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Abstract: In this manuscript, the Korteweg-de Vries-Burgers (KdV-Burgers) partial differential
equation (PDE) is investigated under nonlocal operators with the Mittag-Leffler kernel and the
exponential decay kernel. For both fractional operators, the existence of the solution of the KdV-
Burgers PDE is demonstrated through fixed point theorems of α-type z contraction. The modified
double Laplace transform is utilized to compute a series solution that leads to the exact values when
fractional order equals unity. The effectiveness and reliability of the suggested approach are verified
and confirmed by comparing the series outcomes to the exact values. Moreover, the series solution is
demonstrated through graphs for a few fractional orders. Lastly, a comparison between the results of
the two fractional operators is studied through numerical data and diagrams. The results show how
consistently accurate the method is and how broadly applicable it is to fractional nonlinear evolution
equations.
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1. Introduction

The Korteweg–de Vries–Burgers (KdV-Burgers) model, which comes up in several practical
situations, such as the turbulence of undular bores in shallow water [1], the transport of liquids carrying
gas bubbles [2], the waves that go through an elastic pipe that is filled with a viscous liquid [3],
and weakly nonlinear plasma waves that have specific dissipative properties [4], has received a lot
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of interest over the last few decades. It may also be utilized as a nonlinear model in ferroelectricity
theory, turbulence, circuit theory, and other fields [5, 6]. The typical version of the KdV-Burger’s
equation is

∂U

∂t
+ σ

∂3U

∂x3 + ζ
∂2U

∂x2 + ηU
∂U

∂x
= 0, t > 0. (1.1)

The KdV [7] and Burgers models [8] are commonly believed to be combined in Eq (1.1). Johnson [9]
discovered that a specific limit of the matter led to the proposed model, where U(x, t) is proportional
to the radial disturbance of the pipe wall, and x and t are the characterizing and temporal variables,
in a field of wave propagation in fluid-filled elastic pipes. The model (1.1) was correct in the far-field
of a near-field solution that was originally linear (small amplitude). Nonlinearity (U ∂U

∂x ), dispersion
(∂

3U
∂x3 ), and dissipation (∂

2U
∂x2 ) all exist in this equation, which is the basic version of a wave model.

Fractional differential equations (FDEs) are extensions of differential equations (DEs) having integer
order. FDEs have ample applications in different domains of sciences [10–14]. Due to the wide
applications of FDEs, several operators have been defined in the literature [15,16]. The recent operators
that are frequently used for studying DEs are the Caputo-Fabrizio (CF) [17] and Atangana-Baleanu
(AB) [18] operators. These operators are dependent on the exponential and Mittag-Leffler kernels,
respectively. The literature has several applications for the CF and the AB operators. For instance, HIV-
1 infection has been investigated via the CF operator in [19]. Ahmad et al. studied the fractional-order
Ambartsumian equation through the CF operator [20]. The Φ 4-model has been investigated using the
CF and AB operators by Rahman et al. [21]. More applications can be found in the literature [22–24].
The fractional non-linear KdV-Burger’s equation is taken into consideration in the form:

∂αU

∂tα
+ σ

∂3U

∂x3 + ζ
∂2U

∂x2 + ηU
∂U

∂x
= 0, 0 < α ≤ 1, t > 0, (1.2)

with
U(x, 0) = R(x),

whereU is a function of x and t, x represents the space variable, t represents the time variable and η is
a positive constant. We analyze Eq (1.2) in two ways: writing it first in the Atangana-Baleanu-Caputo
(ABC) sense and then in the CF sense.

One of the most significant areas of research for FDEs is the quest for accurate and numerical
solutions to FDEs. To date, many strategies for obtaining numerical and precise solutions of FDEs
have been developed. A number of FDEs have been examined using these approaches. For example,
Ahmad et al. [25] used the Laplace transform to find series of third order dispersive fractional PDEs.
A generalized differential transform approach has been developed to solve fractional order PDEs by
Odibat and Momani [26]. The homotopy perturbation technique has been proposed to solve the KdV-
Burger’s fractional PDE by Wang [27]. The Laplace transform was also observed to have a number of
advantages, including its convergence to an exact solution of a problem after a certain iteration and that
it does not allow any perturbation or discretization. Here, we utilize the double Laplace (DL) transform
to compute a series solution of the considered equation.

The rest of article is organized as follows: Section 2 contains some basic definitions and a remark.
The existence and uniqueness of the IVPs are presented in Section 3. In Section 4, the proposed
techniques are presented. Section 5 consists of the application and comparison between results and
diagrams of the proposed method. Finally, the conclusion is presented in Section 6.
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2. Preliminaries

In this part, we provide some definitions, remarks, and lemmas about fractional calculus.
Additionally, we provide a definition of the DL transformation and decomposition technique.

Definition 1. [18] LetU ∈ H1(c, d), c > d and β ∈ (0, 1]. Then the ABC operator is expressed as

ABCDβU(t) =
B(β)

(1 − β)

∫ t

c
U′(s)Eβ

(
−β(t − s)β

(1 − β)

)
ds,

where B(β) is a normalizing factor with the conditions B(0) = B(1) = 1, and Eβ is the Mittag-Leffler
function

Eβ(x) =

∞∑
k=0

xk

Γ(βk + 1)
, 0 < β < 1.

