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Abstract: The near vector space in which the additive inverse element does not necessarily exist is
introduced in this paper. The reason is that an element in a near vector space which subtracts itself may
not be a zero element. Therefore, the concept of a null set is introduced in this paper to play the role of
a zero element. A near vector space can also be endowed with a norm to define a so-called near normed
space. Based on this norm, the concept of a Cauchy sequence can be similarly defined. A near Banach
space can also be defined according to the concept of completeness using the Cauchy sequences. The
main aim of this paper is to establish the so-called near fixed point theorems and Meir-Keeler type of
near fixed point theorems in near Banach spaces.
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1. Introduction

The (conventional) vector space is based on two basic operations, which are vector addition and
scalar multiplication. Under these two operations, some required axioms are needed to extend the
concepts of finite-dimensional Euclidean space Rn. Usually, there are eight axioms are provided in
the real vector space. However, some spaces cannot satisfy all of the axioms in vector space. In this
case, the weak concept of a so-called near vector space will be studied in this paper. We provide three
well-known spaces that cannot be the (conventional) vector spaces. However, they can be checked to
be near vector spaces.

• Let I be the space of all bounded and closed intervals in R. The interval addition and scalar
multiplication of intervals can be treated as the vector addition and scalar multiplication. An
interval which subtracts itself may not provide a zero element in I. In this case, we cannot
consider the concept of an inverse element in I. This says that I cannot be a (conventional)
vector space by referring to Example 2.1. However, it is not difficult to check that I is a near
vector space, which will be presented in the context of this paper.
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• Let Fcc(R) be the space of all fuzzy numbers in R. The fuzzy number addition and scalar
multiplication of fuzzy numbers can be treated as the vector addition and scalar multiplication.
A fuzzy number which subtracts itself may not provide a zero element in Fcc(R). In this case, we
cannot consider the concept of an inverse element in Fcc(R). This says that Fcc(R) cannot be a
(conventional) vector space as according to Subsection 2.1.
• Let U be a (conventional) vector space, and let P(U) be a collection of all subsets of U. The

collection P(U) is also called a hyperspace. The set addition and scalar multiplication of sets
can be treated as the vector addition and scalar multiplication. A set which subtracts itself may
not provide a zero element in P(U). In this case, we cannot consider the concept of an inverse
element in P(U). This says that P(U) cannot be a (conventional) vector space as according to
Subsection 2.2.

The main issue of the above three spaces is that the concept of an inverse element is not available.
Therefore, in this paper, a concept of a so-called null set will be adopted for the purpose of playing
the role of a zero element in the so-called near vector space that can include the space consisting of all
bounded and closed intervals in R, the space consisting of all fuzzy numbers in R, and the hyperspace
consisting of all subsets of R.

We can also attach a norm to this near vector space to form a so-called near normed space, which
is a completely new concept with no available related references for this topic. The readers may just
refer to the monographs [1–5] on topological vector spaces and the monographs [6–8] on functional
analysis.

Based on the concept of a null set, we can define the concept of almost identical elements in near
vector space. The norm which is defined in near vector space is completely different from the
conventional norm defined in vector space, since the so-called near normed space involves the null set
and almost identical concept. The triangle inequality is still considered in near normed space. The
concepts of limit and class limit of a sequence in near normed space will be defined. For this setting,
we can similarly define the concept of a Cauchy sequence, which can be used to define the
completeness of a near normed space. A near normed space that is also complete is called a near
Banach space. The main purpose of this paper is to establish the so-called near fixed point in near
Banach space, where the near fixed point is based on the almost identical concept. The near fixed
point theorems in the normed interval space, the space of fuzzy numbers and the hyperspace have
been studied by Wu [9–11]. This work will consider the general near normed space such that the near
fixed point theorems established in this paper will extend the results obtained by Wu [9–11].

In Sections 2 and 3, the concepts of a near vector space and near normed space are proposed, where
some interesting properties are derived in order to study the near fixed point theorem. In Section 4, the
concept of a Cauchy sequence in near normed space will be defined. Also, the so-called near Banach
space will be defined based on the concept of a Cauchy sequence. In Section 5, we present the near
fixed point theorem and the Meir-Keeler type of near fixed point theorem that are established using
the almost identical concept in near normed space. In Section 6, we present the near fixed point in the
space of fuzzy numbers in R. In Section 7, we present the near fixed point in the hyperspace.
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2. Near vector spaces

Let U be a universal set such that it is endowed with the vector addition and scalar multiplication
as follows:

• (Vector addition). Given any x, y ∈ U, the vector addition x ⊕ y is in U.
• (Scalar multiplication). Given any α ∈ R and x ∈ U, the scalar multiplication αx is in U.

In this case, we also say that U is a universal set over R. It is clear that the (conventional) vector
space V over R is a universal set over R satisfying eight axioms. In the conventional vector space over
R, the additive inverse element of v ∈ V is denoted by −v, and it can also be shown that −v = (−1)v,
which means that the inverse element −v is equal to the scalar multiplication (−1)v. In this paper, we
are not going to consider the concept of an inverse element. However, we still adopt −x = (−1)x for
convenience. In other words, when we write −x, it just means that x is multiplied by the scalar −1,
since we are not going to consider the concept of an inverse element in the universal set U over R.

For any x and y in the universal set U over R, the substraction x 	 y is defined by

x 	 y = x ⊕ (−y).

Recall that −y means the scalar multiplication (−1)y. On the other hand, given any x ∈ U and α ∈ R,
we remark that

(−α)x , −αx and α(−x) , −αx

in general, unless this law α(βx) = (αβ)x holds true for any α, β ∈ R. However, in this paper, this law
will not be assumed to be true, since U is not a vector space over R. Next, we present a space that
cannot have the concept of an inverse element.

Example 2.1. Let I be the family of all bounded and closed intervals in R. The vector addition and
scalar multiplication are given below.

• (Vector addition). Given any two bounded closed intervals [A, B] and [C,D], their vector addition
is given by

[A, B] ⊕ [C,D] = [A + C, B + D] ∈ I.

• (Scalar multiplication). Given any k ∈ R and [A, B] ∈ I, the scalar multiplication is given by

k[A, B] =

{
[kA, kB], if k ≥ 0
[kB, kA], if k < 0.

Before introducing the inverse element, we need to point out the zero element. It is clear to see that
[0, 0] is the zero element of I, since we have

[0, 0] ⊕ [A, B] = [A, B] ⊕ [0, 0] = [A, B].

However, the problem is that [A, B] cannot have an inverse element. The main reason is that we cannot
find an interval I ∈ I satisfying

[A, B] ⊕ I = I ⊕ [A, B] = [0, 0].
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This also says that the family I is not a (conventional) vector space. On the other hand, we cannot
have the following equality

(α + β)I = αI ⊕ βI

for any I ∈ I and α, β ∈ R. This shows another reason why the family I is not a (conventional) vector
space.

Definition 2.2. Let U be a universal set over R. The following set

Ψ = {x 	 x : x ∈ U}

is called the null set of U. Many other terminologies are also given below:

• The null set Ψ is said to satisfy the neutral condition when

ψ ∈ Ψ implies − ψ ∈ Ψ,

where −ψ means (−1)ψ, since the concept of an inverse element is not considered in U.
• The null set Ψ is said to be closed under the condition of the vector addition when we have

ψ1 ⊕ ψ2 ∈ Ψ for any ψ1, ψ2 ∈ Ψ.

• The element θ ∈ U is said to be a zero element when we have

x = x ⊕ θ = θ ⊕ x for any x ∈ U.

Example 2.3. Continued from Example 2.1, we are going to present the null set of the family I. Given
any [A, B] ∈ I, we have

[A, B] 	 [A, B] = [A, B] ⊕ (−[A, B]) = [A, B] ⊕ [−B,−A]
= [A − B, B − A] = [−(B − A), B − A].

It is clear to see that the null set Ψ of I is given by

Ψ = {[−C,C] : C ≥ 0} = {C[−1, 1] : C ≥ 0} .

Definition 2.4. Let U be a universal set over R. We say that U is a near vector space over R when the
following conditions are satisfied.

• For any x ∈ U, the equality 1x = x holds true.
• For any x, y, z ∈ U and α ∈ R, the identity x = y implies the following identities

x ⊕ z = y ⊕ z and αx = αy.

• (Commutative law). For any x, y ∈ U, the following equality

x ⊕ y = y ⊕ x

holds true.
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• (Associative Law). For any x, y, z ∈ U, the following equality

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

holds true.

It is clear to see that any (conventional) vector space over R is also a near vector space over R.
However, the converse is not true. Although the family I of all bounded and closed intervals as shown
in Example 2.1 is not a (conventional) vector space, it is easy to check that I is a near vector space
over R. Next, we define the concept of an almost identical element.

Definition 2.5. Let U be a near vector space over R with the null set Ψ. Any two elements x and y in
U are said to be almost identical when any one of the following conditions is satisfied:

• We have x = y;
• There exists ψ ∈ Ψ such that

x = y ⊕ ψ or x ⊕ ψ = y;

• There exist ψ1, ψ2 ∈ Ψ such that
x ⊕ ψ1 = y ⊕ ψ2.

We also write x Ψ
= y to indicate that x and y are almost identical.

Remark 2.6. In this paper, when we plan to study some properties using the concept x Ψ
= y, it is enough

to just consider the third case, i.e.,
x ⊕ ψ1 = y ⊕ ψ2,

since the same arguments are still valid for the first and second cases.

Regarding the binary relation Ψ
= in Definition 2.5, given any x ∈ U, we consider the following set

[x] =

{
y ∈ U : x Ψ

= y
}
. (2.1)

We also define the following family
[U] = {[x] : x ∈ U} .

The proof of the following proposition is left for the readers.

Proposition 2.7. Let U be a near vector space over R with the null set Ψ. Suppose that the null set Ψ

is closed under the condition of the vector addition. In other words, we have

ψ1 ⊕ ψ2 ∈ Ψ for any ψ1, ψ2 ∈ Ψ.

Then, the binary relation Ψ
= in Definition 2.5 is an equivalence relation.

The above proposition also says that, when the null set Ψ is not closed under the condition of the
vector addition, the binary relation Ψ

= is not necessarily an equivalence relation. Therefore, given any
y ∈ [x], we may not have [y] = [x], unless the binary relation Ψ

= is an equivalence relation.
Suppose that the null set Ψ is closed under the condition of the vector addition. Then Proposition 2.7

says that the sets defined in (2.1) form the equivalence classes. We also have that y ∈ [x] implies
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[x] = [y], which says that the family of all equivalence classes forms a partition of the whole universal
set U. Even though in this situation, the space [U] is still not a (conventional) vector space, since not
all of the axioms taken in the (conventional) vector space are not necessarily to be satisfied in [U]. For
example, we consider the near vector space I over R from Example 2.1. The quotient space [I] cannot
be a (conventional) vector space. The reason is that

(α + β)[x] , α[x] + β[x] for αβ < 0,

since
(α + β)x , αx + βx for x ∈ I and αβ < 0.

Therefore, we need to seriously study the so-called near vector space.

