — C by
d(w,0) = lw - o’ + ilw - of,

forall w,0 € W, then (W,d) is CVbMS with & = 2.

Recently, Naimatullah et al. [14] defined the notion of complex valued extended b-metric space
(CVEbLMY) in this way.

Definition 6. (See [14]) Let W # Q0 and ¢ : W X W — [1,00). If a mapping d : W x W — C satisfy

(1) 0 s d(w,0) and d(w, o) = 0 if and only if w = p;
(i) d(w,0) = d(o, w);
(i) d(w,0) 3 ¢(w,0) [d(w,v) +d(v,0)];

for all w, o, v € ‘W, then (W, d) is called CVEbMS.
Example 7. (See [14]) Let W # @ and ¢ : W X W — [1, o) be defined by

l+w+p

o(w,0) = ot o

andd: WxW — Cby

(1) d(w,0) = wlg, forall 0 < w,0 < 1;

(i1) d(w,p) = 0ifand only if w = o, forall 0 < w,0 < 1;

(iii) d(w, 0) = d(0, w) = i', forall 0 < w < 1.

Then (W, d) is a CVEbDMS.
Example 8. Let W = [0,00) and ¢ : W X W — [1, ) be a function defined by p(w,0) =1+ w + 0
andd: W xW — Cby

0, ifw=0p,
dw,0) = { i, ifw # o.
Then (‘W,d) is a CVEbMS.

Lemma 9. (See [14]) Let (W, d) be a CVEbMS and {w,} € W, then {w,} converges to w if and only
if ld(w,, w)] = 0, as n — oco.

Lemma 10. (See [14]) Let (‘W,d) be a CVEbMS and {w,} € W, then {w,} is a Cauchy sequence if
and only if |d(w,, w,)| = 0 as n,m — .
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3. Results

Now we state our main result in this way.

Theorem 11. Let (W, d) be a complete CVEDMS with ¢ : W X W — [1,00) and 31,2, : W — W.
Suppose that there exist N1, Ry, N3, 84,85 € [0, 1) with 8; + 8y + N3 + 284 + 285 < 1 such that

d(w, diw)d (e, 250) (0, J1w)d(w,20)

d(:lw,lzg) < Nld(a),g)+2*¢2 3

1+d(w,0) 1 +d(w,0)
for all wy, w,0 € Bwy,r), 0 < reCand
|d(wo, d1wo)l < (1 = )lr], (3.2)

N]+N4 ) ( N1+NS
1-Np—N4 72 M 1-Ny—N;5

there exists a unique point w* € B(wy, r) such that w* = 210" = Z,w".

)}. And for each wy € B(wy, r) and 1im,, y— 100 ¢ (W, W) A < 1, then

where A = max{(

Proof. Let wy € ‘W and define
Wops1 = 1 Wo, and Wopi2 = DoWopy1,

for all n = 0,1,2,.... Now we show that w, € B(wy,r), for all n € N. By the fact that

A = max{( 1§§Z§§4)’ ( 1§;<:§5)} < 1 and inequality (3.2), we have

ld(wo, F1wo)| < |rl.

It implies that wi; € B(wy,r). Let wy, ...,w; € B(cgo,r) for some j € N. If j = 2n + 1, where
nzO,l,Z,...%orj:2n+2,wheren:0,1,2,...,%. By (3.1), we have

d(Wops1, Wrps2) = d(1wr, JoWrne1)
d (Waps1, Wane1) d (W, 1 W2p)

A

N d n» n N
1d(Won, Wons1) + Ny 1 + d (way,, Warni1)

d (wap, szznn) d (W41, = way)
1 + d (Q)Zn’ w2n+1)
d (Wap, rwane1) d (W, 1 W2p)

+N3

+N
! 1 + d (wy, Wap+1)

d (Wapt1, wons1) d (Wops1, A1 W2p)
1 + d (wan, wan+1)

+N5

Now w41 = Jjw,, implies that d (wa,41, 1w2,) = 0, so we have

d (W1, Wans2) d (Wan, Wt 1)
1 + d (w2, Wans1)
d (Wan, Wps2) d (W2, W21 1)
1 + d (W, Wani1)

d(Wans1, Wons2) 3 Nid(wan, Wans1) + N2

+N4

AIMS Mathematics Volume 8, Issue 1, 1360-1374.