Definition 2. [17] LetU ∈ H1(c, d), d > c and β ∈ (0, 1]. Then the CF operator is written as

CF DβU(t) =
E(β)
1 − β

∫ t

c
U′(t) exp

(
−β(t − s)

1 − β

)
ds,

where E(β) is the normalizing factor such that E(0) = E(1) = 1. WhenU(t) < H1(c, d) then the above
equation can be written for u ε L−1(−∞, d) and any β ε (0, 1] as

CF DβU(t) =
βE(β)
1 − β

∫ t

−∞

(U′(t) −U(s)) − exp
(
−β(t − s)

1 − β

)
ds.

Remark 1. For the above definitions, n = [β] + 1, [β] is the greatest integer not greater than β, and
“Γ” is the well-known gamma function that can be calculated as

Γ(β) =

∫ ∞

0
e−ssβ−1ds.

Definition 3. Suppose that U is a function for x, t > 0. The DL transformation of U is expressed
as [28]

LxLt [U] =

∫ ∞

0
e−px

∫ ∞

0
e−stU dt dx,

where p and s are complex numbers.

Definition 4. Application of the DL transform on the ABC operator is as follows:

LxLt

{
ABCDθ

xU
}

=
B(θ)

(1 − θ)(pθ + θ
(1−θ) )

pθ Ū(p, s) −
n−1∑
k=0

pθ−1−kLt

{
∂kU(0, t)
∂xk

} ,
and

LxLt

{
ABCDϑ

t U
}

=
B(ϑ)

(1 − ϑ)(sϑ + ϑ
(1−ϑ) )

sϑ Ū(p, s) −
m−1∑
k=0

sϑ−1−kLx

{
∂kU(x, 0)

∂tk

} ,
where, n = [θ] + 1,m = [ϑ] + 1.
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Definition 5. Application of the DL transformation on the CF operator is as follows:

LxLt

{
CF Dθ+n

x U
}

=
E(θ)

p + (1 − θ)p

pn+1 Ū(p, s) −
n∑

i=0

pn−iLt

{
∂iU(0, t)
∂xi

} ,
and

LxLt

{
CF Dϑ+m

t U
}

=
E(ϑ)

s + (1 − ϑ)s

sm+1 Ū(p, s) −
m∑

i=0

sm−iLx

{
∂iU(x, 0)

∂ti

} ,
where, n = [θ] + 1,m = [ϑ] + 1.

From the interpretation provided above, it is clear that

LxLtU(x) v(t) = Ū(p)v̄(s) = LxU(x)Ltv(t).

A complex double-integral formulation is used to represent the inverse DL transform L−1
x L−1

t {Ū} = U:

L−1
x L−1

t

{
Ū

}
=

1
2π i

a+i∞∫
a−i∞

est

b+i∞∫
b−i∞

epxŪ(p, s) dp ds,

where, Ū (p, s), is an analytic function for all p and s that are described in the region Re (p) ≥ a and
Re (s) ≥ b, where a, b ∈ R to be chosen appropriately.

3. Existence of the initial value problems (IVPs)

The existence and uniqueness of the IVPs are studied in this part employing α-type z-contraction.
For this purpose, assume that (Z, d) is a complete metric space, and k is the collection of strictly
increasing functions z : R+ → R having the following required characteristics:

• lim
n→∞
z(cn) = −∞ if and only if, for each {cn}, lim

n→∞
(cn) = 0;

• there exists υ ∈ (0, 1) such that lim
c→0+

cυz(c) = 0.

Definition 6. [29] Let Q : Z → Z be self mapping with α : Z×Z → [0,∞). If

α(X,W) ≥ 1 ⇒ α(QX,QW) ≥ 1,

for all X,W ∈ Z, then Q is referred to as α-admissible.

Definition 7. [30] Suppose that Q : Z → Z, α : Z × Z → {−∞} ∪ [0,∞), and there exists ω > 0
such that

ω + α(X,W)z(d(QX,QW)) ≤ z(d(X,W))

for each X,W ∈ Z with d(QX,QW) > 0. Then, Q is called an α-type z-contraction.

Theorem 1. [30] Let (Z, d) be a complete metric space and Q : Z → Z be an α-type z-contraction
such that
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1) there exists X◦ ∈ Z such that α(X◦,QX◦) ≥ 1;
2) if there exist {Xn} ⊆ Z with α(Xn,Xn+1) ≥ 1 and Xn → X, then α(Xn,X) ≥ 1 for all n ∈ N ;
3) z is continuous.

Then, Q has a fixed point X∗ ∈ Z. Also for X◦ ∈ Z, the sequence {QnX◦}n∈N is convergent to X◦

Let Z = C([0, 1]2,R), where C is the space of all continuous functions X : [0, 1] × [0, 1] → R,
and d(X(x, t),W(x, t)) = supx,t∈[0,1]{|X(x, t) − W(x, t)|}. Then we can write the IVP (1.1) in the CF
fractional derivative sense as

CF Dα
t X(x, t) = F (x, t,X(x, t)), 0 < α ≤ 1, (3.1)

with initial condition

X(x, 0) = g(x),

where F (x, t,X(x, t)) = −σUxxx − ζUxx − ηUUx.

