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1. Introduction

In our daily life, we face many problems involving uncertainty that we cannot cope with using
traditional mathematical tools. To deal with these types of problems, it was proposed some scenarios
such as fuzzy sets and soft sets. Molodtsov [35], in 1999, provided the concept of soft sets as a new
mathematical approach to handle imprecise data and vague situations. Molodtsov elaborated how can
be applied soft sets in several disciplines and gave their advantages compared to fuzzy sets. Then, this
approach has attracted the attention of a huge number of researchers and scholars who are interested in
uncertainty in both theoretical and applied issues. Maji et al. [34], in 2002, addressed decision-making
problems by making use of soft sets, and then they [35] provided the initial conception for a set of
operations between soft sets in 2003. Some of these operations suffered deficiencies which motivated
some authors to adjust their definitions as well as adopted new types of them for different purposes as
illustrated in the published literature [6, 39].

In 2011, it was introduced two techniques to define a topology over a family of soft sets by Shabir
and Naz [43] and Çaǧman et al. [27]. The difference between their definition was in terms of the form
of a set of parameters; Shabir and Naz familiarized a soft topology over a constant set of parameters
whereas Çaǧman et al. formulated a soft topology over different subsets of parameters. According to
the definition of Shabir and Naz, it can be characterized soft topological concepts in a similar way to
their counterparts in classical topology, which promotes and enhances researchers to follow this line.

After the advent of soft topology, many contributions to discuss topological concepts and notions
via soft settings have been conducted. The basic topological ideas were put forward by Shabir and
Naz [43]. Min [36] shed light on soft separation axioms and proved that every soft T3 space is soft
T2. El-Shafei et al. [28] defined new types of belonging and non-belonging relations and applied to
present novel kinds of soft Ti-spaces. As illustrated in recent studies [15,21,44] soft separation axioms
are still a hot topic. Compactness is one of the celebrated idea in soft topologies; it was introduced
by Aygünoǧlu and Aygün [25]. Hida [30] benefited from the variety of belonging relations in the
soft set theory to initiate new kinds of soft compactness. Al-shami et al. [14] discussed new sorts
of compactness namely, almost soft compact and approximately soft compact spaces. The classical
behaviour of compact subset of Hausdorff spaces is invalid via soft topology as demonstrated in [28].
Al-jarrah et al. [7] and Al-shami et al. [16] studied soft compact and Lindelöf spaces via soft regular
closed and soft somewhere dense sets. Selection principles and covering properties have been recently
explored via soft topologies in [18,19,33]. The concept of soft connected spaces was probed in [42,46].
Asaad [23] scrutinized the main features of soft extremally disconnected spaces. Recently, Al-Ghour
and Ameen [5] have discussed the idea of maximal soft connected topologies.

Kharal and Ahmad [32] formulated the concept of soft mappings by using two crisp mappings,
one between the universal set and the other between the sets of parameters. To reduce calculation
burden and its difficulty that arises from the definition of soft mappings, Al-shami [9] updated this
definition by using the soft version of ordinary point. In [47,48], the authors studied continuity between
soft topological spaces and gave its characterizations. Alcantud [1] examined the properties of soft
countability axioms. The concept of soft expandable spaces was introduced in [40]. Generating soft
topologies by operators was the main goal of some articles [24, 26]. The relationships between soft
topological concepts and their classical counterparts were revealed by Al-shami and Kočinac [17].
They also researched sufficient conditions that guarantee keep properties between soft topologies and
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classical topologies. Alcantud [2] also discussed the relationships between soft topology and fuzzy
topology. Topological-hybrid structures induced from fuzzy (intuitionistic) soft sets were discussed
in [31, 45].

Generalization of soft open sets is an interesting topic via soft topologies; they offered new
frameworks to study the topological concepts such as separation axioms, compactness, etc. In [20], it
was investigated some soft functions via soft γ-open sets. Al-Ghour [3] defined the concept of soft Q-
sets which contains both soft nowhere dense and soft clopen sets by commutative between soft interior
and closure operators. He also applied it to boolean algebra which is of importance to the information
theory and theory of probability. He [4] also introduced the concepts of soft ω-regular open sets and
investigated their main features. In this regard, Ameen et al. [22] defined some soft functions via the
class of soft somewhat open sets. Then, Al-shami [13] applied this class to introduce four types of soft
separation axioms with interesting properties. He also analyzed the nutrition systems of individuals
and examined their suitability depending on the class of soft somewhat open sets defined on minimal
soft structures.

This manuscript is a continuation of the previous works that are based on soft somewhat open
sets. After this introduction, it is organized this article as follows. In Section 2, we review the main
definitions and results that make this work self-contained. In Section 3, we define the concepts of soft
sw-compact and soft sw-Lindelöf spaces and then display three types of their generalizations. With
the aid of interesting example, we elucidate the relationships between them and probed their essential
features. We dedicate Section 4 to presenting the concept of soft sw-connected spaces and elaborating
its main characterizations. We show the equivalence between this concept and soft hyperconnected
spaces and discuss the conditions under which this concept is preserved via soft topology and their
parametric topologies. Finally, we offer some conclusions and open a door for some future works in
Section 5.

2. Preliminaries

To make this manuscript self-contained, we will mention the concepts and findings introduced in
published studies that we need to comprehend the results obtained herein.

2.1. Soft set theory

Definition 2.1. [37] Let A be any nonempty set of parameters and 2E be a power set of the universal
set E. If H : A→ 2E is a mapping, then the pair (H,A) is called a soft set over E and it can be written
as follows: (H,A) = {(a,H(a)) : a ∈ A and H(a) ∈ 2E}. Each H(a) is called a component of (H,A).

Through this manuscript, (H,A) will denote a soft set over E.

Definition 2.2. [37, 38] A soft set (H,A) is said to be:

(i) absolute, denoted by Ẽ, if H(a) = E for each a ∈ A;

(ii) null, denoted by φ̃, if H(a) = ∅ for each a ∈ A;

(iii) a soft point if there are a ∈ A and e ∈ E with H(a) = {e} and H(b) = ∅ for each b ∈ A − {a}. A
soft point is briefly denoted by Pe

a;
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(iv) pseudo constant if H(a) = E or ∅ for each a ∈ A;

(v) finite (resp., countable) if all components are finite (resp., countable); otherwise it is called infinite
(resp., uncountable).

Definition 2.3. [29] We call (H,A) a soft subset of (F,A) (or (F,A) a soft superset of (F,A)), denoted
by (H,A)⊆̃(F,A) if H(a) ⊆ F(a) for each a ∈ A.

Definition 2.4. [6] If F(a) = E −H(a) for each a ∈ A, the we call (F,A) a complement of (H,A). The
complement of (H,A) is symbolized by (H,A)c = (Hc,A).

Definition 2.5. Let (H,A) and (K,A) be soft sets. Then:

(i) (H,A)
⋃̃

(K,A) = (G,A), where G(a) = H(a)
⋃

K(a) for each a ∈ A [6].