1364

This implies that

ld (W21, Wani2) Il (W2n, Wans1) |
11+ d(wan, Wns1) |
|d (Wan, W2n42) Il (W2, W2n11) |
11+ d (wan, Wn41) |

ld(wans1, Wans2)l < Nild(Won, Wone1) + X2

+N4

Since |1 + d (W, Wops1) | > |d (Won, Wons1) |, SO We have
ld(Wan+1, W) < Rild(Wan, W 1)| + Nold (Woni1, Wani2) | + Rald (W2, W2p42) |-

Which implies that by triangular inequality

N +N
1, 02.2) < @ ). (3.3)
Similarly, we get
d(Wans2, Wne3) = d(S1Wans2, JoWons1)

d (Won+1, 2Wans1) d (Wons2, J1Wns2)
1 + d (waps2, Wons1)
d (Wans2, J2Wans1) d (Wont1, 1 W2n12)
1 + d(wans2, Wons1)
d (Wans2, D2Wons1) d (Worn12, 1 Wrn12)
I + d (waps2, Wons1)
d (Want1, J2Wans1) d (Wont1, 1 W2H12)
1 + d(wans2, Wons1) .

A

Nid(wans2, Wanr1) + N

+N3

+N4

+N5

Now wy42 = Jowyuey implies that d (w42, 22W2,41) = 0, SO we have

d (Wan+1, Wans2) d (Wans2, Wrns3)
1 + d (wans2, Wrns1)
d (W41, Wn42) d (Wani1, Wrny3)
1 + d(wans2, Wons1) '

d(Wops2, Wps3) 3 Nid(Wopsa, Wone1) + Ny

+N5

This implies that

|d (Wan+1, Wans2) |ld (Wans2, Wane3) |

1+ d (w1, Wans2) |
|d (Want1, Wans2) lld (Wans1, Wan43) |

11+ d (waps2, Wans1) |

|d(wans2, Woe3)l < Nild(Wons2, Wone1) + N2

+N5

Since |1 + d (wap42, Wps1) | > |d (W2p12, Wons1) |, O We have

ld(wans2, Wans3)l < N |d(wan+2, Wans1)| + N2|d (Wans2, Wops3) | + N5|d (Wan+1, Wons3) |-

Which implies that by triangular inequality

(N1 +Ns)
2, Wop3)| S ———— = n+2s Won+1)l- 4
|d(wrn+2, Wrn+3)| T -8, = 85)|d(w2 2, Wan41)| (3.4)
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Putting 1 = max{(lx‘m‘ ),(1&“rNS )}, we obtain that

—N2—34 —NQ—N5
ld(w;, ;1) < Vld(wy, wy)| for some j € N. (3.5)
Now

ld(wo, wjs)|l < |d(wo, w))| + ... + |[d(wj, wj41)]
< d(wo, wp)l + ... + Vld(wy, wy)l
= |d(wy, w)I[1 + ... + V71 + 7]

(1 - A7*h

< (1-2 -
< ( )(rl) =1
< I,

gives wj,1 € B(wy, r). Hence w, € B(wy, r) for all n € N. One can easily prove that
ld(w,, W)l < AMd(wo, wi)l,

for all n € N. Now for m > n and by triangular inequality, we have

A

|d((1)n,(1)m)| = Qp(wn’wm)/ln|d(w0,wl)|

+0 (Wn, W) @ (Wpi1, W) X |d (w0, 1))