2.1. Near vector space of fuzzy numbers

Let U be a topological space. The fuzzy subset Ã of U is defined by a membership function ξÃ :
U → [0, 1]. The α-level set of Ã is denoted and defined by

Ãα = {x ∈ U : ξÃ(x) ≥ α}

for all α ∈ (0, 1]. The 0-level set Ã0 is defined as the closure of the set {x ∈ U : ξÃ(x) > 0}.
Now, we take U = R. Let � denote any of the four basic arithmetic operations ⊕,	,⊗,� between

two fuzzy subsets Ã and B̃ in R. The membership function of Ã � B̃ is defined by

ξÃ�B̃(z) = sup
{(x,y):z=x◦y}

min {ξÃ(x), ξB̃(y)}

for all z ∈ R. More precisely, the membership functions are given by

ξÃ⊕B̃(z) = sup
{(x,y):z=x+y}

min {ξÃ(x), ξB̃(y)} ;

ξÃ	B̃(z) = sup
{(x,y):z=x−y}

min {ξÃ(x), ξB̃(y)} ;

ξÃ⊗B̃(z) = sup
{(x,y):z=x∗y}

min {ξÃ(x), ξB̃(y)} ;

ξÃ�B̃(z) = sup
{(x,y):z=x/y,y,0}

min {ξÃ(x), ξB̃(y)} ,

where Ã 	 B̃ ≡ Ã ⊕ (−B̃).

Definition 2.8. Let U be a real topological vector space. We denote by Fcc(U) the set of all fuzzy
subsets of U such that each Ã ∈ Fcc(U) satisfies the the following conditions:

• ξÃ(x) = 1 for some x ∈ U;
• The membership function ξÃ(x) is upper semicontinuous and quasi-concave;
• The 0-level set Ã0 is a compact subset of U.

In particular, if U = R then each element of Fcc(R) is called a fuzzy number.
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For Ã ∈ Fcc(R), it is well-known that, for each α ∈ [0, 1], the α-level set Ãα is a bounded closed
interval in R, and it is also denoted by

Ãα =
[
ÃL
α, Ã

U
α

]
.

We say that 1̃a is a crisp number with a value of a when the membership function of 1̃a is given by

ξ1̃a
(r) =

{
1 if r = a
0 if r , a.

It is clear that each α-level set of 1̃a is a singleton {a} for α ∈ [0, 1]. Therefore, the crisp number 1̃a

can be identified with the real number a. In this case, we can identify the inclusion R ⊂ Fcc(R). For
convenience, we also write λÃ ≡ 1̃λ ⊗ Ã.

Let Ã and B̃ be two fuzzy numbers with

Ãα =
[
ÃL
α, Ã

U
α

]
and B̃α =

[
B̃L
α, B̃

U
α

]
for α ∈ [0, 1].

It is well known that (
Ã ⊕ B̃

)
α

=
[
ÃL
α + B̃L

α, Ã
U
α + B̃U

α

]
for α ∈ [0, 1] (2.2)

and (
Ã 	 B̃

)
α

=
[
ÃL
α − B̃U

α , Ã
U
α − B̃L

α

]
for α ∈ [0, 1]. (2.3)

For λ ∈ R, we also have (
λÃ

)
α

=

{
[λÃL

α, λÃU
α ], if λ ≥ 0

[λÃU
α , λÃL

α], if λ < 0

}
for α ∈ [0, 1]. (2.4)

Given any Ã ∈ Fcc(R), we have(
Ã 	 Ã

)
α

=
[
ÃL
α − ÃU

α , Ã
U
α − ÃL

α

]
=

[
−

(
ÃU
α − ÃL

α

)
, ÃU

α − ÃL
α

]
for α ∈ [0, 1]. (2.5)

This says that each α-level set (Ã 	 Ã)α can be treated as an “approximated real zero number” with
symmetric uncertainty ÃU

α − ÃL
α. We can also see that the real zero number has the highest membership

degree of 1 given by ξÃ	Ã(0) = 1. In this case, we can say that Ã 	 Ã is a fuzzy zero number.
The spaceFcc(R) cannot be a (conventional) vector space overR since we cannot identify the inverse

elements of any elements in Fcc(R). It is not hard to check that the space Fcc(R) of fuzzy numbers is
a near vector space over R by treating the vector addition as the fuzzy addition Ã ⊕ B̃ and the scalar
multiplication as λÃ = 1̃λ ⊗ Ã. Then, the null set Ψ of the near vector space Fcc(R) is given by

Ψ = {Ã 	 Ã : Ã ∈ Fcc(R)}.

Therefore, given any ψ̃ ∈ Ψ, there exists Ã ∈ Fcc(R) satisfying ψ̃ = Ã	 Ã. Equivalently, from (2.5), we
see that ψ̃ ∈ Ψ if and only if ψ̃U

α ≥ 0 and ψ̃L
α = −ψ̃U

α for all α ∈ [0, 1], i.e.,

ψ̃α =
[
ψ̃L
α, ψ̃

U
α

]
=

[
−ψ̃U

α , ψ̃
U
α

]
,

where the bounded closed interval ψ̃α is an “approximated real zero number” with symmetric
uncertainty ψ̃U

α . In other words, each ψ̃ ∈ Ψ is a fuzzy zero number. It is also clear that the crisp
number 1̃{0} with a value of 0 is in Ψ. We also see that 1̃{0} is a zero element of Fcc(R), since we have

Ã ⊕ 1̃{0} = 1̃{0} ⊕ Ã = Ã

for any Ã ∈ Fcc(R).
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Remark 2.9. It is not hard to check that the null set Ψ is closed under the condition of the vector
addition (i.e., fuzzy addition) and satisfies the neutral condition.

Given any two Ã and B̃ in Fcc(R), the definition says

Ã Ψ
= B̃ if and only if Ã ⊕ ψ̃(1) = B̃ ⊕ ψ̃(2) for some ψ̃(1), ψ̃(2) ∈ Ψ.

By considering the α-level sets, for any α ∈ [0, 1], we have[
ÃL
α, Ã

U
α

]
⊕

[
−(ψ̃(1))U

α , (ψ̃
(1))U

α

]
=

[
B̃L
α, B̃

U
α

]
⊕

[
−(ψ̃(2))U

α , (ψ̃
(2))U

α

]
,

which says
ÃL
α − (ψ̃(1))U

α = B̃L
α − (ψ̃(2))U

α and ÃU
α + (ψ̃(1))U

α = B̃U
α + (ψ̃(2))U

α .

Let Kα = (ψ̃(2))U
α − (ψ̃(1))U

α . Then, we have

ÃL
α = B̃L

α − Kα and ÃU
α = B̃U

α + Kα.

Therefore, we obtain
Ãα = B̃α ⊕ [−Kα,Kα] for all α ∈ [0, 1].

Therefore Ã Ψ
= B̃ means that the α-level sets Ãα and B̃α are essentially identical differing with symmetric

uncertainty Kα for α ∈ [0, 1].

2.2. Near vector structure in hyperspace

Let U be a (conventional) vector space, and let P(U) be a collection of all subsets of U. Given any
A, B ∈ P(U), the set addition of A and B in R is defined by

A ⊕ B = {a + b : a ∈ A and b ∈ B}

and the scalar multiplication in P(U) is defined by

λA = {λa : a ∈ A} ,

where λ is a constant in R. The substraction between A and B is denoted and defined by

A 	 B ≡ A ⊕ (−B) = {a − b : a ∈ A and b ∈ B} .

Then, we have the following properties:

• λ(A ⊕ B) = λA ⊕ λB for λ ∈ R;
• λ1(λ2A) = (λ1λ2)A for λ1, λ2 ∈ R;
• Let A be a convex subset of U. If λ1 and λ2 have the same sign, then we have

(λ1 ⊕ λ2)A = λ1A ⊕ λ2A.
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In P(U), the set addition A ⊕ B can be treated as the vector addition and λA can be treated as the
scalar multiplication. Let θU be the zero element of U. It is clear that the singleton {θU} can be regarded
as the zero element of P(U), since we have

A ⊕ {θU} = {θU} ⊕ A = A.

Since A 	 A , {θU}, it means that A 	 A is not the zero element of P(U). In other words, the additive
inverse element of A in P(U) does not exist. Therefore, the space P(U) cannot be a (conventional)
vector space over R, since we cannot identify the inverse elements of any elements in P(U). It is not
hard to check that P(U) is a near vector space over R. In this case, the null set of P(U) is given by

Ψ = {A 	 A : A ∈ P(U)} .

Remark 2.10. It is not hard to check that the null set Ψ is closed under the condition of the vector
addition (i.e., set addition) and satisfies the neutral condition.

3. Near normed spaces

Let U be a near vector space over R with the null set Ψ. We are going to endow a norm to the space
U. Because we do not have an elegant structure in U like in the (conventional) vector space, many
kinds of so-called near normed spaces are proposed below.

Definition 3.1. Let U be a near vector space over R with the null set Ψ, and let ‖ · ‖: U → R+ be a
nonnegative real-valued function defined on U.

• The function ‖ · ‖ is said to satisfy the null condition when

‖ x ‖= 0 if and only if x ∈ Ψ.

• The function ‖ · ‖ is said to satisfy the null super-inequality when

‖ x ⊕ ψ ‖≥‖ x ‖ for any x ∈ U and ψ ∈ Ψ.

• The function ‖ · ‖ is said to satisfy the null sub-inequality when

‖ x ⊕ ψ ‖≤‖ x ‖ for any x ∈ U and ψ ∈ Ψ.

• The function ‖ · ‖ is said to satisfy the null equality when

‖ x ⊕ ψ ‖=‖ x ‖ for any x ∈ U and ψ ∈ Ψ.

Definition 3.2. Let U be a near vector space over R with the null set Ψ. Given a nonnegative real-
valued function ‖ · ‖: U → R+ defined on U, we consider the following conditions:

(i) ‖ αx ‖= |α| ‖ x ‖ for any x ∈ U and α ∈ R;
(i′) ‖ αx ‖= |α| ‖ x ‖ for any x ∈ U and α ∈ R with α , 0.
(ii) ‖ x ⊕ y ‖≤‖ x ‖ + ‖ y ‖ for any x, y ∈ U.

(iii) ‖ x ‖= 0 implies x ∈ Ψ.

AIMS Mathematics Volume 8, Issue 1, 1269–1303.
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Many kinds of near normed spaces are defined below.

• (U, ‖ · ‖) is said to be a near pseudo-seminormed space when conditions (i′) and (ii) are satisfied.
• (U, ‖ · ‖) is said to be a near seminormed space when conditions (i) and (ii) are satisfied.
• (U, ‖ · ‖) is said to be a near pseudo-normed space when conditions (i′), (ii) and (iii) are satisfied.
• (U, ‖ · ‖) is said to be a near normed space when conditions (i)–(iii) are satisfied.

Remark 3.3. Suppose that the norm ‖ · ‖ satisfies the null condition. Then, we have the following
observations.

• We want to claim that the norm ‖ · ‖ also satisfies the null sub-inequality. Indeed, using the
triangle inequality, it follows that

‖ x ⊕ ψ ‖≤‖ x ‖ + ‖ ψ ‖=‖ x ‖ for any ψ ∈ Ψ.

• We want to claim that Ψ is closed under the condition of the scalar multiplication. Indeed, using
conditions (i) and (iii) in Definition 3.2, it follows that

‖ αψ ‖= |α|· ‖ ψ ‖= 0 implies αψ ∈ Ψ.

• We want to claim that Ψ is closed under the condition of the vector addition. Indeed, using
condition (ii) in Definition 3.2, it follows that

0 ≤‖ ψ1 ⊕ ψ2 ‖≤‖ ψ1 ‖ + ‖ ψ2 ‖= 0.

which implies ψ1 ⊕ ψ2 ∈ Ψ.