(ii) (H,A)
⋂̃

(K,A) = (G,A), where G(a) = H(a)
⋂

K(a), for each a ∈ A [35].

Definition 2.6. [28] Let (H,A) be a soft set and e ∈ E. Then:

(i) e ∈ (H,A) if e ∈ H(a) for each a ∈ A.

(ii) e b (H,A) if e ∈ H(a) for some a ∈ A.

Definition 2.7. Let Ω : E → X and π : A → B be two crisp mappings. A soft mapping Ωπ from the
domain (family of all soft points over E with A) to the codomain (family of all soft points over X with
B) is a relation associated each soft point in the domain with one and only one soft point in codomain
such that

Ωπ(Pe
a) = PΩ(e)

π(a) for each Pe
a ∈ P(EA).

In addition, Ω−1
π (Px

b) = t
a∈π−1(b)
e∈Ω−1(x)

Pe
a for each Px

b ∈ P(XB).

2.2. Soft topology

Definition 2.8. [43] A family T of soft sets defined over a universal set E with a parameters set A
which contains absolute soft set Ẽ and null soft set φ̃ is said to be a soft topology on E provided that it
is closed under arbitrary soft union and finite soft intersection.

We call the triplet (E,T ,A) a soft topological space (briefly, softTS ). A member of T is called soft
open and its complement is called soft closed.

Proposition 2.9. [43] Let (E,T ,A) be a softTS . Then Ta = {H(a) : (H,A) ∈ T } defines a classical
topology on E for each a ∈ A. This topology is called a parametric topology.

Definition 2.10. [18] Let (H,A) be a soft subset of a softTS (E,T ,A). Then (cl(H),A) is defined by
cl(H)(a) = cl(H(a)), where cl(H(a)) is the closure of H(a) in (E,Ta).

Definition 2.11. [25, 38] Let (E,T ,A) be a softTS . Then T is said to be:

(i) an enriched soft topology provided that T contains all pseudo constant soft sets;

(ii) an extended soft topology provided that (H,A) ∈ T iff H(a) ∈ Ta for each a ∈ A.
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It was proved in [18] the identity between enriched soft topology and extended soft topology. To
unite terminology, we call this type of soft topology an extended soft topology, and call (E,T ,A) an
extended softTS . The next theorem is a key point to discovering the behaviours of soft topological
concepts and keeping them via classical and soft topologies.

Theorem 2.12. [18] A soft subset of a softTS (E,T ,A) is extended iff (int(H),A) = int(H,A) and
(cl(H),A) = cl(H,A) for any subset (H,A).

Definition 2.13. A softTS (E,T ,A) is said to be:

(i) soft compact (resp., soft Lindelöf) [25] if every soft open cover of Ẽ has a finite (resp., countable)
subcover. If we replace “soft open cover” by “soft clopen cover”, then we obtain the concepts of
mildly soft compact and mildly soft Lindelöf;

(ii) almost soft compact (resp., almost soft Lindelöf) [14] if every soft open cover has a finite (resp.,
countable) subfamily such that the closure of whose members cover Ẽ;

(iii) weakly soft compact (resp., weakly soft Lindelöf) [14] if every soft open cover has a finite (resp.,
countable) subfamily such that its closure covers Ẽ.

Definition 2.14. [14] A family C = {(Hρ,A) : ρ ∈ I} is said to have the finite (resp., countable)
intersection property if

⋂̃
ρ∈δ(Hρ,A) , φ̃ for any finite (resp., countable) subset δ of I;

Definition 2.15. [42] A softTS (E,T ,A) which only contains the absolute and null soft sets as soft
open and soft closed subsets is called soft connected.

Definition 2.16. [22] A soft subset (H,A) of (E,T ,A) is said to be soft somewhat open (briefly, soft
sw-open) if (H,A) = φ or int(H,A) , φ. The complement of a soft sw-open set is said to be soft
somewhat closed (briefly, soft sw-closed).

Definition 2.17. [22] Let (H,A) be a soft subset of softTS (E,T ,A). Then

(i) The union of all soft somewhat open sets contained in (H,A) is called the soft sw-interior and it is
denoted by swint(H,A).

(ii) The intersection of all soft sw-closed sets containing (H,A) is called the soft sw-closure of (H,A)
and it is denoted by swcl(H,A).

Definition 2.18. A softTS (E,T ,A) is said to be tt-soft swT2 if for every e , x ∈ E, there are disjoint
soft sw-open sets (H,A) and (F,A) such that e ∈ (H,A) and x ∈ (F,A).

Theorem 2.19. [13] A subset (H,A) of an extended softTS (E,T ,A) is soft sw-open (resp., soft sw-
closed) iff there is an sw-open (resp., sw-closed) subset G of (E,Ta) with H(a) = G.

The mentioned-above result describes a unique character of this generalization of soft open sets via
parametric topologies. For the other celebrated generalizations of soft open sets, the sufficient part of
the above theorem must hold true for all attributes of A. The next example clarifies this fact.

Example 2.20. Let T = {φ, Ẽ, (Gρ,A) : ρ = 1, 2, ..., 7} be a soft topology over the universal set
E = {x, y} with a set of parameters A = {a, b}, where
(G1,A) = {(a, E), (b, ∅)};
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(G2,A) = {(a, ∅), (b, E)};
(G3,A) = {(a, {x}), (b, ∅)};
(G4,A) = {(a, ∅), (b, {x})};
(G5,A) = {(a, {x}), (b, {x})};
(G6,A) = {(a, {x}), (b, E)}, and
(G7,A) = {(a, E), (b, {x})}.

It is clear that (E,T ,A) is an extended softTS . For a soft set (H,A) = {(a, {x}), (b, {y})}, we find that
cl(int(H,A)) = int(cl(H,A)) = {(a, E), (b, ∅)} which means that (H,A) is neither soft semi-open nor
soft pre-open. However, {x} is both semi-open and pre-open subset of (E,Ta).

Definition 2.21. [22] A soft mapping Ωπ : (E,TE,A) → (X,TX,A) is said to be soft sw-continuous
(resp., soft sw-irresolute) if Ω−1

π (H,A) is a soft sw-open set where (H,A) is a soft open (resp., soft
sw-open) set.

Theorem 2.22. [22] Let Ωπ : (E,TE,A)→ (Z,TZ,A) be a soft mapping. Then the next properties are
identical.

(i) Ωπ is soft sw-continuous.

(ii) Ω−1
π (F,A) is soft sw-closed for every soft closed subset (F,A) of (Z,TZ,A).

(iii) Ωπ(swcl(H,A))⊆̃cl(Ωπ(H,A)) for each (H,A)⊆̃Ẽ.

3. Novel types of compactness and Lindelöfness via soft somewhat open sets

In this section, we apply the family of sw-open sets to display four novel kinds of soft compact
and Lindelöf spaces namely, soft sw-compact, soft sw-Lindelöf, almost soft sw-compact, almost soft
sw-Lindelöf, weakly soft sw-compact, weakly soft sw-Lindelöf, mildly soft sw-compact and mildly
soft sw-Lindelöf spaces. We explore the main properties of these spaces and elucidate the relationships
between them with the assistance of counterexamples. Also, we supply a complete description for each
one of these spaces and investigate them under specific kinds of soft mappings. Finally, we scrutinize
how these types of compactness and Lindelöfness navigate between soft topology and their parametric
topologies and then discuss the role of full and extended soft topologies in keeping this property.