4+ .-+
(12 (Cl)n, (Um) @ (wn+l’ wm) 2 ((Um—Z’ (Um) "2 ((Um_l, (,()m) /lm_l |d ((,()0, wl)l
@ (W, wy) A"
< ld (wo, )l + (Wpy W) @ (Wpi1s W) A 4+ -4

© (Wny W) @ (W1, W)+ + P (D2, W) P (W1, W) A

©o P
Since lim,, ;- 400 ¢ (W, W) A < 1, so the series ), A" [[ ¢ (w;, w,,) converges by ratio test for each

n=1 i=1
P = iﬁ” |

n=1 i

m € N. Let )
e @iwn), on= ) V| | @s,wn.

p
=1 j=1 =1

Thus, for m > n, the above inequality can be written as
|d (wn, W)l < 1d (Wo, WD [Pm-1 = Pl -

Now, by taking the limit as n,m — 400, we get

lim |d(w,,w,)| — 0.

n,m—+oo

By lemma (10), we conclude that the sequence {w,} is a Cauchy sequence in B(w, r). Consequently
there exists w* € B(wy, r) such that lim w, = w*. It follows that w* = J,w*, otherwise d(w*, Z;w*) =

n—+co

v > 0 and we would then have
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P(w", 31w") ([dW*, Wis2) + d(Worps2, F1WY))
p(w", 310" ([d(W", Wi+2) + d(ZrwWrpe1, JHW"))

d(w*, Wans2) + N1d(Wapt1, W) + Xy

d(wan+1,31 W )d(W",Tpwon+1)
+N3 i« *%"'d(“-'*a)‘léZ(nJrl): )
W, Drwos)d(w", 1w ’
L v
+N d(w2n+l 7:2w2n+l )d(w2n+l ,:lw*)
3 1+d(w* wns1)

<
A

d(Won+1,TpWon+ NA(W", T w")
I+d(w* ,wan+1)

A

p(w", 310"

which implies that

* * [d(won+1,w2n42)I1V]
ld(w", Wan2)l + Vi [d(Wons1, W] + Ny T S

|d(wan+ 1,210l (W w2n12)|
LS R e Py
+N |d(w” ,w2n2)|lV|
H+d(@* w211l
+N ld(wans1,w2ne)ld(wWans 1,31 W)
5 T+d(w* w201l

vl < p(w’, J1w")

That is |v| = 0, which is a contradiction. Thus w* = J,w*.Similarly, we can prove that w* = Z,w*. O

Now we show uniqueness of common fixed point. We suppose «w’ in ‘W is another common fixed
point of J; and J, that is / = 3,0/ = J,w’ which is distinct from w* that is w* # «/. Now by (3.1),
we have

dw*, ) d(3w", 2h)
d(w*,le*)d(w/,:lzw/)

1 +dw*, w)
d(w/,llw*)d(w*,lzw/)

1 +dw*, )
d(w*,ﬂlw*)d(w*,ﬂzw/)

1 +d(w*,w!)
d((u/,llw*)d((u/,lzw/)

1 +dw*, )

Nid(w', )+ 8,

A

+N3

+N4

+N5

so that

d (", 210" ld (/. Tpw) |
11+ d(w*, )|
d (!, 310") Id (", o0 |
11+ d(w*, )|
d (", S0 lld (0", Tre) |
11+ d(w*, )|
d (/. 310") d (!, oo |
1 +d(w*, )|

ld(w*, o) < Nildw*, o)+ Ry

+N3

+N4

+N5
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Since |1 + d(w*, W)| > |d(w*, )|, so we have
ld(w", W) < Ry + Va)ld(w", ).
This is contradiction to 8; + 83 < 1. Hence, w/ = w*. Therefore w* is a unique common fixed point
of J; and 3,.