The following theorem demonstrates the existence of a solution of the problem (3.1).

Theorem 2. There exists G : R2 → R such that

1) |F (x, t,X) − F (x, t,W)| ≤ 2−γM(γ)
2 eb|X(x, t) −W(x, t)| for (x, t) ∈ [0, 1]2 and X,W ∈ R;

2) there exists X1 ∈ Z such that G(X∞,QX1) ≥ 0, where Q : Z → Z is defined by

QX = X◦ + CF
0 IγF (x, t,X(x, t));

3) for X,W ∈ Z, G(X,W) ≥ 0 implies that G(QX,QW) ≥ 0;
4) {Xn} ⊆ Z, lim

n→∞
Xn = X, where X ∈ Z and G(Xn,Xn+1) ≥ 0 implies that G(Xn,X) ≥ 0, for all

n ∈ N .

Then, there exists at least one fixed point of Q that is the solution of the given model (3.1).

Proof. To prove that Q has a fixed point, we consider

|QX − QW||QX − QW + 1| = |CF I[F (x, tX) − F (x, tW)]||CF I[F (x, tX) − F (x, tW)] + 1|

≤
( 2(1 − γ)
(2 − γ)M(γ)

|F (x, tX) − F (x, tW)|

+
2γ

(2 − γ)M(γ)

∫ τ

0
|F (x, tX) − F (x, tW)|dτ

)
×
( 2(1 − γ)
(2 − γ)M(γ)

|F (x, tX) − F (x, tW)|

+
2γ

(2 − γ)M(γ)

∫ τ

0
|F (x, tX) − F (x, tW)|dτ + 1

))
≤

( 2(1 − γ)
(2 − γ)M(γ)

.
(2 − γM(γ))

2
e−b|X −W|

+
2γ

(2 − γ)M(γ)
.
2 − γM(γ)

2

∫ τ

0
e−b|X −W|dτ

)
AIMS Mathematics Volume 8, Issue 1, 1251–1268.
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×
( 2(1 − γ)
(2 − γ)M(γ)

.
(2 − γM(γ))

2
e−b|X −W|

+
2γ

(2 − γ)M(γ)
.
2 − γM(γ)

2

∫ τ

0
e−b|X −W|dτ + 1

)
≤

(
e−b sup

x,t∈[0,1]
|X(x, t) −W(x, t)|

)(
e−b sup

x,t∈[0,1]
|X(x, t) −W(x, t)| + 1

)
=

(
e−bd(X,W)

)(
e−bd(X,W) + 1

)
= e−b[e−b(d(X,W))2 + d(X,W)]
≤ e−b[(d(X,W))2 + d(X,W)].

Thus, for X,W ∈ Z with G(X,W) ≥ 0, we obtain

(d(QX,QW))2 + d(QX,QW)

≤ e−b[(d(X,W))2 + d(X,W)].

Taking the ln on both sides, we have

b + ln[d(QX,QW))2 + d(QX,QW] ≤ ln[d(X,W))2 + d(X,W].

If F : [0,∞)→ R is defined by F (u) = ln[u2 + u], u > 0, then F ∈ δ.
Now, define α : Z×Z → {−∞} ∪ [0,∞) as

α(X,W) =

1, if G(X(x, t),W(x, t)) ≥ 0 f or all x, t ∈ [0, 1],
−∞, otherwise.

Then,

b + α(X,W)F
(
d(QX,QW)

)
≤ F (d(X,W)),

for X,W ∈ Z with d(QX,QW) > 0. Now, by G3,

α(X,W) ≥ 1 ⇒ G(X,W) ≥ 0 ⇒ G(QX,QW) ≥ 0
⇒ α(QX,QW) ≥ 1,

for all X,W ∈ Z. From G2, there exists X◦ ∈ Z such that α(X◦,QX◦) ≥ 1. Therefore by G4 and
Theorem 1, there existsX∗ ∈ Z such thatX∗ = QX∗. Hence,X∗ is the solution of the problem (3.1) �

Similarly, we can write the IVP (1.1) in the ABC sense as

ABCDα
t X(x, t) = F (x, t,X(x, t)), 0 < α ≤ 1, (3.2)

with initial condition

X(x, 0) = g(x),

where F (x, t,X(x, t)) = −σUxxx − ζUxx − ηUUx.

The following theorem shows the existence of a solution of the problem (3.2).
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Theorem 3. There exists G : R2 → R such that

1) |F (x, t,X) − F (x, t,W)| ≤ ΓγM(γ)
(1−γ)Γγ+1e

−b
2 |X(x, t) −W(x, t)| for (x, t) ∈ [0, 1]2 and X,W ∈ R;

2) there exists X1 ∈ Z such that G(Y∞,QX1) ≥ 0, where Q : Z → Z is defined by

QX = X◦ + ABC
0 IγF (x, t,X(x, t));

3) for X,W ∈ Z, G(X,W) ≥ 0 implies that G(QX,QW) ≥ 0;
4) {Xn} ⊆ Z, lim

n→∞
Xn = X, where X ∈ Z and G(Xn,Xn+1) ≥ 0 implies that G(Xn,X) ≥ 0, for all

n ∈ N .