3.1. Soft sw-compact and soft sw-Lindelöf spaces

Definition 3.1. A family of soft sw-open subsets of (E,T ,A) is called a soft somewhat open cover
(briefly, sw-open cover) of Ẽ if Ẽ is a soft subset of this family.

Definition 3.2. A softTS (E,T ,A) is said to be soft sw-compact (resp., soft sw-Lindelöf) if for every
soft sw-open cover C = {(Hρ,A) : ρ ∈ I} of (E,T ,A), there is a finite (resp., countable) subset δ of I
with Ẽ =

⋃̃
ρ∈δ(Hρ,A).

In the next examples, we present two soft topological spaces, one of them is soft sw-compact and
the other is not soft sw-Lindelöf.

Example 3.3. Let T = {φ̃, (E,A)⊆̃R̃ : (E,A) is finite} be a soft topology on the set of real numbers R,
where A is a finite set of parameters. It is clear that every soft subset of (R,T ,A) is soft sw-open iff it
is soft open. Then, (R,T ,A) is soft sw-compact.
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Example 3.4. Let A = {a, b} be a set of parameters and (H,A) = {(a, {1}), (b,R \ {1})} be a
soft set over the set of real numbers R. Then T = {φ̃, R̃, (H,A)} is a soft topology on R. Now,
{{(a, {1}), (b,R)}, {(a, {1, r}), (b,R \ {1})} : r ∈ R} is a soft sw-open cover of R. It is clear that this
cover has not a countable subcover; hence, (R,T ,A) is not a soft sw-Lindelöf space.

Proposition 3.5. (i) Every soft sw-compact space is soft sw-Lindelöf.

(ii) Every soft sw-compact (resp., soft sw-Lindelöf) space is soft compact (resp., soft Lindelöf).

(iii) The family of soft sw-compact (resp., soft sw-Lindelöf) subsets is closed under finite (resp.,
countable) union.

Proof. Straightforward. �

By replacing a word “finte” in Example 3.3 by “countable”, it follows that the converse of (i) in
Proposition 3.5 fails. Also, Example 3.4 elucidates that the converse of (ii) in Proposition 3.5 is not
true in general.

Proposition 3.6. Let (E,T1,A) and (E,T2,A) be softTS s such that T1 ⊆ T2. If (E,T2,A) is soft sw-
compact (resp., soft sw-Lindelöf), then (E,T1,A) is soft sw-compact (resp., soft sw-Lindelöf).

Proof. Consider C is a soft sw-open cover of (E,T1,A). It is clear that every soft sw-open subset
of T1 is a soft sw-open subset of T2, so C is also a soft sw-open cover of (E,T2,A). By soft sw-
compactness (resp., soft sw-Lindelöfness) of (E,T2,A) we obtain a finite (resp., countable) subcover
for Ẽ, as required. �

The indiscrete softTS defined over the set of real numbers R with a set of parameters A = {a, b}
is soft sw-compact. Obviously, this indiscrete soft topology is a subfamily of soft topology given in
Example 3.4, which is not a soft sw-Lindelöf. Hence, the converse of Proposition 3.6 need not be true.

Proposition 3.7. If a softTS (E,T ,A) is soft sw-compact (resp., soft sw-Lindelöf), then every soft
sw-closed subset of (E,T ,A) is soft sw-compact (resp., soft sw-Lindelöf).

Proof. Assume that C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of (F,A) which is a soft sw-closed
subset of (E,T ,A). Now, {(Hρ,A) : ρ ∈ I}

⋃̃
(Hc,A) is a soft sw-open cover of (E,T ,A) which is a

soft sw-compact space. Therefore, Ẽ =
⋃̃n

ρ=1(Hρ,A)
⋃̃

(Hc,A). Thus, (F,A)⊆̃
⋃̃n

ρ=1(Hρ,A), which ends
the proof that (F,A) is soft sw-compact. Similarly, it can be proved the case between parentheses. �

Corollary 3.8. The soft intersection of soft sw-compact (resp., soft sw-Lindelöf) and soft sw-closed
sets is soft sw-compact (resp., soft sw-Lindelöf).

Theorem 3.9. A softTS (E,T ,A) is soft sw-compact (resp., soft sw-Lindelöf) if and only if⋂̃
ρ∈I(Hρ,A) , φ̃ for every family C = {(Hρ,A) : ρ ∈ I} of soft sw-closed sets has a finite (resp.,

countable) intersection property.

Proof. Necessity: Let C = {(Hρ,A) : ρ ∈ I} be a family of soft sw-closed subsets of a soft sw-
compact space (E,T ,A). Suppose that

⋂̃
ρ∈I(Hρ,A) = φ̃. Then, Ẽ =

⋃̃
ρ∈I(Hc

ρ,A). By assumption,
Ẽ =

⋃̃n
ρ=1(Hc

ρ,A). This means that φ̃ = (
⋃̃n

ρ=1(Hc
ρ,A))c =

⋂̃n
ρ=1(Hρ,A). Hence, C has has a finite

intersection property, as required.
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Sufficiency: Consider C = {(Hρ,A) : ρ ∈ I} as a soft sw-open cover of (E,T ,A). Then φ̃ =⋂̃
ρ∈I(Hc

ρ,A) and so by the finite sw-intersection property of C, we obtain φ̃ =
⋂̃n

ρ=1(Hc
ρ,A). Thus,

Ẽ =
⋃̃n

ρ=1(Hρ,A), which proves that (E,T ,A) is soft sw-compact.
Similarly, it can be proved the case between parentheses. �

Lemma 3.10. (i) The inverse image of a soft sw-open set under a surjective soft sw-continuous
mapping is soft sw-open.

(ii) The image of a soft sw-open set under a soft sw-open mapping is soft sw-open.

Proof. To prove (i), let Ωπ : (E,TE,A) → (X,TX,A) be a soft sw-continuous mapping and let (F,A)
be a soft sw-open subset of (X,TX,A). Then, there is a non-null soft open subset (G,A) of (Z,TZ,A)
such that (G,A)⊆̃(F,A). Now, Ω−1

π (G,A)⊆̃Ω−1
π (F,A). By hypothesis, Ω−1

π (G,A) is a non-null soft
open subset of (E,TE,A). Hence, Ω−1

π (F,A) is soft sw-open. Following similar technique, it can be
proved (ii). �

According to the above lemma, we see that the property of being a soft sw-open set is a soft
topological property. Also, the concepts of soft sw-continuity and soft sw-irresolute are identical under
a surjective soft mapping.

Proposition 3.11. The surjective soft continuous image of a soft sw-compact (resp., soft sw-Lindelöf)
set is soft sw-compact (resp., soft sw-Lindelöf).