Corollary 12. Let (‘W,d) be a complete CVEDMS with ¢ : W X W — [l,0)and 3 : W — W.
Suppose that there exist N1, Ry, N3, 84,85 € [0, 1) with 8; + N, + N3 + 28, + 285 < 1 such that

d(w,dw)d (e, 30) d(o.dw)d(w,30)

d(:a)’ :Q) 5 Nld((‘u, Q) + NZ 3

1 +d(w,p) 1 +d(w,0)
+:~¢4d (w, Jw)d (w, Jo) N N5d (0, Aw)d (o, 39)’
1+d(w,0) I +d(w,0)

for all wy, w,0 € B(wy,r), 0 <reCand

ld(wo, S1wop)l < (1 = Dlrl,

where A = max{( f&f&) (IN?;:N;S) }. And for each wy € B(wy, r) and lim,, ,,_, ,co @ (W, W) A < 1, there
exists a unique point w* € B(wo, r) such that w* = Jw*.

Proof. Taking 3, = J, = Jin Theorem 11. O

Example 13. Suppose
W, ={veC:Re() >0, Im(v) =0},

W, ={v e C: Im() >0, Re(v) =0},
and W = W, U W,. Consider complex valued extended b-metric d : W X W — C as follows:

2wy — wof’ + {|wr — wl?, if vy, v, € Wy,
4 (o1s) ot — 0 + £ o1 — ool if vy, vy € W),
Uiy) = )
T Moo+ i e, ifu e Wi, v e Wy,
Lwr+0) +Z(wr+01), ifv €W, v, €W,
and ¢ : W x W — [1,00) by p(w,0) = 2. Then (W, d) is complete CVEbMS. Take vy = % + 0i and
r= % + ii. Then,
m_ veC: <RC(U)< ,Im(v):O ifve(Wl
77 veC:0<Im@w) <1, Re(v) =0 ifveW,.
Define 3;, 3, : W — W as

0+ %i if v € W, with 0 < Re(v) < 1, Im(v) = 0,

5
%" +0i ifve W, with Re(w) > 1, Im() = 0

Jiv=
: §+Oi if v € W, with 0 < Im(v) < 1, Re(v) = 0

4
0+ ?Qi if v € W, with Im(v) > 1, Re(v) = 0
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0+ %i if v € W, with 0 < Re(v) < 1, Im(v) = 0,

4
?“’ +0i if v e W, withRe(v) > 1, Im(v) = 0,

:IZU = o
5 +0i ifveW,withO<Im(@w) <1, Re(v) =0,
5
0+ ff if v € W, with Im(v) > 1, Re(v) = 0.
Then with 8y = 3,8, = 5,83 = 1,84 = % and 85 = 5, all the assumptions of Theorem 11 are

satisfied and hence 0 + 0i € B(v, r) is a unique common fixed point J; and 3,.

Corollary 14. Let (‘W,d) be a complete CVEDMS with ¢ : W X W — [1,0) and 31,3, : W — W.
Suppose that there exist N1, N,, 83,8, € [0, 1) with 8; + 8 + N3 + 28, < 1 such that

d(w,J1w)d (0, 2,0) d (o, 1w)d (w, 2,0)
Jiw, 3 <
dQiw,30) 3 Nidw,0) + 8, 1+ d(.0) + N3 T+ d.0)

d(w, d1w)d (w, 2,0)
1 +d(w,0)

+N4

for all wy, w,0 € B(wy,r), 0 <reCand

ld(wo, S1wo)l < (1 = Dlrl,

N1+84 Nl
1-Nr—N4° 1-8,

a unique point w* € B(wy, r) such that w* = 210" = Z,w".