Example 3.4. Continued from Examples 2.1 and 2.3, we define the norm ‖ · ‖: I → R+ on I by

‖ [A, B] ‖= |A + B|.

It is easy to check that the family (I, ‖ · ‖) is a near normed space such that the norm ‖ · ‖ satisfies the
null equality and null condition.

Let (U, ‖ · ‖) be a near pseudo-seminormed space. In general, we cannot have the following equality

x 	 y = −(y 	 x).

The reason is that we do not assume the laws

α(x ⊕ y) = αx ⊕ αy and α(βx) = (αβ)y

for x, y ∈ U and α, β ∈ R. It also says that, in general, we cannot obtain the following equality

‖ x 	 y ‖=‖ y 	 x ‖ .

Therefore, we propose the following definition.

Definition 3.5. Let (U, ‖ · ‖) be a near pseudo-seminormed space. The norm ‖ · ‖ is said to satisfy the
symmetric condition when

‖ x 	 y ‖=‖ y 	 x ‖ for any x, y ∈ U.
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Next, we are going to provide the sufficient conditions to guarantee that the norm is able to satisfy
the symmetric condition.

Proposition 3.6. Let (U, ‖ · ‖) be a near pseudo-seminormed space. Suppose that the norm ‖ · ‖
satisfies the null equality. Then, this norm ‖ · ‖ satisfies the symmetric condition.

Proof. We first have

[y ⊕ (−x)] ⊕ (−[y ⊕ (−x)]) = [y ⊕ (−x)] 	 [y ⊕ (−x)]) ≡ ψ ∈ Ψ.

Using the null equality, we obtain

‖ x ⊕ (−y) ‖=‖ x ⊕ (−y) ⊕ ψ ‖=‖ [x ⊕ (−y)] ⊕ [y ⊕ (−x)] ⊕ (−[y ⊕ (−x)]) ‖ .

Using the associative and commutative laws, we also have

‖ [x ⊕ (−y)] ⊕ [y ⊕ (−x)] ⊕ (−[y ⊕ (−x)]) ‖ =‖ [x ⊕ (−x)] ⊕ [y ⊕ (−y)] ⊕ (−[y ⊕ (−x)]) ‖
=‖ ψ1 ⊕ ψ2 ⊕ (−[y ⊕ (−x)]) ‖,

where ψ1 = x ⊕ (−x) ∈ Ψ and ψ1 = y ⊕ (−y) ∈ Ψ. Using the null equality two times, we obtain

‖ ψ1 ⊕ ψ2 ⊕ (−[y ⊕ (−x)]) ‖=‖ ψ2 ⊕ (−[y ⊕ (−x)]) ‖=‖ −[y ⊕ (−x)] ‖ .

Finally, using condition (i′) in Definition 3.2, it follows that

‖ −[y ⊕ (−x)] ‖=‖ y ⊕ (−x) ‖ .

Combining the above equalities, we obtain

‖ x ⊕ (−y) ‖=‖ y ⊕ (−x) ‖ .

This completes the proof.
Let U be a near vector space over R. Then, the following equality

−(x ⊕ y) = (−x) ⊕ (−y)

does not hold true in general, since U does not have the elegant structure like the conventional vector
space. However, if (U, ‖ · ‖) is a near pseudo-seminormed space, we can have the following interesting
results.

Proposition 3.7. Let (U, ‖ · ‖) be a near pseudo-seminormed space. Suppose that the norm ‖ · ‖
satisfies the null equality. Given any x, y, z ∈ U, we have

‖ z 	 (x ⊕ y) ‖=‖ z 	 x 	 y ‖=‖ z ⊕ (−x) ⊕ (−y) ‖

and
‖ z 	 (x 	 y) ‖=‖ z 	 x ⊕ y ‖=‖ z ⊕ (−x) ⊕ y ‖ .

However, in general without using the norm, we have

z 	 (x ⊕ y) , z 	 x 	 y , z ⊕ (−x) ⊕ (−y)

and
z 	 (x 	 y) , z 	 x ⊕ y , z ⊕ (−x) ⊕ y.
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Proof. Let ψ1 = x 	 x ∈ Ψ and ψ2 = y 	 y ∈ Ψ. Then, we have

x ⊕ y 	 x 	 y = ψ1 ⊕ ψ2.

By adding z 	 (x ⊕ y) on both sides, we obtain

z 	 (x ⊕ y) ⊕ x ⊕ y 	 x 	 y = ψ1 ⊕ ψ2 ⊕ z 	 (x ⊕ y).

Let ψ3 = (x ⊕ y) 	 (x ⊕ y) ∈ Ψ. Then, we obtain

ψ3 ⊕ z 	 x 	 y = ψ1 ⊕ ψ2 ⊕ z 	 (x ⊕ y).

Since the norm ‖ · ‖ satisfies the null equality, we have

‖ z 	 x 	 y ‖ =‖ ψ3 ⊕ z 	 x 	 y ‖=‖ ψ1 ⊕ ψ2 ⊕ z 	 (x ⊕ y) ‖
=‖ ψ2 ⊕ z 	 (x ⊕ y) ‖=‖ z 	 (x ⊕ y) ‖ .

Now, we also have
(−x) ⊕ y ⊕ x 	 y = ψ1 ⊕ ψ2.

Let ψ4 = (x 	 y) 	 (x 	 y) ∈ Ψ, and add z 	 (x 	 y) on both sides. Then, we obtain

ψ4 ⊕ z ⊕ (−x) ⊕ y = ψ1 ⊕ ψ2 ⊕ z 	 (x 	 y).

Using the null equality, we can similarly obtain the desired result by taking the norm ‖ · ‖ on both
sides. This completes the proof.

Proposition 3.8. Let (U, ‖ · ‖) be a near pseudo-normed space. Suppose that the norm ‖ · ‖ satisfies
the null super-inequality. Given any x, z, y1, · · · , ym ∈ U, we have

‖ x 	 z ‖≤‖ x 	 y1 ‖ + ‖ y1 	 y2 ‖ + · · ·+ ‖ y j 	 y j+1 ‖ + · · ·+ ‖ ym 	 z ‖ .

Proof. Since y j⊕ (−y j) = y j	y j = ψ j ∈ Ψ for j = 1, · · · ,m, using the null super-inequality for m times,
we have

‖ x 	 z ‖ ≤‖ x ⊕ (−z) ⊕ ψ1 ⊕ · · · ⊕ ψm ‖

=‖ x ⊕ (−z) ⊕ y1 ⊕ (−y1) ⊕ · · · ⊕ ym ⊕ (−ym) ‖ . (3.1)

Using the commutative and associative laws, we also have

‖ x ⊕ (−z) ⊕ y1 ⊕ (−y1) ⊕ · · · ⊕ ym ⊕ (−ym) ‖
=‖ [x ⊕ (−y1)] ⊕ [y1 ⊕ (−y2)] + · · · + [y j ⊕ (−y j+1)] + · · · + [ym ⊕ (−z)] ‖
≤‖ x 	 y1 ‖ + ‖ y1 	 y2 ‖ + · · ·+ ‖ y j 	 y j+1 ‖ + · · ·+ ‖ ym 	 z ‖

(using the triangle inequality).

Using (3.1), the proof is complete.

Proposition 3.9. We have the following properties.
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(i) Let (U, ‖ · ‖) be a near pseudo-normed space. Given any x, y ∈ U,

‖ x 	 y ‖= 0 implies x Ψ
= y.

(ii) Let (U, ‖ · ‖) be a near pseudo-seminormed space. Suppose that the norm ‖ · ‖ satisfies the null
equality. Given any x, y ∈ U,

x Ψ
= y implies ‖ x ‖=‖ y ‖ .

(iii) Let (U, ‖ · ‖) be a near pseudo-seminormed space. Suppose that the norm ‖ · ‖ satisfies the null
super-inequality and null condition. Given any x, y ∈ U,

x Ψ
= y implies ‖ x 	 y ‖= 0.

Proof. To prove Part (i), for ‖ x 	 y ‖= 0, we have x 	 y ∈ Ψ, i.e., x 	 y = ψ1 for some ψ1 ∈ Ψ. Let
ψ2 = y 	 y ∈ Ψ, and add y on both sides. Then, we obtain

x ⊕ ψ2 = x 	 y ⊕ y = y ⊕ ψ1,

which says that x Ψ
= y.

To prove Part (ii), the definition says that x Ψ
= y implies

x ⊕ ψ1 = y ⊕ ψ2 for some ψ1, ψ2 ∈ Ψ.

Using the null equality, it follows that

‖ x ‖=‖ x ⊕ ψ1 ‖=‖ y ⊕ ψ2 ‖=‖ y ‖ .

To prove Part (iii), we first note that the null set Ψ is closed under the condition of the vector addition
from Remark 3.3. For x Ψ

= y, we have

x ⊕ ψ1 = y ⊕ ψ2 for some ψ1, ψ2 ∈ Ψ.

Let ψ3 = y 	 y ∈ Ψ, and add −y on both sides. Then, we obtain

x 	 y ⊕ ψ1 = y ⊕ (−y) ⊕ ψ2 = ψ3 ⊕ ψ2 ≡ ψ4 ∈ Ψ. (3.2)

Using the null super-inequality and (3.2), it follows that

‖ x 	 y ‖≤‖ x 	 y ⊕ ψ1 ‖=‖ ψ4 ‖= 0.

This completes the proof.

Example 3.10. We are going to define a norm in Fcc(R). Given any Ã ∈ Fcc(R), we define

‖ Ã ‖= sup
α∈[0,1]

∣∣∣ÃL
α + ÃU

α

∣∣∣ .
We first claim that ‖ · ‖ satisfies the null condition. In other words, we want to check that

‖ Ã ‖= 0 if and only if Ã ∈ Ψ.

AIMS Mathematics Volume 8, Issue 1, 1269–1303.



1282

Suppose that ‖ Ã ‖= 0. Then, we have |ÃL
α + ÃU

α | = 0 for all α ∈ [0, 1], which also says that ÃL
α = −ÃU

α

for all α ∈ [0, 1]. This shows that Ã ∈ Ψ. On the other hand, suppose that Ã ∈ Ψ. Then, we have
ÃL
α = −ÃU

α for all α ∈ [0, 1], which says that ‖ Ã ‖= 0.
Using (2.4), we have

‖ λÃ ‖= sup
α∈[0,1]

∣∣∣∣(λÃ
)L

α
+

(
λÃ

)U

α

∣∣∣∣ = |λ| · sup
α∈[0,1]

∣∣∣ÃL
α + ÃU

α

∣∣∣ = |λ|· ‖ Ã ‖ .

Using (2.2), we also have

‖ Ã ⊕ B̃ ‖ = sup
α∈[0,1]

∣∣∣∣(Ã ⊕ B̃
)L

α
+

(
Ã ⊕ B̃

)U

α

∣∣∣∣ = sup
α∈[0,1]

∣∣∣ÃL
α + B̃L

α + ÃU
α + B̃U

α

∣∣∣
≤ sup

α∈[0,1]

(∣∣∣ÃL
α + ÃU

α

∣∣∣ +
∣∣∣B̃L

α + B̃U
α

∣∣∣) ≤ sup
α∈[0,1]

∣∣∣ÃL
α + ÃU

α

∣∣∣ + sup
α∈[0,1]

∣∣∣B̃L
α + B̃U

α

∣∣∣
=‖ Ã ‖ + ‖ B̃ ‖ .