Proof. Consider Ωπ : (E,TE,A) → (X,TX,A) is a soft continuous mapping and let (F,A) be a soft
sw-Lindelöf subset of (E,TE,A). Let us consider C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of
Ωπ(F,A). Obviously, (F,A)⊆̃

⋃̃
ρ∈IΩ

−1
π (Hρ,A). It follows from Lemma 3.10 that Ω−1

π (Hρ,A) is a soft
sw-open set for each ρ ∈ I. According to soft sw-Lindelöfness of (F,A), there is a countable set δ such
that (F,A)⊆̃

⋃̃
ρ∈δΩ

−1
π (Hρ,A). Now, we obtain Ωπ(F,A)⊆̃

⋃̃
ρ∈δΩπ(Ω−1

π (Hρ,A))⊆̃(Hρ,A), which means
that Ωπ(F,A) is soft sw-Lindelöf. It can be prove the case of soft sw-compact in a similar way. �

One can prove the next two propositions following a similar arguments.

Proposition 3.12. The soft sw-continuous image of a soft sw-compact (resp., soft sw-Lindelöf) set is
soft compact (resp., soft Lindelöf).

Proposition 3.13. The soft sw-irresolute image of a soft sw-compact (resp., soft sw-Lindelöf) set is
soft sw-compact (resp., soft sw-Lindelöf).

Now, we explore the relationship between soft topology and its parametric topologies with respect
to possessing the properties of sw-compactness and sw-Lindelöfness. First, we demonstrate that
possessing the properties of soft sw-compactness and sw-Lindelöfness by soft topologies leads to
possess these properties by their parametric topologies. In fact, this is one of the unique properties of
these types of covering properties which is invalid for the other types of compactness and Lindelöfness
produced by soft α-open, soft semi-open, soft pre-open and soft b-open sets.

Theorem 3.14. Every parametric topological space (E,Ta) inspired by a soft sw-compact (resp., soft
sw-Lindelöf) space (E,T ,A) is sw-compact (resp., sw-Lindelöf) for each a ∈ A.
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Proof. Suppose that {Hρ : ρ ∈ I} is an sw-open cover of a parametric topological space (E,Ta). Then,
for each ρ ∈ I there exists a nonempty open subset Gρ of Ta such that Gρ ⊆ Hρ. Accordingly, for
each ρ ∈ I there exists a soft open subset (Vρ,A) of T such that Vρ = Gρ. Now, defining a family
of soft open sets (Wρ,A) as follows Wρ(a) = Hρ and Wρ(a′) = E for a′ , a. Then, {(Wρ,A) : ρ ∈ I}
forms a soft sw-open cover of (E,T ,A). By hypothesis of soft sw-compactness of (E,T ,A), we obtain

Ẽ =
n⋃
ρ=1

(Wρ,A). This implies that E =
n⋃
ρ=1

Wρ(a) =
n⋃
ρ=1

Hρ. Hence, (E,Ta) is sw-compact, as required.

Following similar argument, one prove the case between parentheses. �

We point out by the next example that the converse of Theorem 3.14 is false.

Example 3.15. Let T = {φ, R̃, (G1,A), (G2,A)} be a soft topology over the set of real numbers R with
a set of parameters A = {a, b}, where (G1,A) = {(a,R), (b, ∅)} and (G1,A) = {(a, ∅), (b,R)}. Now, both
parametric topologies inspired by (R,T ,A) are the indiscrete topology, so they are sw-compact. On
the other hand, a softTS (R,T ,A) is not soft sw-Lindelöf.

It should be noted that Theorem 3.14 does not hold true for compactness and Lindelöfness defined
by the other kinds of generalizations of soft open sets as the next example elucidates.

Example 3.16. Let A = {a, b} be a set of parameters and T be a soft topology over the set of real
numbers R consists of the absolute soft sets and all soft sets (H,A) satisfying that 1 < H(a). It can be
noted that a soft subset of (R,T ,A) is soft open iff it is soft pre-open. This automatically leads to that
(R,T ,A) is soft pre-compact. On the other hand, a parametric topology Tb is the discrete topology, so
(R,Tb) is not pre-Lindelöf.

Second, we investigate under which conditions the converse of Theorem 3.14 holds true.

Definition 3.17. A softTS (E,T ,A) is said to be full if all components of every non-null soft open set
are nonempty.

Proposition 3.18. Let (H,A) be a soft sw-open subset of a full softTS (E,T ,A). Then, H(a) is an
sw-open subset of (E,Ta) for each a ∈ A.

Proof. Since (H,A) is a soft sw-open set, there exists a soft open set (G,A) such that

(G,A)⊆̃(H,A). (3.1)

By hypothesis, (E,T ,A) is a full softTS , so G(a) is a nonempty open subset of (E,Ta) for each a ∈ A.
It follows from (3.1) that G(a) ⊆ H(a) for each a ∈ A. This means that H(a) is an sw-open subset of
(E,Ta) for each a ∈ A. Hence, the proof is complete. �

To elucidate that the converse of the above proposition fails, we build the next example.

Example 3.19. Let T = {φ, Ẽ, (Gρ,A) : ρ = 1, 2, ..., 6} be a soft topology over the universal set
E = {x, y, z} with a set of parameters A = {a, b}, where
(G1,A) = {(a, {x}), (b, {x})};
(G2,A) = {(a, {y}), (b, {y})};
(G3,A) = {(a, {z}), (b, {z})};
(G4,A) = {(a, {x, y}), (b, {x, y})};
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(G5,A) = {(a, {x, z}), (b, {x, z}};
(G6,A) = {(a, {y, z}), (b, {y, z})}.

It is clear that (E,T ,A) is a full softTS . For a soft set (H,A) = {(a, {y}), (b, {x})}, int(H(a)) , ∅ and
int(H(b)) , ∅. But (H,A) is not soft sw-open.

Remark 3.20. Note that a softTS given in Example 3.15 is extended but not full, whereas a softTS given
in Example 3.19 is full but not extended. This points out that the concepts of extended soft topology
and full soft topology are independent of each other. Moreover, if T is a non-indiscrete soft topology,
then a full softTS is not extended, and an extended softTS is not full. This means that the equivalence
between them is obtained in the case of T is indiscrete soft topology.

Theorem 3.21. Let A be a finite (resp., countable) parameter set and (E,T ,A) be a full softTS . Then,
all parametric topological spaces (E,Ta) inspired by (E,T ,A) is sw-compact (resp., sw-Lindelöf) if
and only if (E,T ,A) is soft sw-compact (resp., soft sw-Lindelöf).

Proof. We prove the theorem for the compactness property and the Lindelöf property is proved in a
similar way.