}. And for each wy € B(wy, r), lim,, ;100 ¢ (Wy, W) A < 1, then there exists

where A = max{

Proof. Taking 85 = 0 in Theorem 11. O

Corollary 15. Let (‘W,d) be a complete CVEDMS with ¢ : W X W — [l,0)and 3 : W — W.
Suppose that there exist N1, N,, 83,8, € [0, 1) with 8; + 8y + N3 + 28, < 1 such that

d (w, 3w) d (0, 30) e d (0, 3w)d (w, 3p)
1 +d(w,0) 1+ d(w,o)
d(w, 2w)d(w, o)
1 +d(w,0)

d(Qw,30) 3 Nid(w,0) + N,

4

for all wy, w,0 € B(wy,r), 0 <reCand

|d(wo, Jwo)l < (1 — |7,

N1+N4 N]
1-Ry—Ng 7 1-8;

exists a unique point w* € B(wy, r) such that w* = Jw".

where A = max{ }. And for each wy € B(wy, r) and lim,, ;o ¢ (Wy, Wy,) A < 1,then there

Proof. Taking 3, = 3, = J in Corollary 14. O

Corollary 16. Let (W, d) be a complete CVEDMS with ¢ : W X W — [1,00)and 31,2, : W — W.
Suppose that there exist N1, 8, 83,85 € [0, 1) with 8; + 8, + N3 + 285 < 1 such that

d(w,1w)d (0, 2,0) LR d (0, 31w)d (w, 2,0) LR d (0, d1w)d (0, 2,0)

d(31w, Do) 3 Nid N
(B10,3:0) 3 Rid(w, 0) + Ko ——— 72" 5 T 1+ d(w,0) > 1+dwo)
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for all wy, w,0 € B(wy,r), 0 <reCand
|d(wo, J1wo)| < (1 = D],

1f§<2)’(1§§<:§;<5 }. And for each wy € B(wy, r) and lim,, ;0 @ (Wy, W) A < 1, then

there exists a unique point w* € B(wy, r) such that w* = 210" = Z,w".

where A = max{(

Proof. Taking 84 = 0 in Theorem 11. O

Corollary 17. Let (‘W,d) be a complete CVEbMS with ¢ : W X W — [1,0)and I : W — W.
Suppose that there exist 81, NR,, 83,85 € [0, 1) with 8 + 8y + 83 + 285 < 1 such that

d (w, Jw) d (o, 30) LR d (0, Aw) d (w, Jo) LR d (0, Aw) d (0, 30)

d(Zw,30) 3 Nid(w,0) +N
(Fw, o) 3 Nid(w,0) + Ry 1+ d(w.0) T 1 1d(w,0) > 1+d(w,0)

b

for all wy, w,0 € B(wy,r), 0 <reCand

|d(wo, Jwo)l < (1 — D],

Nl NH—NS
1-N, ); (1—N2—N5
S

there exists a unique point w* € B(wy, r) such that w* = Jw".

)}. And for each wy € B(wy,r) and lim,, ;00 ¢ (Wy, W) A < 1, then

where A = max{(

Proof. By setting 2, = 2, = 2 in Corollary 16. m|

Corollary 18. Let (W, d) be a complete CVEbMS with ¢ : W X W — [1,00) and 31,3, : W — W.

Suppose that there exist N1, 8,, N3 € [0, 1) with 8| + N + 83 < 1 such that

d(w,Jjw)d (0, 3,0) LN d (0, diw)d (w, »0)
1+d(w,o0) > 1+d(w,0)

d(:la), :QQ) < Nld(a), Q) + Nz

b

for all wy, w,0 € B(wy,r), 0 <reCand
|d(wo, J1wo)| < (1 — D],
where A = lf—gz And for each wy € B(wy, r) and lim,, ;o ¢ (Wy, W) A < 1, then there exists a unique
point w* € B(wy, r) such that w* = 210" = Jow".
Proof. By choosing 84 = 85 = 0 in Theorem 11. O

Corollary 19. Let (‘W,d) be a complete CVEDMS with ¢ : W X W — [l,0)and 2 : W — W.
Suppose that there exist N1, 8,,83 € [0, 1) with 8| + N8, + N3 < 1 such that

d (w, 3w) d (0, 30) N d (0, Jw) d (w, 30)