This shows that (Fcc(R), ‖ · ‖) is a near normed space such that the null condition is satisfied.
Furthermore, we can show that the null equality is also satisfied. Given any ψ̃ ∈ Ψ, it means that

ψ̃L
α = −ψ̃U

α for all α ∈ [0, 1]. Therefore, we have

‖ Ã ⊕ ψ̃ ‖ = sup
α∈[0,1]

∣∣∣∣(Ã ⊕ ψ̃)L

α
+

(
Ã ⊕ ψ̃

)U

α

∣∣∣∣ = sup
α∈[0,1]

∣∣∣ÃL
α + ψ̃L

α + ÃU
α + ψ̃U

α

∣∣∣
= sup

α∈[0,1]

∣∣∣ÃL
α − ψ̃

U
α + ÃU

α + ψ̃U
α

∣∣∣ = sup
α∈[0,1]

∣∣∣ÃL
α + ÃU

α

∣∣∣ =‖ Ã ‖,

which shows that the null equality is indeed satisfied.

Example 3.11. Let (U, ‖ · ‖U) be a (conventional) normed space. We consider the hyperspace P(U) in
the normed space (U, ‖ · ‖U). We want to define a norm ‖ · ‖ in P(U) such that (P(U), ‖ · ‖) is a near
normed space. Given any A ∈ P(U), we define

‖ A ‖= sup
a∈A
‖ a ‖U .

Let θU be the zero element in the normed space (U, ‖ · ‖U). We want to claim that ‖ A ‖= 0 if and only
if A = {θU} ∈ Ψ. Suppose that A = {θU}. Then, we have‖ A ‖= 0. On the other hand, suppose that
‖ A ‖= 0. Then, we have ‖ a ‖U= 0 for all a ∈ A, which says that A = {θU}.

Now, we have

‖ λA ‖= sup
a∈λA
‖ a ‖U= sup

b∈A
‖ λb ‖U= |λ| sup

b∈A
‖ b ‖U= |λ| ‖ A ‖ .

and

‖ A ⊕ B ‖ = sup
c∈A⊕B

‖ c ‖U= sup
{(a,b):a∈A,b∈B}

‖ a + b ‖U

≤ sup
{(a,b):a∈A,b∈B}

(‖ a ‖U + ‖ b ‖U) (using the triangle inequality in (U, ‖ · ‖U))

≤ sup
a∈A
‖ a ‖U + sup

b∈B
‖ b ‖U=‖ A ‖ + ‖ B ‖ .

This shows that (P(U), ‖ · ‖) is indeed a near normed space.
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4. Cauchy sequences

Let (U, ‖ · ‖) be a near pseudo-seminormed space. Since the symmetric condition is not necessarily
satisfied, we can define many concepts of limits based on ‖ · ‖. For a sequence {xn}

∞
n=1 in U, since

‖ xn 	 x ‖,‖ x 	 xn ‖

in general, many concepts of limits are proposed below.

Definition 4.1. Let (U, ‖ · ‖) be a near pseudo-seminormed space.

• A sequence {xn}
∞
n=1 in U is said to .-converge to x ∈ U when we have the following limit

lim
n→∞
‖ xn 	 x ‖= 0.

• A sequence {xn}
∞
n=1 in U is said to /-converge to x ∈ U when we have the following limit

lim
n→∞
‖ x 	 xn ‖= 0.

• A sequence {xn}
∞
n=1 in U is said to converge to x ∈ U when we have the following limit

lim
n→∞
‖ xn 	 x ‖= lim

n→∞
‖ x 	 xn ‖= 0.

Remark 4.2. We have the following observations.

• Suppose that the norm ‖ · ‖ satisfies the null equality. Then, Proposition 3.6 says that the
symmetric condition is satisfied, i.e.,

‖ xn 	 x ‖=‖ x 	 xn ‖ for all n.

This also means that the above three concepts of convergence are equivalent.
• Suppose that the sequence {xn}

∞
n=1 is simultaneously .-convergent and /-convergent. It says that

there exists x, y ∈ U such that we have the following limits

lim
n→∞
‖ xn 	 x ‖= lim

n→∞
‖ y 	 xn ‖= 0.

However, in this situation, x is not necessarily equal to y.

Let U be a near vector space over R with the null set Ψ. Suppose that the null set Ψ is closed
under the condition of the vector addition. Then, Proposition 2.7 says that the binary relation Ψ

= in
Definition 2.5 is an equivalence relation, which also says that the classes defined in (2.1) form the
equivalence classes. In this case, we have many interesting results as follows.

Proposition 4.3. Let (U, ‖ · ‖) be a near pseudo-normed space with the null set Ψ such that Ψ is closed
under the condition of the vector addition.

(i) Suppose that the norm ‖ · ‖ satisfies the null super-inequality. Then, we have the following results.

• If the sequence {xn}
∞
n=1 in (U, ‖ · ‖) /-converges to x and .-converges to y, then [x] = [y].
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• If the sequence {xn}
∞
n=1 in (U, ‖ · ‖) converges to x and y simultaneously, then [x] = [y].

(ii) Suppose that the norm ‖ · ‖ satisfies the null equality. If the sequence {xn}
∞
n=1 in (U, ‖ · ‖) converges

to x ∈ U, then, given any y ∈ [x], the sequence {xn}
∞
n=1 also converges to y.

Proof. To prove Part (i), suppose that the sequence {xn}
∞
n=1 /-converges to x and .-converges to y. Then,

we have the following limits
lim
n→∞
‖ x 	 xn ‖= lim

n→∞
‖ xn 	 y ‖= 0.

Using Proposition 3.8, we obtain

0 ≤‖ x 	 y ‖≤‖ x 	 xn ‖ + ‖ xn 	 y ‖ for all n,

which implies
0 ≤‖ x 	 y ‖≤ lim

n→∞
‖ x 	 xn ‖ + lim

n→∞
‖ xn 	 y ‖= 0 + 0 = 0. (4.1)

This shows that ‖ x 	 y ‖= 0. By Definition 3.2, it follows that x 	 y ∈ Ψ, i.e., x Ψ
= y. Since the binary

relation Ψ
= is an equivalence relation by Proposition 2.7, we obtain [x] = [y], which shows the first

case. The second case by assuming that {xn}
∞
n=1 converges to x and y simultaneously can be similarly

obtained.
To prove Part (ii), given any y ∈ [x], we have

x ⊕ ψ1 = y ⊕ ψ2 for some ψ1, ψ2 ∈ Ψ.

Using Proposition 3.6, the symmetric condition is satisfied. Therefore, we obtain

0 ≤‖ xn 	 y ‖=‖ y 	 xn ‖=‖ ψ2 ⊕ y 	 xn ‖=‖ ψ1 ⊕ x 	 xn ‖

=‖ x 	 xn ‖=‖ xn 	 x ‖ for all n,

which says that

lim
n→∞
‖ x 	 xn ‖= lim

n→∞
‖ xn 	 x ‖= 0 implies lim

n→∞
‖ xn 	 y ‖= lim

n→∞
‖ y 	 xn ‖= 0.

This completes the proof.
Inspired by Part (ii) of Proposition 4.3, we propose the following concept of a limit.

Definition 4.4. Let (U, ‖ · ‖) be a near pseudo-seminormed space. When a sequence {xn}
∞
n=1 in U

converges to some x ∈ U, the equivalence class [x] is called the class limit of the sequence {xn}
∞
n=1. In

this case, we also write
lim
n→∞

xn = [x].

Remark 4.5. Suppose that [x] is a class limit of the sequence {xn}
∞
n=1. Then, for y ∈ [x], it is not

necessarily that the sequence {xn}
∞
n=1 converges to y, unless the norm ‖ · ‖ satisfies the null equality as

given by Part (ii) of Proposition 4.3.

The uniqueness of the class limit is shown below.

Proposition 4.6. Let (U, ‖ · ‖) be a near pseudo-normed space. Suppose that the norm ‖ · ‖ satisfies
the null super-inequality. Then, the class limit is unique.
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Proof. Suppose that the sequence {xn}
∞
n=1 is convergent with two class limits [x] and [y]. It means

lim
n→∞
‖ x 	 xn ‖= lim

n→∞
‖ xn 	 x ‖= 0 = lim

n→∞
‖ y 	 xn ‖= lim

n→∞
‖ xn 	 y ‖ .

Using (4.1), we have

0 ≤‖ x 	 y ‖≤ lim
n→∞
‖ x 	 xn ‖ + lim

n→∞
‖ xn 	 y ‖= 0 + 0 = 0,

which says that ‖ x 	 y ‖= 0. Using Part (i) of Proposition 3.9, we obtain x Ψ
= y, i.e., [x] = [y]. This

completes the proof.
In the near pseudo-seminormed space (U, ‖ · ‖), the symmetric condition is not necessarily satisfied.

Therefore, we can propose many different concepts of a Cauchy sequence and completeness as follows.

Definition 4.7. Let (U, ‖ · ‖) be a near pseudo-seminormed space, and let {xn}
∞
n=1 be a sequence in U.

• {xn}
∞
n=1 is called a n-Cauchy sequence when, given any ε > 0, there exists an integer N such that

n > m > N implies ‖ xn 	 xm ‖< ε.

a. If every n-Cauchy sequence in U is convergent, we say that U is n-complete.
b. If every n-Cauchy sequence in U is .-convergent, we say that U is (n, .)-complete.
c. If every n-Cauchy sequence in U is /-convergent, we say that U is (n, /)-complete.

• {xn}
∞
n=1 is called a o-Cauchy sequence when, given any ε > 0, there exists an integer N such that

n > m > N implies ‖ xm 	 xn ‖< ε.

a. If every o-Cauchy sequence in U is convergent, we say that U is o-complete.
b. If every o-Cauchy sequence in U is .-convergent, we say that U is (o, .)-complete.
c. If every o-Cauchy sequence in U is /-convergent, we say that U is (o, /)-complete.

• {xn}
∞
n=1 is called a Cauchy sequence when, given any ε > 0, there exists an integer N such that

m, n > N with m , n implies ‖ xn 	 xm ‖< ε and ‖ xm 	 xn ‖< ε.

a. If every Cauchy sequence in U is convergent, we say that U is complete.
b. If every Cauchy sequence in U is .-convergent, we say that U is .-complete.
c. If every Cauchy sequence in U is /-convergent, we say that U is /-complete.

Remark 4.8. Suppose that ‖ · ‖ satisfies the symmetric condition, i.e.,

‖ xn 	 xm ‖=‖ xm 	 xn ‖< ε.

Then all of the concepts of a Cauchy sequence are equivalent, and all of the concepts of completeness
are equivalent.

Remark 4.9. It is clear to see that if {xn}
∞
n=1 is a Cauchy sequence then {xn}

∞
n=1 is both a n-Cauchy

sequence and o-Cauchy sequence.

Remark 4.10. From Remark 4.9, we have the following observations.

• If U is complete, then it is also n-complete and o-complete.
• If U .-complete, then it is also (n, .)-complete and (o, .)-complete.
• If U is /-complete, then it is also (n, /)-complete and (o, /)-complete.
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Proposition 4.11. Let (U, ‖ · ‖) be a near pseudo-seminormed space. Suppose that the norm ‖ · ‖
satisfies the null super-inequality. Then, we have the following properties.