Necessity: Assume that C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of (E,T ,A) and let | A |= m.
Then E =

⋃
ρ∈I

Hρ(a) for each a ∈ A. According to Proposition 3.18, Hρ(a) is an sw-open set for

each a ∈ A. By hypothesis, (E,Ta) is sw-compact for each a ∈ A, so we obtain E =
n1⋃
ρ=1

Hρ(a1),

E =
n2⋃

ρ=n1+1
Hρ(a2),. . . , E =

nm⋃
ρ=nm−1+1

Hρ(am). This implies that Ẽ =
⋃̃nm

ρ=1(Hρ,A). Hence, (E,T ,A) is soft

sw-compact.
Sufficiency: Follows from Theorem 3.14. �

To see that the condition of “full soft topology” in the above theorem is not superfluous, see,
Example 3.15.

Now, we review some properties and results that are invalid for soft sw-compact and soft sw-
Lindelöf spaces. The property reports that every finite (resp., countable) topological space is sw-
compact (resp., sw-Lindelöf) is not valid via soft topologies. Also, the property says that every compact
subset of T2-space is closed does not hold true via soft sw-compact spaces. It can be illustrated these
facts by the next example.

Example 3.22. Let (E,T ,R) be a softTS , where E = {x, y} is the universal set, the set of real numbers
R is a set of parameters and T is the discrete soft topology. Obviously, every parametric topological
space (E,Tr) inspired by (E,T ,R) is sw-compact. On the other hand, a softTS (E,T ,R) is not soft
sw-Lindelöf.

Example 3.23. A softTS (E,T ,A) given in Example 3.19 is a tt-soft swT2-space. Now, {(a, {y}), (b, {z})}
is a soft sw-compact subset of (E,T ,A) but it is not soft sw-closed.

The following properties of soft compactness and Lindelöfness and some of their generalizations
in soft topologies are invalid for soft sw-compact and sw-Lindelöf spaces as it can be seen from
Example 3.15 in cases of compactness and Lindelöfness, α-compactness and α-Lindelöfness, and
semi-compactness and semi-Lindelöfness.
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(i) Let A be a finite (resp., countable) set of parameters. If (E,Ta) is compact (resp., Lindelöf) for each
a ∈ A, then (E,T ,A) is soft compact (resp., soft Lindelöf).

(ii) Let (E,T ,A) be an extended softTS . Then,

• if every parametric topological space (E,Ta) inspired by (E,T ,A) is compact (resp., α-
compact, semi-compact, pre-compact, b-compact), then (E,T ,A) is soft compact (resp., soft
α-compact, soft semi-compact, soft pre-compact, soft b-compact).
• if every parametric topological space (E,Ta) inspired by (E,T ,A) is Lindelöf (resp., α-

Lindelöf, semi-Lindelöf, pre-Lindelöf, b-Lindelöf), then (E,T ,A) is soft Lindelöf (resp.,
soft α-Lindelöf, soft semi-Lindelöf, soft pre-Lindelöf, soft b-Lindelöf).

It can be easily proved the next result that associates the concepts of soft sw-compact and soft
sw-Lindelöf spaces with the cardinality number of the universal set and a set of parameters.

Lemma 3.24. An extended softTS (E,T ,A) is soft sw-compact (resp., soft sw-Lindelöf) if and only if
the universal set E and set of parameters A are finite (resp., countable).

We close this subsection by the next remark which gives a unique characteristic of soft sw-compact
and soft sw-Lindelöf spaces.

Remark 3.25. Let (E,T ,A) be a softTS such that E is infinite (resp., uncountable) and T is a non-
indiscrete soft topology. If T contains a finite (resp., countable) proper non-null soft set, then (E,T ,A)
is not soft sw-compact (resp., not soft sw-Lindelöf).

3.2. Almost soft sw-compact and almost soft sw-Lindelöf spaces

Definition 3.26. A softTS (E,T ,A) is said to be almost soft sw-compact (resp., almost soft sw-Lindelöf)
if every soft sw-open cover has a finite (resp., countable) subfamily such that the soft sw-closure of
whose members covers Ẽ. That is, for every soft sw-open cover C = {(Hρ,A) : ρ ∈ I} there is a finite
(resp., countable) subset δ of I with Ẽ =

⋃̃
ρ∈δswcl(Hρ,A).

In what follows, we provide two soft topological spaces, one of them is almost soft sw-compact and
the other is not almost soft sw-Lindelöf.

Example 3.27. In a softTS (R,T ,A) given in Example 3.4, note that every soft sw-open cover of R̃
contains a soft sw-open set {(a, {1}), (b,R \ {1})}. Since swcl({(a, {1}), (b,R \ {1})}) = R̃, (R,T ,A) is
almost soft sw-compact.

Example 3.28. Let (R,T ,A) be a softTS , where R is the set of real numbers, A =

{a, b} and T = {φ,R, {(a, {1}), (b, φ)}, {(a, φ), (b, {1})}, {(a, {1}), (b, {1})}}. Note that the family
{{(a, {1, r}), (b, φ)}, {(a, φ), (b, {1, r})} : r ∈ R}} forms a soft sw-open cover of R̃. Note that every member
of this cover is soft sw-open and soft sw-closed set, so (R,T ,A) is not almost soft sw-Lindelöf.

The proof of the following result is easy, so we remove it.

Proposition 3.29. (i) Every almost soft sw-compact space is almost soft sw-Lindelöf.

(ii) Every soft sw-compact (resp., soft sw-Lindelöf) space is almost soft sw-compact (resp., almost soft
sw-Lindelöf).
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(iii) The family of almost soft sw-compact (resp., almost soft sw-Lindelöf) subsets is closed under finite
(resp., countable) union.

If we replace the universal set R in Example 3.28 by the set of natural numbers N, then we obtain
a softTS which is almost soft sw-Lindelöf but not almost soft sw-compact. Also, it is illustrated in
Example 3.27 that a softTS given in Example 3.4 is almost soft sw-compact but this softTS is not soft
sw-Lindelöf. This elucidates that the converse of Proposition 3.29 fails.

Proposition 3.30. If a softTS (E,T ,A) is almost soft sw-compact (resp., almost soft sw-Lindelöf), then
every soft sw-clopen subset of (E,T ,A) is almost soft sw-compact (resp., almost soft sw-Lindelöf).

Proof. Let C = {(Hρ,A) : ρ ∈ I} be a soft sw-open cover of a soft sw-clopen subset (F,A) of (E,T ,A).
Then, {(Hρ,A) : ρ ∈ I}

⋃̃
(Hc,A) is a soft sw-open cover of an almost soft sw-compact space (E,T ,A).

By hypothesis, Ẽ =
⋃̃n

ρ=1swcl(Hρ,A)
⋃̃

(Hc,A), which implies that (F,A)⊆̃
⋃̃n

ρ=1swcl(Hρ,A). This
finishes the proof that (F,A) is almost soft sw-compact. Similarly, it can be proved the case between
parentheses. �

Corollary 3.31. The soft intersection of almost soft sw-compact (resp., almost soft sw-Lindelöf) and
soft sw-clopen sets is almost soft sw-compact (resp., almost soft sw-Lindelöf).

Definition 3.32. A family of soft sets C = {(Hρ,A) : ρ ∈ I} is said to have the first kind of finite (resp.,
countable) sw-intersection property if

⋂̃
ρ∈δswint(Hρ,A) , φ̃ for any finite (resp., countable) subset δ

of I.