Then, there exists at least one fixed point of Q which is the solution of the problem (3.2).

Proof.

|QX − QW|2 = |AB
0 Iγ[F (x, t,X(x, t)) − F (x, t,W(x, t))]|2

≤ |{
1 − γ
M(γ)

[F (x, t,X) − F (x, t,W)] +
γ

M(γ) 0Iγ[F (x, t,X(x, t)) − F (x, t,W(x, t))]}|2

≤ {
1 − γ
M(γ)

|F (x, t,X) − F (x, t,W)| +
γ

M(γ) 0Iγ|F (x, t,X(x, t)) − F (x, t,W(x, t))|}2

≤ {
1 − γ
M(γ)

.
M(γ)Γγ

(1 − γ)Γγ + 1
e
−b
2
√
|X −W|2

+
γ

M(γ)
M(γ)Γγ

(1 − γ)Γγ + 10Iγ1.e
−b
2
√
|X −W|2}2

= {
M(γ)Γγ

(1 − γ)Γγ + 1
e
−b
2
√
|X −W|2}2

{
1 − γ
M(γ)

+
γ

M(γ)γΓγ
}2

≤ {
M(γ)Γγ

(1 − γ)Γγ + 1
e
−b
2

√
sup

x,t∈[0,1]
|X(x, t) −W(x, t)|2}2

{
1 − γ
M(γ)

+
γ

M(γ)γΓγ
}2

= {
M(γ)Γγ

(1 − γ)Γγ + 1
e
−b
2
√

d(X,W)}2

{
1 − γ
M(γ)

+
γ

M(γ)Γγ
}2

= e−bd(X,W).

Consequently,

d(QX,QW) ≤ e−bd(X,W).

Applying “ln” on both sides, we have

ln(d(QX,QW)) ≤ ln(e−bd(X,W)),
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and
b + ln(d(QX,QW) ≤ ln(d(X,W)).

Let z : [0,∞)→ R be defined by z(λ) = ln λ, where λ > 0. Then it is easy to show that z ∈ k.
Now, define α : Z×Z → {−∞} ∪ [0,∞) by

α(X,W) =

1, if G(X(x, t),W(x, t)) ≥ 0 f or all x, t ∈ [0, 1],
−∞, otherwise.

Thus, b + α(X,W)z(d(QX,QW)) ≤ z(d(X,W)) for X,W ∈ Z with d(QX,QW) ≥ 0. Therefore, Q
is an α-type z-contraction. From (G3), we have

α(X,W) ≥ 1 ⇒ G(X,W) ≥ 0 ⇒ G(QX,QW)
⇒ α(QX,QW) ≥ 1,

for all x, t ∈ [0, 1]. Thus, Q is α-admissible. From (G2), there exists X◦ ∈ Z with α(X◦,QX◦) ≥ 1.
From (G4) and Theorem [29], there exists X∗ ∈ Z such that QX∗. Hence, X∗ is the solution of the
IVP (3.2).

�

4. Modified double Laplace transform decomposition method (MDLDM)

Here, we briefly introduce the suggested technique MDLDM, which combines the DL
transformation and Adomian decomposition method (ADM) for obtaining a series solution of non-
linear ordinary DEs and PDEs. It is a very effective approach for obtaining the approximate values
of dynamical problems such as KdV-Burgers, Sine-Gordon and KdV type equations. Here, we first
introduce the technique and then the application of the given method on Eq (1.1).
Take the following form:

LU + RU + NU = f (x, t), ∀ t ∈ R, (4.1)

where L is linear, R and N are operators containing linear and non-linear terms, respectively, and
f (x, t) is some external function. An, the well-known Adomian polynomials [31] of the functions
U0,U1,U2, . . . , can be described as

An =
1
n!

dn

dλn

 n∑
k=0

λkUkUkx


λ

= 0. (4.2)

4.1. The suggested model in ABC sense

Here, first take Eq (1.1) in the form of ABC sense as:

ABCDα
tU + σUxxx + ζUxx + ηUUx = 0 , (4.3)

with initial conditions
U(x, 0) = R(x).

AIMS Mathematics Volume 8, Issue 1, 1251–1268.
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By applying the DL transform method on both sides of Eq (4.3), we obtain

LxLt
ABCDα

tU = −1
[
σLxLtUxxx + ζLxLtUxx + ηLxLtUUx

]
.

Using initial condition and after some calculation, we have

LxLtU =
1
s

LxR(x) −
(
1 − α +

α

sα

)
LxLt

[
σUxxx + ζUxx + ηUUx

]
.