(i) Every convergent sequence is a Cauchy sequence.
(ii) Suppose that the norm ‖ · ‖ satisfies the null condition. Then, every simultaneously .-convergent

and /-convergent sequence is a Cauchy sequence.
(iii) Given any fixed x ∈ U, suppose that the following conditions are satisfied:

• The sequence {xn}
∞
n=1 .-converges to x.

• The sequence {yn}
∞
n=1 /-converges to x.

Then, the sequence {xn 	 yn}
∞
n=1 is a Cauchy sequence satisfying

lim
n→∞
‖ xn 	 yn ‖= 0.

Proof. To prove Part (i), let {xn}
∞
n=1 be a convergent sequence. Therefore, by the definition of

convergence, given any ε > 0, we have

‖ xn 	 x ‖<
ε

2
and ‖ x 	 xn ‖<

ε

2

for a sufficiently large n. Using Proposition 3.8, we obtain

‖ xm 	 xn ‖≤‖ xm 	 x ‖ + ‖ x 	 xn ‖<
ε

2
+
ε

2
= ε

and
‖ xn 	 xm ‖≤‖ xn 	 x ‖ + ‖ x 	 xm ‖<

ε

2
+
ε

2
= ε

for sufficiently large n and m. This shows that {xn}
∞
n=1 is a Cauchy sequence.

To prove Part (ii), we first note that the null set Ψ is closed under the condition of the vector addition
from Remark 3.3. Assume that the sequence {xn}

∞
n=1 simultaneously .-converges to x and /-converges

to y. Then, Part (i) of Proposition 4.3 says that x Ψ
= y, which also implies ‖ x 	 y ‖= 0 by Part (iii) of

Proposition 3.9. Given any ε > 0, we also have

‖ xn 	 x ‖<
ε

2
and ‖ y 	 xn ‖<

ε

2

for a sufficiently large n. Since ‖ x 	 y ‖= 0, using Proposition 3.8, we obtain

‖ xm 	 xn ‖≤‖ xm 	 x ‖ + ‖ x 	 y ‖ + ‖ y 	 xn ‖<
ε

2
+
ε

2
= ε

and
‖ xn 	 xm ‖≤‖ xn 	 x ‖ + ‖ x 	 y ‖ + ‖ y 	 xm ‖<

ε

2
+
ε

2
= ε

for a sufficiently large n and m. This shows that {xn}
∞
n=1 is a Cauchy sequence.

To prove Part (iii), the assumption says that

lim
n→∞
‖ xn 	 x ‖= 0 and lim

n→∞
‖ x 	 yn ‖= 0. (4.2)
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Therefore, given any ε > 0, we have

‖ xn 	 x ‖<
ε

4
and ‖ x 	 yn ‖<

ε

4
(4.3)

for a sufficiently large n. Let zn = xn 	 yn. Then, we have

‖ zn 	 zm ‖ =‖ (xn 	 yn) ⊕ [−(xm 	 ym)] ‖
≤‖ xn 	 yn ‖ + ‖ −(xm 	 ym) ‖
=‖ xn 	 yn ‖ + ‖ xm 	 ym ‖ (by the condition of norm ‖ · ‖)
≤‖ xn 	 x ‖ + ‖ x 	 yn ‖ + ‖ xm 	 x ‖ + ‖ x 	 ym ‖ (by Proposition 3.8),

which shows that
‖ zn 	 zm ‖<

ε

4
+
ε

4
+
ε

4
+
ε

4
= ε

for a sufficiently large n and m by using (4.3). We can similarly obtain ‖ zm 	 zn ‖< ε. This shows that
the sequence {zn}

∞
n=1 is a Cauchy sequence. Using Proposition 3.8 and (4.2), we obtain

‖ xn 	 yn ‖≤‖ xn 	 x ‖ + ‖ x 	 yn ‖→ 0.

This completes the proof.
Many different kinds of near Banach spaces can also be proposed as follows.

Definition 4.12. Let (U, ‖ · ‖) be a near pseudo-seminormed space. Different kinds of near Banach
spaces are defined below.

• If U is complete, then it is called a near pseudo-semi-Banach space.
• If U is .-complete, then it is called a near .-pseudo-semi-Banach space.
• If U is /-complete, then it is called a near /-pseudo-semi-Banach space.
• If U is n-complete, then it is called a near n-pseudo-semi-Banach space.
• If U is (n, .)-complete, then it is called a near (n, .)-pseudo-semi-Banach space.
• If U is (n, /)-complete, then it is called a near (n, /)-pseudo-semi-Banach space.
• If U is o-complete, then it is called a near o-pseudo-semi-Banach space.
• If U is (o, .)-complete, then it is called a near (o, .)-pseudo-semi-Banach space.
• If U is (o, /)-complete, then it is called a near (o, /)-pseudo-semi-Banach space.

Definition 4.13. Different kinds of near Banach spaces are defined below.

• Let (U, ‖ · ‖) be a near seminormed space. If U is complete, then it is called a near semi-Banach
space. According to the different kinds of completeness in Definition 4.12, the other kinds of near
Banach spaces can be similarly defined.
• Let (U, ‖ · ‖) be a near pseudo-normed space. If U is complete, then it is called a near pseudo-

Banach space. According to the different kinds of completeness in Definition 4.12, the other kinds
of near Banach spaces can be similarly defined.
• Let (U, ‖ · ‖) be a near normed space. If U is complete, then it is called a near Banach space.

According to the different kinds of completeness in Definition 4.12, the other kinds of near Banach
spaces can be similarly defined.

AIMS Mathematics Volume 8, Issue 1, 1269–1303.



1288

Example 4.14. Continued from Example 3.4, we want to claim that the near normed space (I, ‖ · ‖) is
complete. In other words, we want to claim that (I, ‖ · ‖) is a near Banach space. We first have

‖ [A, B] 	 [C,D] ‖ =‖ [A, B] ⊕ [−D,−C] ‖=‖ [A − D, B −C] ‖= |(A − D) + (B −C)|
= |(A + B) − (C + D)| =‖ [C,D] 	 [A, B] ‖ .

Therefore, the norm ‖ · ‖ satisfies the symmetric condition. Let {[An, Bn]}∞n=1 be a Cauchy sequence in
the space (I, ‖ · ‖). Therefore, given any ε > 0, for a sufficiently large n and m, we have

ε >‖ [An, Bn] 	 [Am, Bm] ‖ =‖ [An, Bn] ⊕ [−Bm,−Am] ‖
=‖ [An − Bm, Bn − Am] ‖= |(An + Bn) − (Am + Bm)|. (4.4)

Let Cn = An + Bn. Then, the expression (4.4) says that {Cn}
∞
n=1 is a Cauchy sequence in R. The

completeness of R says that there exists C ∈ R satisfying |Cn −C| < ε for a sufficiently large n. In this
case, we can define a closed interval [A, B] satisfying A + B = C. Therefore, we obtain

‖ [An, Bn] 	 [A, B] ‖ =‖ [An, Bn] ⊕ [−B,−A] ‖=‖ [An − B, Bn − A] ‖
= |(An + Bn) − (A + B)| = |Cn −C| < ε

for a sufficiently large n. This says that the sequence {[An, Bn]}∞n=1 is convergent, since the norm ‖ · ‖
satisfies the symmetric condition. This shows that (I, ‖ · ‖) is a near Banach space.

Example 4.15. Continued from Example 3.10, we want to claim that the near normed space of fuzzy
numbers (Fcc(R), ‖ · ‖) is complete. Suppose that {Ã(n)}∞n=1 is a Cauchy sequence in (Fcc(R), ‖ · ‖). By
definition, we have

‖ Ã(n) 	 Ã(m) ‖< ε for m, n > N with m , n.

We write (
Ã(n)

)L

α
= Ã(n,L)

α and
(
Ã(n)

)U

α
= Ã(n,U)

α .

Then, we have

ε >‖ Ã(n) 	 Ã(m) ‖= sup
α∈[0,1]

∣∣∣∣(Ã(n) 	 Ã(m)
)L

α
+

(
Ã(n) 	 Ã(m)

)U

α

∣∣∣∣
= sup

α∈[0,1]

∣∣∣Ã(n,L)
α − Ã(m,U)

α + Ã(n,U)
α − Ã(m,L)

α

∣∣∣ (using (2.3))

= sup
α∈[0,1]

∣∣∣∣(Ã(n,L)
α + Ã(n,U)

α

)
−

(
Ã(m,L)
α + Ã(m,U)

α

)∣∣∣∣ . (4.5)

For each fixed α ∈ [0, 1], we define

C(n)
α = Ã(n,L)

α + Ã(n,U)
α and C(m)

α = Ã(m,L)
α + Ã(m,U)

α .

Let fn(α) = C(n)
α . Using (4.5), we have

| fn(α) − fm(α)| ≤ sup
α∈[0,1]

| fn(α) − fm(α)| = sup
α∈[0,1]

∣∣∣C(n)
α −C(m)

α

∣∣∣ < ε for all α ∈ [0, 1]. (4.6)

According to the properties of fuzzy numbers, the function fn is continuous on [0, 1]. In this case,
we consider a sequence of continuous functions { fn}

∞
n=1 on [0, 1]. Then (4.6) says that the sequence of
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functions { fn}
∞
n=1 satisfies the Cauchy condition for uniform convergence. By referring to Apostol [12,

Theorem 9.3], it follows that { fn}
∞
n=1 converges uniformly to a limit function f (α) ≡ Cα on [0, 1]. In

other words, for sufficiently large n, we have∣∣∣C(n)
α −Cα

∣∣∣ < ε

2
for all α ∈ [0, 1]. (4.7)

Since each fn is continuous on [0, 1], it follows that the limit function f (α) ≡ Cα is continuous on
[0, 1] according to Apostol [12, Theorem 9.2]. The continuity of Cα on [0, 1] allows us to find a fuzzy
number Ã satisfying

ÃL
α + ÃU

α = Cα for all α ∈ [0, 1].

Therefore, for a sufficiently large n, we have

‖ Ã(n) 	 Ã ‖ = sup
α∈[0,1]

∣∣∣∣(Ã(n) 	 Ã
)L

α
+

(
Ã(n) 	 Ã

)L

α

∣∣∣∣ = sup
α∈[0,1]

∣∣∣Ã(n,L)
α − ÃU

α + Ã(n,U)
α − ÃL

α

∣∣∣
= sup

α∈[0,1]

∣∣∣∣(Ã(n,L)
α + Ã(n,U)

α

)
−

(
ÃL
α + ÃU

α

)∣∣∣∣
= sup

α∈[0,1]

∣∣∣C(n)
α −Cα

∣∣∣ ≤ ε

2
< ε (using (4.7)).

This shows that the sequence {Ã(n)}∞n=1 is convergent. Therefore, we conclude that (Fcc(R), ‖ · ‖) is a
near Banach space of fuzzy numbers.