Theorem 3.33. A softTS (E,T ,A) is almost soft sw-compact (resp., almost soft sw-Lindelöf) if and
only if

⋂̃
ρ∈I(Hρ,A) , φ̃ for every family C = {(Hρ,A) : ρ ∈ I} of soft sw-closed sets has the first kind

of finite (resp., countable) sw-intersection property.

Proof. We prove the theorem in case of compactness and one can prove the case of Lindelöfness in a
similar way.

Necessity: Let us consider C = {(Hρ,A) : ρ ∈ I} as a family of soft sw-closed subsets of an
almost soft sw-compact (E,T ,A). Suppose that

⋂̃
ρ∈I(Hρ,A) = φ̃. Then, Ẽ =

⋃̃
ρ∈I(Hc

ρ,A). Therefore,
Ẽ =
⋃̃n

ρ=1swcl(Hc
ρ,A). Thus, φ̃ = (

⋃̃n
ρ=1swcl(Hc

ρ,A))c =
⋂̃n

ρ=1swint(Hρ,A), as required.
Sufficiency: Suppose that C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of (E,T ,A). Then

φ̃ =
⋂̃

ρ∈I(Hc
ρ,A). According to the first kind of finite sw-intersection property, we obtain φ̃ =⋂̃n

ρ=1swint(Hc
ρ,A). This automatically means that Ẽ =

⋃̃n
ρ=1swcl(Hρ,A), which proves that (E,T ,A)

is almost soft sw-compact. �

Theorem 3.34. A soft sw-continuous image of an almost soft sw-compact (resp., almost soft sw-
Lindelöf) set is almost soft compact (resp., almost soft Lindelöf).

Proof. Consider Ωπ : (E,TE,A) → (Z,TZ,A) is a soft sw-continuous mapping and let (F,A) be
an almost soft sw-Lindelöf subset of (E,T ,A). Suppose that C = {(Hρ,A) : ρ ∈ I} is a soft
open cover of Ωπ(F,A). Obviously, Ω−1

π (Hρ,A) is a soft sw-open set for each ρ ∈ I such that
(F,A)⊆̃

⋃̃
ρ∈IΩ

−1
π (Hρ,A). By hypothesis of almost soft sw-Lindelöfness of (F,A) there is a countable

set δ with (F,A)⊆̃
⋃̃

ρ∈δswcl(Ω−1
π (Hρ,A)). Now, Ωπ(F,A)⊆̃

⋃̃
ρ∈δΩπ(swcl(Ω−1

π (Hρ,A))); it follows from
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(iii) of Theorem 2.22 that Ωπ(swcl(Ω−1
π (Hρ,A))) ⊆̃cl(Ωπ(Ω−1

π (Hρ,A)))⊆̃cl(Hρ,A). Hence, Ωπ(F,A)⊆̃⋃̃
ρ∈δcl(Hρ,A) which proves that Ωπ(F,A) is almost soft Lindelöf.
Following similar technique, the case of compactness is proved. �

Corollary 3.35. The soft sw-irresolute image of an almost soft sw-compact (resp., almost soft sw-
Lindelöf) set is almost soft sw-compact (resp., almost soft sw-Lindelöf).

Definition 3.36. For each soft subset (H,A) of a softTS (E,T ,A), define (swcl(H),A) as swcl(H)(a) =

swcl(H(a)), where swcl(H(a)) is the sw-closure of H(a) in a parametric topological space (E,Ta) for
each a ∈ A.

Lemma 3.37. Let (H,A) be an extended soft subset of a softTS (E,T ,A). Then swcl(H,A) =

(swcl(H),A).

Proof. It is clear that (H,A)⊆̃(swcl(H),A). Since T is extended, (swcl(H),A) is a soft sw-closed
set. As it is well known that swcl(H,A) is the smallest soft sw-closed set containing (H,A), so
swcl(H,A)⊆̃(swcl(H),A). �

Note that (E,T ,A) given in Example 2.20 is an extended softTS . For a soft set (H,A) =

{(a, {x}), (b, {y})}, we find that swcl(H,A) = (H,A) whereas (swcl(H),A) = {(a, E), (b, {y})}. This
confirms that the converse of the above lemma need not be true in general.

Theorem 3.38. Let (E,T ,A) be extended. Then, every parametric topological space (E,Ta) inspired
by almost soft sw-compact (resp., almost soft sw-Lindelöf) space (E,T ,A) is almost sw-compact
(resp., almost sw-Lindelöf) for each a ∈ A.

Proof. Let {Hρ : ρ ∈ I} be an sw-open cover of a parametric topological space (E,Ta). Consider a
family of soft sets {(Vρ,A) : ρ ∈ I}, where Vρ(a) = Hρ and Vρ(a′) = E for a′ , a. Obviously, this
family forms a soft sw-open cover of (E,T ,A). By almost soft sw-compactness of (E,T ,A), we obtain

Ẽ =
n⋃
ρ=1

swcl(Vρ,A). Since T is extended, it follows from Lemma 3.37 that swcl(Vρ,A)⊆̃(swcl(Vρ),A).

So, Ẽ =
n⋃
ρ=1

(swcl(Vρ),A). Thus, E =
n⋃
ρ=1

swcl(Vρ(a)) =
n⋃
ρ=1

swcl(Hρ) which ends the proof that (E,Ta)

is almost sw-compact. One can prove the case between parentheses following similar technique. �

Example 3.22 shows that the converse of Theorem 3.38 is false in general. In the next example, we
clarify that the topological condition of extended in the mentioned-above theorem is indispensable.

Example 3.39. Let A = {a, b} be a set of parameters and T be a soft topology over the set of
real numbers R consists of the null soft sets and all soft sets (H,A) satisfying that 1 ∈ H(a).
Now, {(a, ∅), (b, {2})} < T despite ∅ ∈ Ta and {2} < Tb, so (R,T ,A) is not extended. Note
that every soft sw-open cover of R̃ contains a soft sw-open set containing {(a, {1}), (b, ∅)}. Since
swcl({(a, {1}), (b, ∅)}) = R̃, (R,T ,A) is almost soft sw-compact. On the other hand, a parametric
topology Tb is the discrete topology, so (R,Tb) is not almost sw-Lindelöf.

Lemma 3.40. Let (H,A) be a soft subset of a full softTS (E,T ,A). Then (swcl(H),A)⊆̃swcl(H,A).

Proof. Let Pe
a < swcl(H,A). Then, we can find a soft sw-open set (G,A) containing Pe

a such that
(G,A)

⋂̃
(H,A) = φ. This means that G(a) ∩ H(a) = ∅ for each a ∈ A. Since T is full, G(a) is an
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sw-open subset of Ta. This implies that G(a) ∩ swcl(H(a)) = ∅. Therefore, Pe
a < (swcl(H),A). Hence,

(swcl(H),A)⊆̃swcl(H,A), as required. �

To point out that the converse of the above lemma is generally false, consider a full softTS displayed
in Example 3.19 and take a soft set (H,A) = {(a, {y}), (b, {x})}. Now, swcl(H,A) = {(a, {x, y}), (b, {x, y})}
but (swcl(H),A) = {(a, {y}), (b, {x})}.