Consider the series form

U =

∞∑
n=0

Un. (4.4)

The non-linear termUUx can be calculated using “ADM”; we obtain

UUx =

∞∑
n=0

An,

LxLt

∞∑
n=0

Un =
1
s

LxR(x) −
(
1 − α +

α

sα

)[
LxLt

(
σ

∞∑
n=0

Unxxx + ζ

∞∑
n=0

Unxx + η

∞∑
n=0

An

)]
. (4.5)

Applying the double Laplace inverse transform and Equating terms of both sides,

U0 = R(x),

U1 = −L−1
x L−1

t

(
1 − α +

α

sα

)
LxLt

(
σU0xxx + ζU0xx + ηA0

)
,

U2 = −L−1
x L−1

t

(
1 − α +

α

sα

)
LxLt

(
σU1xxx + ζU1xx + ηA1

)
,

U3 = −L−1
x L−1

t

(
1 − α +

α

sα

)
LxLt

(
σU2xxx + ζU2xx + ηA2

)
,

....

The final solution can be calculated as follows:

U =

∞∑
n=0

Un. (4.6)

4.2. The proposed model in CF Form

Now, we take Eq (1.1) in CF fractional derivative sense as:

CF Dα
tU + σUxxx + ζUxx + ηUUx = 0 , (4.7)

with initial conditions
U(x, 0) = R(x).
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Using (3.1), we obtain the following series solutions:

U0 = R(x).

U1 = −L−1
x L−1

t

(
(1 − s)α + s

s

)
LxLt

(
σU0xxx + ζU0xx + ηA0

)
,

U2 = −L−1
x L−1

t

(
(1 − s)α + s

s

)
LxLt

(
σU1xxx + ζU1xx + ηA1

)
,

U3 = −L−1
x L−1

t

(
(1 − s)α + s

s

)
LxLt

(
σU2xxx + ζU2xx + ηA2

)
,

....

The final form can be expressed as

U =

∞∑
n=0

Un. (4.8)

5. Applications

Here, we consider a numerical example in the form of time fractional derivatives in ABC and CF
operators.

Example 1. Consider Eq (1.1) in the following form:

∂αU

∂tα
+ σ

∂3U

∂x3 + ζ
∂2U

∂x2 + ηU
∂U

∂x
= 0, 0 < α ≤ 1, t > 0, (5.1)

with initial condition

U0 = a0 −
3ζ2 tanh2

(
ζx

10σ

)
25ησ

+
6ζ2 tanh

(
ζx

10σ

)
25ησ

.

The exact solution of Eq (5.1) is:

U = a0 +
6ζ2

25ησ
tanh

 ζ

10σ

x +

(
3ζ2 − 25a0ησ

)
t

25σ


 − 3ζ2

25ησ
tanh2

 ζ

10σ

x +

(
3ζ2 − 25a0ησ

)
t

25σ


 .

Here, we will discuss two cases.
Case I:
Consider Eq (5.1) in ABC form as follows:

ABCDα
tU + σUxxx + ζUxx + ηUUx = 0. (5.2)

The approximate solutions of Eq (5.2) by using the techniques discussed in Section 4 are obtained in
the series up to O(3) and given by

U0 = a0 −
3ζ2 tanh2

(
ζx

10σ

)
25ησ

+
6ζ2 tanh

(
ζx

10σ

)
25ησ

,
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U1 = −
3ζ3 (tα + Γ(α) − αΓ(α))

(
3ζ2 − 25a0ησ

) (
tanh

(
ζx

10σ

)
− 1

)
sech2

(
ζx

10σ

)
3125ησ3Γ(α)

,

U2 =
3ζ4

781250ησ5Γ(α)Γ(1 + 2α)

(
(t2αα + 2(α − 1)2Γ(2α))Γ(1 + α) − 2tα(α − 1)Γ(1 + 2α)

)
(
3ζ2 − 25a0ησ

)2
(
tanh

(
ζx

10σ

)
− 1

) (
3 tanh

(
ζx

10σ

)
+ 1

)
sech2

(
ζx

10σ

)
,

U3 =
−3ζ5(3ζ2 − 25a0ησ)2sech6

(
xζ

10σ

) (
tanh

(
ζx

10σ

)
− 1

)
781250000σ7η(Γ(α))2Γ(1 + α)Γ(1 + 2α)Γ(1 + 3α)

[24 (−1 + α)2 (ζ)2(Γ(α))2(tαα −

(−1 + α)Γ(1 + α))Γ(1 + 2α)Γ(1 + 3α)
(
cosh

( xζ
10σ

)
− sinh

( xζ
10σ

)) (
cosh

( xζ
10σ

)
+ 3 sinh

( xζ
10σ

))
− 24t2αζ2Γ(1 + α)Γ(1 + 2α)(tααΓ(1 + 2α) − (−1 + α)Γ(1 + 3α))

(
−2 + cosh

( xζ
5σ

)
− sinh

( xζ
5σ

))
+ Γ(α)Γ(1 + α)(2tα(−1 + α)2Γ(1 + 3α)(αΓ(2α)(−123ζ2 + 225a0ησ + 4(9ζ2 + 25a0ησ) cosh

( xζ
5σ

)
+ 5(3ζ2 − 25a0ησ) cosh

(
2xζ
5σ

)
− 30(ζ2 + 5a0ησ) sinh

( xζ
5σ

)
+ 9ζ2 sinh

(
2xζ
5σ

)
− 75a0ησ sinh

(
2xζ
5σ

)
)