Example 4.16. Continued from Example 3.11, we further assume that (U, ‖ · ‖U) is a (conventional)
Banach space. Then, we want to claim that the near normed space (P(U), ‖ · ‖) is complete. Suppose
that {An}

∞
n=1 is a Cauchy sequence in (P(U), ‖ · ‖). Let A be a collection of all sequences generated

by the sequence {An}
∞
n=1. More precisely, each element in A is a sequence {an}

∞
n=1 with an ∈ An for all

n. We want to claim that each sequence (each element) in A is convergent. Since {An}
∞
n=1 is a Cauchy

sequence, by definition, we have

‖ An 	 Am ‖< ε for m, n > N with m , n,

which says that

ε >‖ An 	 Am ‖= sup
x∈An−Am

‖ x ‖U= sup
{(an,am):an∈An,am∈Am}

‖ an − am ‖U , (4.8)

which says ‖ an − am ‖U< ε for any sequence {an}
∞
n=1 with an ∈ An for all n in the uniform sense; that is

to say, ε is independent of an and am. Using the completeness of (U, ‖ · ‖U), we see that each sequence
{an}

∞
n=1 is convergent to some a ∈ U such that

‖ an − a ‖U→ 0 as n→ ∞ in the uniform sense, (4.9)

where the uniform sense meas that ‖ an − a ‖U< ε such that ε is independent of an ∈ An and a for a
sufficiently large n. Indeed, if ε is dependent on an and a, then

‖ an − am ‖U≤‖ an − a ‖U + ‖ a − am ‖U
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says that ε is dependent on an and am, which is a contradiction.
We can define a subset A of U that collects all of the limit points of each sequence in A. Then, we

want to show ‖ An 	 A ‖→ 0 as n → ∞. Given any x ∈ An − A, we have x = an − a for some an ∈ An

and a ∈ A. Since a is a limit point of some sequence {ân}
∞
n=1 in A, for m > n > N, using (4.8), we have

‖ an − a ‖U≤‖ an − âm ‖U + ‖ âm − a ‖U< ε+ ‖ âm − a ‖U ,

where ε is independent of an and âm according to (4.8). Since ‖ âm − a ‖U→ 0 as m→ ∞ in the unform
sense according to (4.9), it follows that ‖ an − a ‖U→ 0 as n→ ∞ in the uniform sense. Therefore, we
obtain

‖ An 	 A ‖= sup
x∈An−A

‖ x ‖U= sup
{(an,a):an∈An,a∈A}

‖ an − a ‖U→ 0 as n→ ∞.

This shows that the sequence {An}
∞
n=1 is convergent. Therefore, we conclude that (P(U), ‖ · ‖) is a near

Banach space.

5. Near fixed point theorems

Let T : U → U be a function from a universal set U into itself. Any point x ∈ U is called a fixed
point when we have T (x) = x. Recall that (I, ‖ · ‖) presented in Example 3.4 is not a (conventional)
normed space. Therefore, we are not able to study the fixed point of contractive mappings defined on
(I, ‖ · ‖) into itself. In this paper, we shall study the so-called near fixed point that is defined below.

Definition 5.1. Let U be a near vector space over R with a null set Ψ, and let T : U → U be a function
defined on U into itself. A point x ∈ U is called a near fixed point of T when we have T (x) Ψ

= x.

In the sequel, we shall consider three different contractions to study the near fixed point theorem.

5.1. Contraction on near pseudo-seminormed space

We are going to propose the concept of a contraction on a near pseudo-seminormed space. Under
some suitable conditions, we can obtain the near fixed point theorem based on near Banach space.

Definition 5.2. Let (U, ‖ · ‖) be a near pseudo-seminormed space, and let T : (U, ‖ · ‖) → (U, ‖ · ‖) be
a function from (U, ‖ · ‖) into itself. The function T is called a contraction on U when there exists a
real number 0 < α < 1 such that the inequality

‖ T (x) 	 T (y) ‖≤ α ‖ x 	 y ‖

is satisfied for any x, y ∈ U.

Given any initial element x0 ∈ U, we can generate an iterative sequence {xn}
∞
n=1 using the

composition of function T given by
xn = T n(x0). (5.1)

The main goal of this paper is to show that the sequence {xn}
∞
n=1 in U can converge to a near fixed point.

Theorem 5.3. (Near fixed point theorem). Let (U, ‖ · ‖) be a near pseudo-Banach space with the null
set Ψ. Suppose that the following conditions are satisfied.
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• The norm ‖ · ‖ satisfies the null equality.
• The null sets Ψ is closed under the condition of the vector addition and satisfies the neutral

condition.
• The function T : (U, ‖ · ‖)→ (U, ‖ · ‖) is a contraction on U.

Then T has a near fixed point x ∈ U satisfying T (x) Ψ
= x. Moreover, the near fixed point x is obtained

by the following limit
lim
n→∞
‖ x 	 xn ‖= lim

n→∞
‖ xn 	 x ‖= 0,

where the sequence {xn}
∞
n=1 is generated according to (5.1). We also have the following properties.

(a) There is a unique equivalence class [x] such that, for any x∗ < [x], x∗ cannot be a near fixed point.
If x∗ is a near fixed point of T , then we have [x∗] = [x], i.e., x Ψ

= x∗.
(b) Every point x∗ in the equivalent class [x] is also a near fixed point of T such that the following

equalities
T (x∗) Ψ

= x∗ and x Ψ
= x∗

are satisfied.

Proof. Proposition 3.6 says that the norm ‖ · ‖ satisfies the symmetric condition. Using Proposition 2.7,
we also see that the family of all sets [x] forms the equivalence classes. Given any initial element
x0 ∈ U, we are going to show that the sequence {xn}

∞
n=1 generated by (5.1) is a Cauchy sequence. Now,

we have

‖ xm+1 	 xm ‖ =‖ T (xm) 	 T (xm−1) ‖
≤ α ‖ xm 	 xm−1 ‖ (since T is a contraction on U)
= α ‖ T (xm−1) 	 T (xm−2) ‖
≤ α2 ‖ xm−1 	 xm−2 ‖ (since T is a contraction on U)
≤ · · · ≤ αm ‖ x1 	 x0 ‖ (since T is a contraction on U). (5.2)

Given any two integers n and m satisfying n < m, we obtain

‖ xm 	 xn ‖ ≤‖ xm 	 xm−1 ‖ + ‖ xm−1 	 xm−2 ‖ + · · ·+ ‖ xn+1 	 xn ‖ (using Proposition 3.8)

≤
(
αm−1 + αm−2 + · · · + αn

)
· ‖ x1 	 x0 ‖ (using (5.2))

= αn ·
1 − αm−n

1 − α
· ‖ x1 	 x0 ‖ .

Since 0 < α < 1, it follows that

‖ xm 	 xn ‖≤
αn

1 − α
· ‖ x1 	 x0 ‖→ 0 as n→ ∞,

which shows that {xn}
∞
n=1 is a Cauchy sequence. Since the norm ‖ · ‖ satisfies the symmetric condition

and the near normed space (U, ‖ · ‖) is complete, there exists x ∈ U satisfying

lim
n→∞
‖ x 	 xn ‖= lim

n→∞
‖ xn 	 x ‖= 0. (5.3)
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Next, we want to claim that any point x∗ in the equivalence class [x] is a near fixed point. We first have

x∗ ⊕ ψ1 = x ⊕ ψ2 for some ψ1, ψ2 ∈ Ψ. (5.4)

Since the norm ‖ · ‖ satisfies the null equality, we have

‖ x∗ 	 T (x∗) ‖=‖ (x∗ ⊕ ψ1) 	 T (x∗) ‖ . (5.5)

Using Proposition 3.8, we also have

‖ (x∗ ⊕ ψ1) 	 T (x∗) ‖≤‖ (x∗ ⊕ ψ1) 	 xm ‖ + ‖ xm 	 T (x∗) ‖
=‖ (x∗ ⊕ ψ1) 	 xm ‖ + ‖ T (xm−1) 	 T (x∗) ‖
≤‖ (x∗ ⊕ ψ1) 	 xm ‖ +α ‖ xm−1 	 x∗ ‖ (since T is a contraction on U). (5.6)

The the neutral condition says that −ψ1 ∈ Ψ. Since the norm ‖ · ‖ satisfies the null equality, we have

‖ xm−1 	 x∗ ‖=‖ xm−1 	 x∗ ⊕ (−ψ1) ‖ .

Using Proposition 3.7, we also have

‖ xm−1 	 x∗ ⊕ (−ψ1) ‖=‖ xm−1 	 (x∗ ⊕ ψ1) ‖,

which says that
‖ xm−1 	 x∗ ‖=‖ xm−1 	 (x∗ ⊕ ψ1) ‖ . (5.7)

Combining (5.5)–(5.7), we obtain

‖ x∗ 	 T (x∗) ‖≤‖ (x∗ ⊕ ψ1) 	 xm ‖ +α ‖ xm−1 	 (x∗ ⊕ ψ1) ‖ .

Using (5.4), we also obtain

‖ x∗ 	 T (x∗) ‖≤‖ (x ⊕ ψ2) 	 xm ‖ +α ‖ xm−1 	 (x ⊕ ψ2) ‖ . (5.8)

Now, we have

‖ (x ⊕ ψ2) 	 xm ‖ =‖ x 	 xm ⊕ ψ2 ‖

=‖ x 	 xm ‖ (using the null equality) (5.9)

and

‖ xm−1 	 (x ⊕ ψ2) ‖=‖ xm−1 	 x ⊕ (−ψ2) ‖ (using Proposition 3.7)
=‖ xm−1 	 x ⊕ ψ3) ‖ (using the neutral condition by setting ψ3 = −ψ2 ∈ Ψ)
=‖ xm−1 	 x ‖ (using the null equality). (5.10)

Combining (5.8)–(5.10), we obtain

‖ x∗ 	 T (x∗) ‖≤‖ x 	 xm ‖ + ‖ xm−1 	 x ‖,
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which implies ‖ x∗ 	 T (x∗) ‖= 0 as m→ ∞ by using (5.3). Using Part (i) of Proposition 3.9, we obtain

T (x∗) Ψ
= x∗ for any point x∗ ∈ [x].

Now, we assume that x◦ < [x] is another near fixed point x◦ of T , i.e., x◦ Ψ
= T (x◦). Since x Ψ

= T (x),
we have

x◦ ⊕ ψ1 = T (x◦) ⊕ ψ2 and x ⊕ ψ3 = T (x) ⊕ ψ4 (5.11)

for some ψi ∈ Ψ, i = 1, · · · , 4. Now, we have

‖ (x◦ ⊕ ψ1) 	 (x ⊕ ψ3) ‖=‖ (x◦ ⊕ ψ1) 	 x ⊕ (−ψ3) ‖ (using Proposition 3.7)
=‖ (x◦ ⊕ ψ1) 	 x ⊕ ψ5) ‖ (using the neutral condition by setting ψ5 = −ψ3 ∈ Ψ)
=‖ (x◦ ⊕ ψ1) 	 x ‖ (using the null equality)
=‖ x◦ 	 x ‖ (using the null equality again). (5.12)

We can similarly obtain

‖ (T (x◦) ⊕ ψ2) 	 (T (x) ⊕ ψ4) ‖=‖ T (x◦) 	 T (x) ‖ . (5.13)

Therefore, we obtain

‖ x◦ 	 x ‖ =‖ (x◦ ⊕ ψ1) 	 (x ⊕ ψ3) ‖ (using (5.12))
=‖ (T (x◦) ⊕ ψ2) 	 (T (x) ⊕ ψ4) ‖ (using (5.11))
=‖ T (x◦) 	 T (x) ‖ (using (5.13))
≤ α ‖ x◦ 	 x ‖ (since T is a contraction on U).

Since 0 < α < 1, it forces ‖ x◦ 	 x ‖= 0, i.e., x◦ Ψ
= x by Part (i) of Proposition 3.9, which contradicts

x◦ < [x]. This shows that any x◦ < [x] cannot be the near fixed point of T . Equivalently, if x◦ is a near
fixed point of T , then we must have x◦ ∈ [x]. This completes the proof.