Theorem 3.41. Let A be a finite (resp., countable) parameter set and (E,T ,A) be a full softTS . Then,
all parametric topological spaces (E,Ta) inspired by (E,T ,A) is almost sw-compact (resp., almost
sw-Lindelöf) if and only if (E,T ,A) is almost soft sw-compact (resp., almost soft sw-Lindelöf).

Proof. We prove the theorem for the compactness property and the Lindelöf property is proved in a
similar way.

Necessity: Assume that C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of (E,T ,A) and let | A |= m.
Then E =

⋃
ρ∈I

Hρ(a) for each a ∈ A. According to Proposition 3.18, Hρ(a) is an sw-open set for each

a ∈ A. By hypothesis, (E,Ta) is almost sw-compact for each a ∈ A, so we obtain E =
n1⋃
ρ=1

swcl(Hρ(a1)),

E =
n2⋃

ρ=n1+1
swcl(Hρ(a2)),. . . , E =

nm⋃
ρ=nm−1+1

swcl(Hρ(am)). This implies that Ẽ =
⋃̃nm

ρ=1(swcl(Hρ),A).

According to Lemma 3.40, we obtain (swcl(H),A)⊆̃swcl(H,A), so Ẽ =
⋃̃nm

ρ=1swcl(Hρ,A). Hence,
(E,T ,A) is almost soft sw-compact.

Sufficiency: Follows from Theorem 3.38. �

The next lemma associates these types of spaces with the cardinality numbers of the universal set
and a set of parameters.

Lemma 3.42. An extended softTS (E,T ,A) is almost soft sw-compact (resp., almost soft sw-Lindelöf)
if and only if the universal set E and set of parameters A are finite (resp., countable).

Proof. The necessary part follows from the fact that all soft sets which their components are the
universal set or empty set are soft sw-open and soft sw-closed sets. The sufficient part is obvious. �

Finally, we draw attention of the readers to that Remark 3.25 does not hold true for almost soft
sw-compact and almost soft sw-Lindelöf spaces as illustrated in the next example.

Example 3.43. Let (R,T ,A) be a softTS , where R is the set of real numbers, A = {a, b} and T =

{φ,R, {(a, {1}), (b, φ)}}. Then, (R,T ,A) satisfies the conditions of a softTS given in Remark 3.25. On
the other hand, note that {(a, {1}), (b, φ) is a soft subset of a member of any soft sw-open cover of R̃.
Since swcl({(a, {1}), (b, φ)) = R̃, (R,T ,A) is almost soft sw-compact.

3.3. Weakly soft sw-compact and weakly soft sw-Lindelöf spaces

Definition 3.44. A softTS (E,T ,A) is said to be weakly soft sw-compact (resp., weakly soft sw-
Lindelöf) if every soft sw-open cover has a finite (resp., countable) subfamily such that its soft sw-
closure covers Ẽ. That is, for every soft sw-open cover C = {(Hρ,A) : ρ ∈ I} there is a finite (resp.,
countable) subset δ of I with Ẽ = swcl(

⋃̃
ρ∈δ(Hρ,A)).
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In what follows, we provide two soft topological spaces, one of them is weakly soft sw-compact
and the other is not weakly soft sw-compact.

Example 3.45. In a softTS (R,T ,A) given in Example 3.28, note that every soft sw-open cover of R̃
contains a soft sw-open set {(a, {1}), (b, {1})}. Since swcl({(a, {1}), (a, {1})}) = R̃, (R,T ,A) is weakly
soft sw-compact.

Example 3.46. Let T be the soft discrete over the set of real numbers R with nay set of parameters A.
Then, a softTS (R,T ,A) is not weakly soft sw-Lindelöf.

It can be easily prove the next result, so we remove it.

Proposition 3.47. (i) Every weakly soft sw-compact is weakly soft sw-Lindelöf.

(ii) Every almost soft sw-compact (resp., almost soft sw-Lindelöf) space is weakly soft sw-compact
(resp., weakly soft sw-Lindelöf).

(iii) The family of weakly soft sw-compact (resp., weakly soft sw-Lindelöf) subsets is closed under
finite (resp., countable) union.

If we replace the universal set R in Example 3.46 by any infinite countable set, then we obtain
a softTS which is weakly soft sw-Lindelöf but not weakly soft sw-compact. Also, it follows from
illustration given in Example 3.45 that a softTS given in Example 3.28 is weakly soft sw-compact but
this softTS is not almost soft sw-Lindelöf. Hence, the converse of Proposition 3.47 is incorrect in
general.

Definition 3.48. A family of soft sets C = {(Hρ,A) : ρ ∈ I} is said to have the second kind of finite
(resp., countable) sw-intersection property if swint(

⋂̃
ρ∈δ(Hρ,A)) , φ̃ for any finite (resp., countable)

subset δ of I.

Theorem 3.49. A softTS (E,T ,A) is weakly soft sw-compact (resp., weakly soft sw-Lindelöf) if and
only if

⋂̃
ρ∈I(Hρ,A) , φ̃ for every family C = {(Hρ,A) : ρ ∈ I} of soft sw-closed sets has the second

kind of finite (resp., countable) sw-intersection property.

Proof. We prove the theorem in case of compactness and one can prove the case of Lindelöfness in a
similar way.

Necessity: Let us consider C = {(Hρ,A) : ρ ∈ I} as a family of soft sw-closed subsets of a weakly
soft sw-compact (E,T ,A). Suppose that

⋂̃
ρ∈I(Hρ,A) = φ̃. Then, Ẽ =

⋃̃
ρ∈I(Hc

ρ,A). Therefore,
Ẽ = swcl(

⋃̃n
ρ=1(Hc

ρ,A)). Thus, φ̃ = (swcl(
⋃̃n

ρ=1(Hc
ρ,A)))c = swint(

⋂̃n
ρ=1(Hρ,A)), as required.