+ Γ(1 + 2α)(−75ζ2 + 225a0ησ + 4(3ζ2 + 25a0ησ) cosh
( xζ
5σ

)
+ 5(3ζ2 − 25a0ησ) cosh

(
2xζ
5σ

)
− 6(ζ2 + 25a0ησ) sinh

( xζ
5σ

)
+ 9ζ2 sinh

(
2xζ
5σ

)
− 75a0ησ sinh

(
2xζ
5σ

)
)) + Γ(1 + α)(t3αα2Γ(1 + 2α)(−123ζ2

+ 225a0ησ + 4(9ζ2 + 25a0ησ) cosh
( xζ
5σ

)
+ 5(3ζ2 − 25a0ησ) cosh

(
2xζ
5σ

)
− 30(ζ2 + 5a0ησ) sinh

( xζ
5σ

)
+ 9ζ2 sinh

(
2xζ
5σ

)
− 75a0ησ sinh

(
2xζ
5σ

)
) − (−1 + α)Γ(1 + 3α)(3t2αα(−91ζ2 + 225a0ησ

+ 20(ζ2 + 5a0ησ) cosh
( xζ
5σ

)
+ 5(3ζ2 − 25a0ησ) cosh

(
2xζ
5σ

)
− 14ζ2 sinh

( xζ
5σ

)
− 150a0ησ sinh

( xζ
5σ

)
+ 9ζ2 sinh

(
2xζ
5σ

)
− 75a0ησ sinh

(
2xζ
5σ

)
) + 2(−1 + α)2Γ(2α)(−123ζ2 + 225a0ησ

+ 4(9ζ2 + 25a0ησ) cosh
( xζ
5σ

)
+ 5(3ζ2 − 25a0ησ) cosh

(
2xζ
5σ

)
− 30(ζ2 + 5a0ησ) sinh

( xζ
5σ

)
+ 9ζ2 sinh

(
2xζ
5σ

)
− 75a0ησ sinh

(
2xζ
5σ

)
))))]

....

The simplified form ofU3 is:

U3 =
3ζ5(3ζ2 − 25a0ησ)2sech4

(
xζ

10σ

) (
tanh

(
ζx

10σ

)
− 1

)
1562500000σ7η

[
4

3(1 + exp
xζ
5σ )2

(
exp

−xζ
5σ

(
6(α − 1)3(3(1 + 3 exp

xζ
5σ −25 exp

2xζ
5σ

+ exp
3xζ
5σ +4 exp

4xζ
5σ )ζ2 − 25a0(1 + exp

xζ
5σ )2(1 − 7 exp

xζ
5σ +4 exp

2xζ
5σ )ησ) + t2αα

(9(α − 1)
Γ(2α)

((3 + 17 exp
xζ
5σ −91 exp

2xζ
5σ

+ 3 exp
3xζ
5σ +12 exp

4xζ
5σ )ζ2 − 25a0(1 + exp

xζ
5σ )2(1 − 7 exp

xζ
5σ +4 exp

2xζ
5σ )ησ) −

2tαα
Γ(3α)

(3(1 + 11 exp
xζ
5σ −41 exp

2xζ
5σ + exp

3xζ
5σ

+ 4 exp
4xζ
5σ )ζ2 − 25a0(1 + exp

xζ
5σ )2(1 − 7 exp

xζ
5σ +4 exp

2xζ
5σ )ησ)

))
−

48(2 exp
xζ
5σ −1)t2αζ2(−3(α − 1)Γ(3α) + tαΓ(1 + 2α))

(Γ(α))2Γ(3α)

)
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−
24tα(α − 1)

Γ(α − 1)

(
− 9ζ2 + 175a0ησ + 5(3ζ2 − 25a0ησ) cosh

[ xζ
5σ

]
− 18ζ2sech2

[ xζ
5σ

]
+ 3(3ζ2 − 25a0ησ) sinh

[ xζ
5σ

]
− 12ζ2 tanh

[ xζ
5σ

])]
.

Therefore,

U = U0 +U1 +U2 +U3..... (5.3)

Case II:
Consider Eq (1.2) in the CF sense as

CF Dα
tU + σUxxx + ζUxx + ηUUx = 0 . (5.4)

The approximate solutions of Eq (5.4) obtained by using the approaches discussed in Section 4 up to
O(3) are given by

U0 = = a0 −

(
3ζ2

)
tanh2

(
ζx

10σ

)
25ησ

+

(
6ζ2

)
tanh

(
ζx

10σ

)
25ησ

,

U1 = −
3ζ3(1 + (t − 1)α)

(
3ζ2 − 25a0ησ

) (
tanh

(
ζx

10σ

)
− 1

)
sech2

(
ζx

10σ

)
3125ησ3 ,

U2 =
3ζ4

(
α2(t2 − 4t + 2) + 4α(t − 1) + 2

) (
3ζ2 − 25a0ησ

)2 (
tanh

(
ζx

10σ

)
− 1

) (
3 tanh

(
ζx

10σ

)
+ 1

)
sech2

(
ζx

10σ

)
1562500ησ5 ,

U3 =
ζ5(3ζ2 − 25a0ησ)2sech6( xζ

10σ )
1562500000ησ7 [4(3(−6 − 18(−1 + t)α − 3(6 − 12t + t2)α2 + (6 − 18t + 3t2 + t3)α3)ζ2