5.2. Weakly strict contraction on near pseudo-normed space

We are going to propose the concept of a weakly strict contraction on a near pseudo-seminormed
space. Under some suitable conditions, we can obtain the near fixed point theorem based on a near
n-Banach space and near o-Banach space.

Definition 5.4. Let (U, ‖ · ‖) be a near pseudo-normed space. A function

T : (U, ‖ · ‖)→ (U, ‖ · ‖)

is called a weakly strict contraction on U when the following conditions are satisfied:

• x Ψ
= y implies ‖ T (x) 	 T (y) ‖= 0;

• x
Ψ

, y implies ‖ T (x) 	 T (y) ‖<‖ x 	 y ‖.
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Part (i) of Proposition 3.9 says that x
Ψ

, y implies ‖ x 	 y ‖, 0. Therefore, the second condition
of the weakly strict contraction is well-defined. In other words, when we consider the weakly strict
contraction, the space (U, ‖ · ‖) should be assumed to be a near pseudo-normed space rather than a near
pseudo-seminormed space.

Proposition 5.5. Let (U, ‖ · ‖) be a near pseudo-normed space. Suppose that the norm ‖ · ‖ satisfies
the null super-inequality and null condition. If T is a contraction on U, then it is also a weakly strict
contraction on U.

Proof. Since T is a contraction on U, we have

‖ T (x) 	 T (y) ‖≤ α ‖ x 	 y ‖

for 0 < α < 1. We consider the following two cases.

• Suppose that x Ψ
= y. Part (iii) of Proposition 3.9 says that ‖ x 	 y ‖= 0, which implies

0 ≤‖ T (x) 	 T (y) ‖≤ α ‖ x 	 y ‖= 0,

i.e., ‖ T (x) 	 T (y) ‖= 0.

• Suppose that x
Ψ

, y. Then, we have

‖ T (x) 	 T (y) ‖≤ α ‖ x 	 y ‖<‖ x 	 y ‖,

since 0 < α < 1.

This completes the proof.

Theorem 5.6. (Near fixed point theorem). Let (U, ‖ · ‖) be a near pseudo n-Banach space (resp.
near pseudo o-Banach space) with the null set Ψ. Suppose that the following conditions are satisfied.

• The null set Ψ satisfies the neutral condition.
• The norm ‖ · ‖ satisfies the null super-inequality and null condition.
• The function T : (U, ‖ · ‖)→ (U, ‖ · ‖) is a weakly strict contraction on U.

If {T n(x0)}∞n=1 forms a n-Cauchy sequence (resp. o-Cauchy sequence) for some x0 ∈ U, then T has

a near fixed point x ∈ U satisfying T (x) Ψ
= x. Moreover, the near fixed point x is obtained by the

following limit
lim
n→∞
‖ T n(x0) 	 x ‖= lim

n→∞
‖ x 	 T n(x0) ‖= 0.

We further assume that the norm ‖ · ‖ satisfies the null equality. Then, we also have the following
properties.

(a) There is a unique equivalence class [x] such that, for any x∗ < [x], x∗ cannot be a near fixed point.
If x∗ is a near fixed point of T , then we have [x∗] = [x], i.e., x Ψ

= x∗.
(b) Every point x∗ in the equivalent class [x] is also a near fixed point of T such that the following

equalities
T (x∗) Ψ

= x∗ and x Ψ
= x∗

are satisfied.
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Proof. Since (U, ‖ · ‖) is a near n-Banach space, using the n-completeness, the n-Cauchy sequence
{T n(x0)}∞n=1 says that there exists x ∈ U satisfying

lim
n→∞
‖ T n(x0) 	 x ‖= 0 = lim

n→∞
‖ x 	 T n(x0) ‖ . (5.14)

Therefore, given any ε > 0, there exists an integer N such that

n ≥ N implies ‖ T n(x0) 	 x ‖< ε. (5.15)

Since T is a weakly strict contraction on U, we consider the following two cases.

• For T n(x0) Ψ
= x, using Part (iii) of Proposition 3.9, the weakly strict contraction says that

‖ T n+1(x0) 	 T (x) ‖= 0 < ε.

• For T n(x0)
Ψ

, x, using (5.15), the weakly strict contraction says that

‖ T n+1(x0) 	 T (x) ‖<‖ T n(x0) 	 x ‖< ε for n ≥ N.

The above two cases show that
lim
n→∞
‖ T n+1(x0) 	 T (x) ‖= 0. (5.16)

Using Proposition 3.8, we obtain

‖ x 	 T (x) ‖≤‖ x 	 T n+1(x0) ‖ + ‖ T n+1(x0) 	 T (x) ‖

Using (5.14) and (5.16), we also obtain

0 ≤‖ x 	 T (x) ‖≤ lim
n→∞
‖ x 	 T n+1(x0) ‖ + lim

n→∞
‖ T n+1(x0) 	 T (x) ‖= 0 + 0 = 0,

which says that ‖ x 	 T (x) ‖= 0, i.e., T (x) Ψ
= x by using Part (i) of Proposition 3.9. This shows that x is

a near fixed point.
Similarly, when (U, ‖ · ‖) is assumed to be a near o-Banach space and {T n(x0)}∞n=1 is assumed to be

a o-Cauchy sequence, the above arguments are still valid to show that x is a near fixed point.
Now, we further assume that the norm ‖ · ‖ satisfies the null equality. Proposition 3.6 says that the

norm ‖ · ‖ satisfies the symmetric condition. Since x is a near fixed point, in the sequel, we shall claim
that each point x∗ in the class [x] is also a near fixed point of T . For any x∗ ∈ [x], we first note x∗ Ψ

= x,
which says that

x∗ ⊕ ψ1 = x ⊕ ψ2 for some ψ1, ψ2 ∈ Ψ. (5.17)

Then, we have

‖ T n(x0) 	 x∗ ‖ =‖ x∗ 	 T n(x0) ‖ (since the symmetric condition is satisfied)
=‖ (x∗ ⊕ ψ1) 	 T n(x0) ‖ (using the null equality)
=‖ (x ⊕ ψ2) 	 T n(x0) ‖ (using (5.17))
=‖ x 	 T n(x0) ‖ (using the null equality again).
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Using (5.14), we obtain
lim
n→∞
‖ T n(x0) 	 x∗ ‖= lim

n→∞
‖ x 	 T n(x0) ‖= 0. (5.18)

Therefore, given any ε > 0, there exists an integer N such that

n ≥ N implies ‖ T n(x0) 	 x∗ ‖< ε. (5.19)

Since T is a weakly strict contraction on U, we consider the following two cases.

• For T n(x0) Ψ
= x∗, using Part (iii) of Proposition 3.9, the weakly strict contraction says that

‖ T n+1(x0) 	 T (x∗) ‖= 0 < ε.

• For T n(x0)
Ψ

, x∗, using (5.19), the weakly strict contraction says that

‖ T n+1(x0) 	 T (x∗) ‖<‖ T n(x0) 	 x∗ ‖< ε for n ≥ N.

The above two cases show that
lim
n→∞
‖ T n+1(x0) 	 T (x∗) ‖= 0. (5.20)

Using Proposition 3.8, we have

‖ x∗ 	 T (x∗) ‖≤‖ x∗ 	 T n+1(x0) ‖ + ‖ T n+1(x0) 	 T (x∗) ‖
=‖ T n+1(x0) 	 x∗ ‖ + ‖ T n+1(x0) 	 T (x∗) ‖ (since the symmetric condition is satisfied).

Using (5.18) and (5.20), we also obtain

0 ≤‖ x∗ 	 T (x∗) ‖≤ lim
n→∞
‖ T n+1(x0) 	 x∗ ‖ + lim

n→∞
‖ T n+1(x0) 	 T (x∗) ‖= 0 + 0 = 0,

which says that ‖ x∗ 	 T (x∗) ‖= 0, i.e., T (x∗) Ψ
= x∗ by using Part (i) of Proposition 3.9. This shows that

x∗ is a near fixed point for any point x∗ ∈ [x].
Suppose that x◦ < [x] is another near fixed point of T . Then, we have

T (x◦) Ψ
= x◦ and x

Ψ

, x◦.

Since we also have T (x) Ψ
= x, it follows that

T (x) ⊕ ψ1 = x ⊕ ψ2 and T (x◦) ⊕ ψ3 = x◦ ⊕ ψ4 (5.21)

for some ψi ∈ Ψ for i = 1, 2, 3, 4. On the other hand, we have

‖ (x ⊕ ψ2) 	 (x◦ ⊕ ψ4) ‖=‖ (x ⊕ ψ2) 	 x◦ ⊕ (−ψ4) ‖ (using Proposition 3.7)
=‖ (x ⊕ ψ2) 	 x◦ ⊕ ψ5 ‖ (using the neutral condition by setting ψ5 = −ψ4 ∈ Ψ)
=‖ x 	 x◦ ‖ (using the null equality for twice). (5.22)

We can similarly obtain

‖ (T (x) ⊕ ψ1) 	 (T (x◦) ⊕ ψ3) ‖=‖ T (x) 	 T (x◦) ‖ . (5.23)
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Therefore, we have

‖ x 	 x◦ ‖ =‖ (x ⊕ ψ2) 	 (x◦ ⊕ ψ4) ‖ (using (5.22))
=‖ (T (x) ⊕ ψ1) 	 (T (x◦) ⊕ ψ3) ‖ (using (5.21))
=‖ T (x) 	 T (x◦) ‖ (using (5.23))

<‖ x 	 x◦ ‖ (since x
Ψ

, x◦ and T is a weakly strict contraction).

This contradiction shows that any x◦ < [x] cannot be the near fixed point of T . Equivalently, if x◦ is a
near fixed point of T , then we must have x◦ ∈ [x]. This completes the proof.

5.3. Weakly uniformly strict contraction on near pseudo-normed space

We are going to propose the concept of a weakly uniformly strict contraction on a near pseudo-
normed space. Under some suitable conditions, we can obtain the near fixed point theorem based
on the near o-Banach space and near n-Banach space. The concept of a weakly uniformly strict
contraction was proposed by Meir and Keeler [13].

Definition 5.7. Let (U, ‖ · ‖) be a near pseudo-normed space with the null set Ψ. A function

T : (U, ‖ · ‖)→ (U, ‖ · ‖)

is called a weakly uniformly strict contraction on U when the following conditions are satisfied

• x Ψ
= y implies ‖ T (x) 	 T (y) ‖= 0;

• given any ε > 0, there exists δ > 0 such that

ε ≤‖ x 	 y ‖< ε + δ implies ‖ T (x) 	 T (y) ‖< ε

for any x
Ψ

, y.

Part (i) of Proposition 3.9 says that x
Ψ

, y implies ‖ x 	 y ‖, 0. Therefore, the second condition of
the weakly uniformly strict contraction is well-defined. In other words, when we consider the weakly
uniformly strict contraction, the space (U, ‖ · ‖) should be assumed to be a near pseudo-normed space
rather than a near pseudo-seminormed space.

Remark 5.8. Since the second condition implies

‖ T (x) 	 T (y) ‖< ε ≤‖ x 	 y ‖,

it says that if T is a weakly uniformly strict contraction on U, then T is also a weakly strict contraction
on U.