“w,30) 3
(3w, J0) 3 Mid(w,0) + R ——=—7 " 5 Y 1+d(w,0)

b

for all wy, w,o € B(wy,r), 0 <reCand

|d(wo, Awo)| < (1 = D)lr,

where A1 = 1§_§2 And for each wy € B(wy, r) and lim,, ,_, ;o ¢ (Wy, W) A < 1, then there exists a unique

point w* € B(wy, r) such that w* = Jw".
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Proof. Taking 3, = 3, = J in Corollary 18. O

Corollary 20. Let (‘W,d) be a complete CVEbMS with ¢ : W X W — [1,00) and 31,3, : W — W.
Suppose that there exist N1, 8, € [0, 1) with 8, + X, < 1 such that

d(w,J1w)d (0, 20)
1 +d(w,p) ’

d(3 1w, 30) 3 Nid(w, ) + N,

for all wy, w,0 € B(wy,r), 0 <reCand

|d(wo, F1wo)l < (1 = D],

where A = lf—gz And for each wy € B(wy, r) and lim,, ;o ¢ (Wy, W) A < 1, then there exists a unique

point w* € B(wy, r) such that w* = 20" = Jow".
Proof. Taking 83 = 8; = N5 = 0 in Theorem 11. O

Corollary 21. Let (‘W,d) be a complete CVEbMS with ¢ : W X W — [1,0)and 3 : W — W.
Suppose that there exist N1, 8, € [0, 1) with 8, + 8, < 1 such that

d(w,2w)d (0, 20)
1+dw,0) °

d(Jw, 20) I Nid(w,0) + N,

for all wy, w,0 € B(wy,r), 0 <reCand

|d(wo, Jwo)| < (1 = )lr,

where A = 1§_r1<2 And for each wy € B(wy, r) and lim,, ,_, o ¢ (Wy, W) A < 1, then there exists a unique

point w* € B(wy, r) such that w* = Jw".
Proof. Taking 2; = 2, = J in Corollary 20. O

Now we we establish the following result for two finite families of mappings as an application of
Theorem 11.

Theorem 22. If {N;}]" and {R;}] are two finite pairwise commuting finite families of self-mapping
defined on a complex valued extended b-metric space with ¢ : W X W — [1,00) such that the
mappings R and 3 (with 3 = NNy - - - K, and R = R R, - - - R)) satisfy (3.1) and (3.2) then the

component mappings of these {N;}1' and {R;}} have a unique common fixed point.

Proof. By Theorem 11, one can get Jw* = Rw* = *, which is unique. Now by pairwise
commutativity of {N;}]" and {R,}] ,(for every 1 < k < m) one can write Nyw"* = NiNw" = N8,w* and
Niw* = N Rw* = RN w* which manifest that X,w*, for all k, is also a common fixed point of J and
R. Now utilizing the uniqueness, one can write J;w* = w* (for every k) which shows that w* is a
common fixed point of {J;}]". By doing the same strategy, we can prove that Ryw* = w* (1 < k < n).
Hence {N;}]" and {R;}] have a unique common fixed point. O
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Corollary 23. Let (‘W,d) be a complete CVEbMS with ¢ : W X W — [1,0)and F,G : W — W.
Suppose that there exist N1, Ry, N3, 84,85 € [0, 1) with N; + 8, + N3 + 28, + 285 < 1 such that

d(w,F'w)d(e.G"0) dlo F'w)d(w.G")

d(F"w,G"0) 3 Nid(w,0)+ N,

1+d(w0) Y 1+d (w0
R d(w, F"w)d (w,G"0) R d(o, F"w)d (0,G"0)
T 1 v dw,0) > 1+dw,o)

for all wy, w,0 € B(wy,r), 0 <reCand

|d(wo, G"wo)l < (1 = Dlr,

N]+N4 ) ( N1+?<5
—No—N4 77 V1=K —Ns5

there exists a unique point w* € B(wy,r) such that w* = Fw* = Gw".

where A = max{(; }. And for each wy € B(wy, r) and lim,, ;- 10 @ (Wy, wy,) A < 1, then