− 25a0(6 + 18(−1 + t)α + 9(2 − 4t + t2)α2 + (−6 + 18t − 9t2 + t3)α3)ησ) cosh(
xζ
5σ

) − 5(6 + 18(−1 + t)α

+ 9(2 − 4t + t2)α2 + (−6 + 18t − 9t2 + t3)α3)(3ζ2 − 25a0ησ) cosh(
2xζ
5σ

) − 3(−3(50 + 150(−1 + t)α

+ (150 − 300t + 59t2)α2 + (−50 + 150t − 59t2 + 3t3)α3)ζ2 + 75a0(6 + 18(−1 + t)α + 9(2 − 4t + t2)α2

+ (−6 + 18t − 9t2 + t3)α3)ησ + 2(3(−2 − 6(−1 + t)α + (−6 + 12t + t2)α2 + (2 − 6t − t2 + t2)α3)ζ2

− 25a0(6 + 18(−1 + t)α + 9(2 − 4t + t2)α2 + (−6 + 18t − 9t2 + t3)α3)ησ) sinh(
xζ
5σ

) + (6 + 18(−1 + t)α

+ 9(2 − 4t + t2)α2 + (−6 + 18t − 9t2 + t3)α3)(3ζ2 − 25a0ησ) sinh(
2xζ
5σ

))](−1 + tanh(
xζ

10σ
))

....

The simplified form is

U3 =
ζ5(3ζ2 − 25a0ησ)2sech6( xζ

10σ )(tanh( xζ
10σ ) − 1)

1562500000ησ7

[
9
(
50 + α

(
150t(α − 1)2 − 59t2(α − 1)α + 3t3α2

− 50(3 + (α − 3)α)
))
ζ2 − 225a0

(
6 + 18(t − 1)α + 9(2 + (t − 4)t)α2 + (−6 + (t − 6)(t − 3)t)α3

)
ησ

+ 12
(
− 6 − 18(t − 1)α − 3(6 + (t − 12)t)α2 + (6 + (t − 3)t(t + 6))α3

)
ζ2 cosh

[ xζ
5σ

]
+

(
6 + 18(t − 1)α
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+ 9(2 + (t − 4)t)α2 + (−6 + (t − 6)(t − 3)t)α3
)
(3ζ2 − 25a0ησ)

(
− 5 cosh

[2xζ
5σ

]
− 3 sinh

[2xζ
5σ

])
− 18

(
− 2 + α(6 − 6t + (−6 + t(t + 12))α + (2 + (t − 3)t(t + 2))α2)

)
ζ2 sinh

[ xζ
5σ

]
+ 50a0

(
6 + 18(−1 + t)α

+ 9(2 − 4t + t2)α2 + (−6 + 18t − 9t2 + t3)α3
)
ση

(
− 2 cosh

[ xζ
5σ

]
+ 3 sinh

[ xζ
5σ

])]
The final result in the series form up to O(3) is given by

U = U0 +U1 +U2 +U3..... (5.5)

The errors between the exact and approximate solutions in the ABC and CF senses are shown in the
Tables 1 and 2, respectively.

Table 1. The comparison of approximated ABC and exact solutions for α = 1 at various
points for Example 1.

(x,t) U Exact | Exact−U| (x,t) U Exact | Exact−U|

(−4,0.01) −3.5967 −3.5967 4.437×10−11 (−2,0.01) −3.42484 −3.42484 1.488×10−9

(−1,0.01) −2.50239 −2.50239 7.202×10−9 (0,0.01) 0.02862 0.02862 1.666×10−8

(1,0.01) 1.13462 1.13462 4.376×10−9 (2,0.01) 1.19852 1.19852 2.930×10−10

(4,0.01) 1.2000 1.2000 1.184×10−13 (−4,0.1) −3.5959 −3.5959 4.635×10−7

(−2,0.1) −3.3840 −3.3840 1.515×10−5 (−1,0.1) −2.2941 −2.2942 7.761×10−5

(0,0.1) 0.2693 0.2695 1.725×10−4 (1,0.1) 1.1556 1.1556 4.302×10−5

(2,0.1) 1.1990 1.1990 2.715×10−6 (4,0.1) 1.2000 1.2000 1.085×10−9

(−4,0.05) −3.5963 −3.5963 2.827×10−8 (−2,0.05) −3.4077 −3.4077 9.378×10−7

(−1,0.05) −2.4131 −2.4131 4.656×10−6 (0,0.05) 0.1395 0.1395 1.06×10−5

(1,0.05) 1.1448 1.1448 2.716×10−6 (2,0.05) 1.1987 1.1987 1.769×10−7

(4,0.05) 1.2000 1.2000 7.099×10−11 (−4,0.2) −3.5948 −3.5948 7.795×10−6

(−2,0.2) −3.3282 −3.3279 2.4641×10−4 (−1,0.2) −2.0304 −2.0317 1.3403×10−3

(0,0.2) 0.4958 0.4986 2.8191×10−3 (1,0.2) 1.1720 1.1713 6.7111×10−4

(2,0.2) 1.1994 1.1994 4.007×10−5 (4,0.2) 1.2000 1.2000 1.5911×10−8
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Table 2. The comparison of approximated the CF and exact solution for α = 1 at various
points for Example 1.