Lemma 5.9. Let (U, ‖ · ‖) be a near pseudo-normed space with the null set Ψ, and let

T : (U, ‖ · ‖)→ (U, ‖ · ‖)

be a weakly uniformly strict contraction on U. Suppose that the norm ‖ · ‖ satisfies the null super-
inequality and null condition. Then, for any x ∈ U, the sequence {‖ T n(x)	 T n+1(x) ‖}∞n=1 is decreasing
and satisfying

lim
n→∞
‖ T n(x) 	 T n+1(x) ‖= 0.
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Proof. Let T n(x) = an and bn =‖ an 	 an+1 ‖ for all n. We consider the following two cases.

• For [an−1] , [an], we have

bn =‖ an 	 an+1 ‖=‖ T n(x) 	 T n+1(x) ‖
<‖ T n−1(x) 	 T n(x) ‖ (using Remark 5.8)
=‖ an−1 	 an ‖= bn−1.

• For [an−1] = [an], we have

bn =‖ an 	 an+1 ‖=‖ T n(x) 	 T n+1(x) ‖
=‖ T (T n−1(x)) 	 T (T n(x)) ‖=‖ T (an−1) 	 T (an) ‖
= 0 (using the first condition of Definition 5.7)
≤ bn−1.

The above two cases show that the sequence {bn}
∞
n=1 is indeed decreasing.

Suppose that ak
Ψ

, ak+1 for all k ≥ 1. Since the sequence {bn}
∞
n=1 has been proven to be decreasing,

we assume bn ↓ ε > 0, i.e., bn ≥ ε > 0 for all n. Then, there exists δ > 0 satisfying ε ≤ bk < ε + δ for
some k, i.e.,

ε ≤‖ ak 	 ak+1 ‖< ε + δ.

Therefore, we have

bk+1 =‖ ak+1 	 ak+2 ‖=‖ T k+1(x) 	 T k+2(x) ‖=‖ T (T k(x)) 	 T (T k+1(x)) ‖
=‖ T (ak) 	 T (ak+1) ‖< ε (using the second condition of Definition 5.7),

which contradicts bk+1 ≥ ε. This contradiction says that ak
Ψ
= ak+1 for some k ≥ 1. Therefore, we can

now assume that k is the first index in the sequence {an}
∞
n=1 satisfying ak−1

Ψ
= ak. Then, we want to claim

that bk−1 = bk = bk+1 = · · · = 0. Since ak−1
Ψ
= ak, Part (iii) of Proposition 3.9 says that

bk−1 =‖ ak−1 	 ak ‖= 0.

We also have

0 =‖ T (ak−1) 	 T (ak) ‖ (using the first condition of Definition 5.7)
=‖ T (T k−1(x)) 	 T (T k(x)) ‖=‖ T k(x) 	 T k+1(x) ‖
=‖ ak 	 ak+1 ‖= bk,

which says that ak
Ψ
= ak+1 by Part (ii) of Proposition 3.9. Using the similar arguments, we can also

obtain bk+1 = 0 and ak+1
Ψ
= ak+2. Therefore, the sequence {bn}

∞
n=1 is decreasing to zero. This completes

the proof.

Theorem 5.10. (Meir-Keeler type of near fixed point theorem). Let (U, ‖ · ‖) be a near pseudo
o-Banach space or near pseudo n-Banach space with the null set Ψ. Suppose that the following
conditions are satisfied.
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• The null sets Ψ satisfies the neutral condition.
• The norm ‖ · ‖ satisfies the null super-inequality and null condition.
• The function T : (U, ‖ · ‖)→ (U, ‖ · ‖) is a weakly uniformly strict contraction on U.
• There exists x0 ∈ U satisfying

‖ T n(x0) 	 T n+1(x0) ‖=‖ T n+1(x0) 	 T n(x0) ‖ for all n. (5.24)

Then T has a near fixed point satisfying T (x) Ψ
= x. Moreover, the near fixed point x is obtained by the

following limit
lim
n→∞
‖ T n(x0) 	 x ‖= lim

n→∞
‖ x 	 T n(x0) ‖= 0.

We further assume that the norm ‖ · ‖ satisfies the null equality. Then, we also have the following
properties.

(a) There is a unique equivalence class [x] such that, for any x∗ < [x], x∗ cannot be a near fixed point.
If x∗ is a near fixed point of T , then we have [x∗] = [x], i.e., x Ψ

= x∗.
(b) Every point x∗ in the equivalent class [x] is also a near fixed point of T such that the following

equalities

T (x∗) Ψ
= x∗ and x Ψ

= x∗

are satisfied.

Proof. Using Theorem 5.6 and Remark 5.8, we remain to show that if T is a weakly uniformly strict
contraction, then {T n(x0)}∞n=1 forms both a o-Cauchy sequence and n-Cauchy sequence.

Let an = T n(x0) and bn =‖ an 	 an+1 ‖. Suppose that {T n(x0)}∞n=1 = {an}
∞
n=1 is not a o-Cauchy

sequence. Then, there exists ε > 0 such that, given an integer N, there exist n > m ≥ N satisfying
‖ am 	 an ‖> 2ε. Since T is a weakly uniformly strict contraction on U, the definition says that there
exists δ > 0 such that

ε ≤‖ x 	 y ‖< ε + δ implies ‖ T (x) 	 T (y) ‖< ε for any x
Ψ

, y. (5.25)

Let η = min{δ, ε}. We are going to claim that

ε ≤‖ x 	 y ‖< ε + η implies ‖ T (x) 	 T (y) ‖< ε for any x
Ψ

, y. (5.26)

We consider the following two cases.

• If η = δ, it is clear to see that (5.25) implies (5.26).
• If η = ε, it means that ε < δ. Therefore, we have

ε + η = ε + ε < ε + δ,

which also says that (5.25) implies (5.26)

For n > m ≥ N, we have
‖ am 	 an ‖> 2ε ≥ ε + η. (5.27)
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Therefore, using Part (iii) of Proposition 3.9, we obtain

am
Ψ

, an for n > m ≥ N.

From (5.24), we have
bn =‖ an 	 an+1 ‖=‖ an+1 	 an ‖ . (5.28)

Lemma 5.9 says that the sequence {bn}
∞
n=1 is decreasing to zero. Therefore, we can find an integer N

satisfying bN < η/3. Then, for m ≥ N, we obtain

‖ am 	 am+1 ‖= bm ≤ bN <
η

3
≤
ε

3
< ε. (5.29)

For k with m < k ≤ n, Proposition 3.8 says that

‖ am 	 ak+1 ‖≤‖ am 	 ak ‖ + ‖ ak 	 ak+1 ‖ . (5.30)

We want to show that there exists k with m < k ≤ n satisfying

am
Ψ

, ak and ε +
2η
3
<‖ am 	 ak ‖< ε + η. (5.31)

Let γk =‖ am 	 ak ‖ for k = m + 1, · · · , n. Then, (5.27) implies

γn > ε + η, (5.32)

and (5.29) implies
γm+1 < ε. (5.33)

Let k0 be an index satisfying

k0 = max
{

k ∈ {m + 1, · · · , n} : γk ≤ ε +
2η
3

}
. (5.34)

Then, we have

γk0 ≤ ε +
2η
3
. (5.35)

From (5.32) and (5.33), we also see that m + 1 ≤ k0 < n, which says that k0 is well defined. Since k0 is
an integer, we also have k0 + 1 ≤ n. By the definition of k0, it means that k0 + 1 does not satisfy (5.34),
i.e.,

‖ am 	 ak0+1 ‖= γk0+1 > ε +
2η
3
, (5.36)

which also says that am
Ψ

, ak0+1 by using Part (iii) of Proposition 3.9. Therefore, from (5.36), the
expression (5.31) will be sound if we can show that γk0+1 < ε + η. Suppose that this is not true, i.e.,

γk0+1 ≥ ε + η. (5.37)

From (5.30), we have
γk0+1 ≤ γk0+ ‖ ak0 	 ak0+1 ‖ . (5.38)
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Therefore, we have

η

3
> bN ≥ bk0 =‖ ak0 	 ak0+1 ‖ (using (5.29), since k0 ≥ m + 1 > N)

≥ γk0+1 − γk0 (using (5.38))

≥ ε + η − ε −
2η
3

(using (5.35) and (5.37))

=
η

3
.

This contradiction says that (5.31) is sound.
Using (5.26), we see that (5.31) implies

‖ am+1 	 ak+1 ‖=‖ T (am) 	 T (ak) ‖< ε for am
Ψ

, ak. (5.39)

Therefore, we obtain

‖ am 	 ak ‖ ≤‖ am 	 am+1 ‖ + ‖ am+1 	 ak+1 ‖ + ‖ ak+1 	 ak ‖ (using Proposition 3.8)
< bm + ε + bk (using (5.39) and (5.28))

<
η

3
+ ε +

η

3
(using (5.29), since N ≤ m < k)

= ε +
2η
3
,

which contradicts (5.31). This contradiction shows that the sequence {T n(x)}∞n=1 is a o-Cauchy
sequence.

We can similarly prove that the sequence {T n(x)}∞n=1 is a n-Cauchy sequence. This completes the
proof.

Example 5.11. Continued from Example 4.15, suppose that the function

T : (Fcc(R), ‖ · ‖)→ (Fcc(R), ‖ · ‖)

is a contraction on Fcc(R). Using Theorem 5.3, the contraction T has a near fixed point x̃ ∈ Fcc(R)
satisfying T (x̃) Ψ

= x̃. Moreover, the near fixed point x̃ is obtained by the following limit

lim
n→∞
‖ x̃n 	 x̃ ‖= 0

in which the sequence {x̃n}
∞
n=1 is generated according to (5.1). We also have the following properties.

(a) There is a unique equivalence class [x̃] such that, for any x̃∗ < [x̃], x̃∗ cannot be a near fixed point.
If x̃∗ is a near fixed point of T , then we have [x̃∗] = [x̃], i.e., x̃ Ψ

= x̃∗.
(b) Every point x̃∗ in the equivalent class [x̃] is also a near fixed point of T such that the following

equalities
T (x̃∗) Ψ

= x̃∗ and x̃ Ψ
= x̃∗

are satisfied.
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Example 5.12. Continued from Example 4.15, suppose that the function

T : (Fcc(R), ‖ · ‖)→ (Fcc(R), ‖ · ‖)

is a weakly uniformly strict contraction on Fcc(R). Theorem 5.10 says that T has a near fixed point
satisfying T (x̃) Ψ

= x̃. Moreover, the near fixed point x̃ is obtained by the following limit

lim
n→∞
‖ T n(x̃◦) 	 x̃ ‖= 0 for some x̃◦ ∈ Fcc(R).

We also have the same properties (a) and (b) given in Example 5.11.

6. Conclusions

The so-called near vector space, which extends the concept of a vector space, is considered in this
paper. The main issue of a near vector space is that it lacks the additive inverse elements. Three well-
known space near vector spaces are the space of all bounded and closed intervals in R, the space of all
compact and convex subsets of a topological space, and the space of all fuzzy numbers in R. We see
that these three spaces do not own the concept of additive inverse elements. Therefore, the so-called
null set is introduced to play the role of zero element.

Based on the null set, a so-called near normed space is proposed, which just endows a norm to
a near vector space. Furthermore, the concept of completeness is then introduced to propose the so-
called near Banach space. Therefore, under these settings, we are able to establish the near fixed point
theorems in near Banach space. In the future research, many advanced topics regarding the fixed point
theorems can be hopefully established in near vector space.
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