Proof. TakingN; =8, =--- =8, =Fand R =R, =--- =R, =G, in Theorem 18. O

Corollary 24. Let (‘W,d) be a complete CVEbMS with ¢ : W X W — [1,0)and I : W — W.
Suppose that there exist 81, NR,, N3, 84,85 € [0, 1) with 8| + 8y + N3 + 284 + 285 < 1 such that

dwIw)dle,3"0) , d(0,F"w)d(w,3"0)

dZ"w,3"0) 3 Nidw,0)+ N, 3

1+d(w,p) 1+d(w,p)
d(w,J"w)d(w,2"0) d(o,2"w)d (0, d"0)
N N
M Tl T T+dwe)

for all wy, w,0 € B(wy,r), 0 <reCand

|d(wo, F"wo)l < (1 — D],

N]+N4 ) ( N1+N5
1-Np—=N4 72> M 1-Ny—N5

there exists a unique point w* € B(wy, r) such that w* = Jw".

)}. And for each wy € B(wy, r) and lim,, ;0 ¢ (W, W) A < 1, then

where A = max{

Taking m = n and F = G = J in Corollary 23.
4. Applications

Theorem 25. Let ‘W = C([a,b],R"), a>0and d : W X W — C be defined in this way

d(,0) = max | () — e O V1 +a%e™"",

and ¢ : W X W — [1, 00) be defined by p(w,0) = 2. Then (W, d) is complete CVEbMS. Consider the
Urysohn integral equations

b
w(t) = f Ki(, s, w(s))ds + ¢(2), 4.1

b
w(t) = f Ky(t, s, w(s))ds + y(t), 4.2)
foralltela,b] CR, w,d, ¥ € W.

AIMS Mathematics Volume 8, Issue 1, 1360-1374.



1372

Assume that K, K5 : [a, b] X [a, b] X R" — R" are such that F,, G, € ‘W for each w € ‘W, where,

b b
F,@) = f K@, s, w(s)ds, G,(t) = f K>(t, s, w(s))ds.

for all ¢ € [a, b].
If there exist 8,8, € [0, 1) with 8;+8, < 1 such that for every w,0 € W

1Fo 1) = Gy (1) + ¢(1) — p)||” VI + 2™ ¢ 5 R1A (@,0) (1) + RoB (w,0) (1),

where
Aw,0) @) = llw@) —o®| V1 +a2e™
F, _ 2|l _ 2 -
o @ - @0 =eOl |Go®+v® o0l o s

1+ g&g}A (w,0) (1)
then Urysohn integral equations (4.1) and (4.2) have a unique common solution.
Proof. Define 31,3, : W — W by
Jw=F,+¢, Jw=G,+.

Then
d(Sl(U, 32Q) = n%al))(] ||Fw (1) — GQ (r) + ¢(t) — lﬁ(t)”z V1 + azeitan‘1 a
tela,

d(w,0) = 2%14 (w,0) (@),

d((,(), Slw)d(Q’ SZQ) _
1 +d(w,0) B trel%%(]B (@.0) ).

It is easily seen that

d(w, 3 w)d(o, 3,0)
1 +d(w,0) ’

d(ﬁlw, 52@) < Nld(w, Q) + Nz

for every w, 0 € W. By Theorem 11 with 83 = 8y = X5 = 0, the Urysohn integral equations (4.1) and
(4.2) have a unique common solution. O

5. Conclusions

In this article, we have utilized the notion of complex valued extended b -metric space (CVEbMS)
and secured common fixed point results for rational contractions on a closed ball. We have derived
common fixed points and fixed points of single valued mappings for contractions on a closed ball. We
expect that the obtained consequences in this article will form up to date relations for researchers who
are employing in CVEOMS.

The future work in this way will target on studying the common fixed points of single valued and
multivalued mappings in the setting of CVEOMS. Differential and integral equations can be solved as
applications of these results.
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