(x,t) U Exact | Exact−U| (x,t) U Exact | Exact−U|

(−4,0.01) −3.5967 −3.5967 4.437×10−11 (−2,0.01) −3.4248 −3.4248 1.488×10−9

(−1,0.01) −2.5023 −2.5023 7.202×10−9 (0,0.01) 0.02862 0.02862 1.666×10−8

(1,0.01) 1.13462 1.13462 4.376×10−9 (2,0.01) 1.19852 1.19852 2.930×10−10

(4,0.01) 1.2000 1.2000 1.184×10−13 (−4,0.1) −3.5959 −3.5959 4.635×10−7

(−2,0.1) −3.3840 −3.3840 1.515×10−5 (−1,0.1) −2.2941 −2.2942 7.761×10−5

(0,0.1) 0.2693 0.2695 1.725×10−4 (1,0.1) 1.1556 1.1556 4.302×10−5

(2,0.1) 1.1990 1.1990 2.715×10−6 (4,0.1) 1.2000 1.2000 1.085×10−9

(−4,0.05) −3.5963 −3.5963 2.827×10−8 (−2,0.05) −3.4077 −3.4077 9.378×10−7

(−1,0.05) −2.4131 −2.4131 4.656×10−6 (0,0.05) 0.1395 0.1395 1.06×10−5

(1,0.05) 1.1448 1.1448 2.716×10−6 (2,0.05) 1.1987 1.1987 1.769×10−7

(4,0.05) 1.2000 1.2000 7.099×10−11 (−4,0.2) −3.5948 −3.5948 7.795×10−6

(−2,0.2) −3.3282 −3.3279 2.4641×10−4 (−1,0.2) −2.0304 −2.0317 1.3403×10−3

(0,0.2) 0.4958 0.4986 2.8191×10−3 (1,0.2) 1.1720 1.1713 6.7111×10−4

(2,0.2) 1.1994 1.1994 4.007×10−5 (4,0.2) 1.2000 1.2000 1.5911×10−8

5.1. Discussion

Take the parameteric values as η = 1, a0 = 0 and ζ andσ = 0.1 for numerical computations. Tables 1
and 2 show the errors between the exact and approximated values in the ABC and CF senses, while
the exact and computational values are also shown in these tables. Figure 1 depicts the comparison of
approximated solutions in ABC and CF forms for different values of α at t = 1. The surfaces in Figure 2
show the exact and approximated solutions of the ABC and the CF forms, respectively, for Eq (1.2) at
α = 1. Figures 3 and 4 present the approximate solutions when α = 0.95 and α = 0.90, respectively.
These graphical representations show the behaviour of ABC and CF operators respectively for the
proposed problem. Figures 5 and 6 depict the behaviours of surfaces for various values of α at different
time levels. The first representation depicts the ABC form, while the second shows the CF form. It is
straightforward to deduce that, as the fractional parameter α decreases, the wave response bifurcates
into a wave but only for small values of x, and we observe that the amplitude of the wave grows over
time t.

α=0.6
α=0.7
α=0.8
α=0.9

-4 -2 2 4
x

-20

-15

-10

-5

5

10

(x,t)

α=0.6
α=0.7
α=0.8
α=0.9

-4 -2 2 4
x

-15

-10

-5

5

10

(x,t)

Figure 1. Comparison plots of approximated solutions of ABC and CF, respectively, for
various values α.
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Figure 2. Comparison plots of exact solutions, approximated solutions of ABC and CF for
α = 1 respectively.

Figure 3. Comparison plots of approximated solutions of ABC and CF, respectively, for
α = 0.95.

Figure 4. Comparison plots of approximated solutions of ABC and CF, respectively, for
α = 0.9.
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Figure 5. Comparison plots of approximated solutions of ABC and CF, respectively, for
α = 0.5.

Figure 6. Comparison plots of approximated solutions of ABC and CF, respectively, for
α = 0.25.

6. Conclusions

In this manuscript, the time fractional KdV-Burger’s model with initial conditions under two non-
local operators with exponential kernel and Mittag-Leffler kernel has been investigated. The existence
of the solution for both operators has been demonstrated through fixed point results of α-type z
contraction. The MDLDM was utilized to compute a series solutions that tends to the exact values for
the special case α = 1. As a result, we found highly accurate computed solutions to the fractional KdV-
Burger’s equation. The solutions show how consistently accurate the technique is and how broadly
applicable it is to fractional nonlinear evolution problems. Quick convergence is seen when solutions
are simulated numerically. Furthermore, neither linearization nor perturbation are needed. Therefore,
it offers more authentic series solutions that typically converge quickly in actual physical problems.
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