Sufficiency: Suppose that C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of (E,T ,A). Then
φ̃ =

⋂̃
ρ∈I(Hc

ρ,A). According to the second kind of finite sw-intersection property, we obtain
φ̃ = swint(

⋂̃n
ρ=1(Hc

ρ,A)). This automatically means that Ẽ = swcl(
⋃̃n

ρ=1(Hρ,A)), which proves that
(E,T ,A) is weakly soft sw-compact. �

Theorem 3.50. A soft sw-continuous image of a weakly soft sw-compact (resp., weakly soft sw-
Lindelöf) set is weakly soft compact (resp., weakly soft Lindelöf).
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Proof. Consider Ωπ : (E,TE,A) → (Z,TZ,A) is a soft sw-continuous mapping and let (F,A) be
a weakly soft sw-Lindelöf subset of (E,T ,A). Suppose that C = {(Hρ,A) : ρ ∈ I} is a soft
open cover of Ωπ(F,A). Obviously, Ω−1

π (Hρ,A) is a soft sw-open set for each ρ ∈ I such that
(F,A)⊆̃

⋃̃
ρ∈IΩ

−1
π (Hρ,A). By hypothesis of weakly soft sw-Lindelöfness of (F,A) there is a countable

set δ with (F,A)⊆̃swcl(
⋃̃

ρ∈δ(Ω−1
π (Hρ,A))). Now, Ωπ(F,A)⊆̃Ωπ(swcl(

⋃̃
ρ∈δ(Ω−1

π (Hρ,A))); it follows
from (iii) of Theorem 2.22 that Ωπ(swcl(

⋃̃
ρ∈δΩ

−1
π (Hρ,A))) ⊆̃cl(

⋃̃
ρ∈δΩπ(Ω−1

π (Hρ,A)))⊆̃cl(
⋃̃

ρ∈δ(Hρ,A).
Hence, Ωπ(F,A)⊆̃

⋃̃
ρ∈δcl(Hρ,A) which proves that Ωπ(F,A) is weakly soft Lindelöf.

Following similar technique, the case of compactness is proved. �

Corollary 3.51. The soft sw-irresolute image of a weakly soft sw-compact (resp., weakly soft sw-
Lindelöf) set is weakly soft sw-compact (resp., weakly soft sw-Lindelöf).

Theorem 3.52. Let (E,T ,A) be extended. Then, every parametric topological space (E,Ta) inspired
by weakly soft sw-compact (resp., weakly soft sw-Lindelöf) space (E,T ,A) is weakly sw-compact
(resp., weakly sw-Lindelöf) for each a ∈ A.

Proof. Let {Hρ : ρ ∈ I} be an sw-open cover of a parametric topological space (E,Ta). Consider a
family of soft sets {(Vρ,A) : ρ ∈ I}, where Vρ(a) = Hρ and Vρ(a′) = E for a′ , a. Obviously, this family
forms a soft sw-open cover of (E,T ,A). By weakly soft sw-compactness of (E,T ,A), we obtain

Ẽ = swcl(
n⋃
ρ=1

(Vρ,A)). Since T is extended, it follows from Lemma 3.37 that E = swcl(
n⋃
ρ=1

(Vρ(a))) =

swcl(
n⋃
ρ=1

(Hρ)). Hence, (E,Ta) is weakly sw-compact. One can prove the case between parentheses

following similar technique. �

Example 3.22 sets forth that the converse of Theorem 3.52 is false, and Example 3.39 demonstrates
that the topological condition of extended in the mentioned-above result is indispensable.

Theorem 3.53. Let A be a finite (resp., countable) parameter set and (E,T ,A) be a full softTS . If
all parametric topological spaces (E,Ta) inspired by (E,T ,A) is weakly sw-compact (resp., weakly
sw-Lindelöf), then (E,T ,A) is weakly soft sw-compact (resp., weakly soft sw-Lindelöf).

Proof. We prove the theorem for the compactness property and the Lindelöf property is proved in a
similar way. To do this, assume that C = {(Hρ,A) : ρ ∈ I} is a soft sw-open cover of (E,T ,A)
and let | A |= m. Then E =

⋃
ρ∈I

Hρ(a) for each a ∈ A. According to Proposition 3.18, Hρ(a) is an

sw-open set for each a ∈ A. By hypothesis, (E,Ta) is weakly sw-compact for each a ∈ A, so we

obtain E = swcl(
n1⋃
ρ=1

(Hρ(a1))), E = swcl(
n2⋃

ρ=n1+1
(Hρ(a2))),. . . , E = swcl(

nm⋃
ρ=nm−1+1

(Hρ(am)). This implies

that Ẽ = (swcl(
⋃̃nm

ρ=1(Hρ)),A). According to Lemma 3.40, we obtain Ẽ = swcl(
⋃̃nm

ρ=1(Hρ,A)). Hence,
(E,T ,A) is weakly soft sw-compact. �

The next result points out the cardinality numbers of the universal set and a set of parameters in the
weakly soft sw-compact and weakly soft sw-Lindelöf spaces.

Lemma 3.54. An extended softTS (E,T ,A) is weakly soft sw-compact (resp., weakly soft sw-Lindelöf)
if and only if the universal set E and set of parameters A are finite (resp., countable).

Proof. The necessary part follows from the fact that all soft sets which their components are the
universal set or empty set are soft sw-open and soft sw-closed sets. The sufficient part is obvious. �
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3.4. Mildly soft sw-compact and mildly soft sw-Lindelöf spaces

Definition 3.55. We call a soft subset of a softTS (E,T ,A) a soft swoc-set if it is both soft sw-open and
soft sw-closed.

Definition 3.56. We call a family of soft swoc-subsets of a softTS (E,T ,A) a soft swoc-cover of Ẽ if it
covers Ẽ.

Definition 3.57. A softTS (E,T ,A) is said to be mildly soft sw-compact (resp., mildly soft sw-Lindelöf)
if every soft swoc-cover has a finite (resp., countable) subcover.

In a softTS displayed in Example 3.4, it can be noted that the only soft swoc-sets are absolute and
null soft sets. So, this softTS is weakly soft sw-compact. Correspondingly, in a softTS displayed in
Example 3.28, it is illustrated that {{(a, {1, r}), (b, φ)}, {(a, φ), (b, {1, r})} : r ∈ R}} is a soft swoc-cover
of the universal set which has not a countable subcover. So, this softTS is not weakly soft sw-Lindelöf.
These two examples clarify the existence and uniqueness of weakly soft sw-compact and weakly soft
sw-Lindelöf spaces.

Proposition 3.58. (i) Mildly soft sw-compact spaces are mildly soft sw-Lindelöf.

(ii) Almost soft sw-compact (resp., almost soft sw-Lindelöf) spaces are mildly soft sw-compact (resp.,
mildly soft sw-Lindelöf).

(iii) The family of mildly soft sw-compact (resp., mildly soft sw-Lindelöf) subsets is closed under finite
(resp., countable) union.

Proof. Straightforward. �

Corollary 3.59. Soft sw-compact (resp., soft sw-Lindelöf) spaces are mildly soft sw-compact (resp.,
mildly soft sw-Lindelöf).

A discrete softTS defined over any infinite countable set with any finite set of parameters is mildly
soft sw-Lindelöf but not mildly soft sw-compact, so the converse of (i) in Proposition 3.58 fails. To
show that the converse of (ii) in Proposition 3.58 is also incorrect, we suffice by an example introduced
in general topology. In Example 3.3 if we consider a set of parameters any uncountable set, then it can
be checked that this softTS is not soft sw-Lindelöf. On the other hand, note that the soft swoc-subsets
of this softTS are the absolute and null soft sets, which means that this softTS is mildly soft sw-compact.
Hence, the converse of Corollary 3.59 is generally false as well.

One can prove the next results following similar arguments in the proofs of their counterparts given
in Subsection 3.1

Proposition 3.60. If a softTS (E,T ,A) is mildly soft sw-compact (resp., mildly soft sw-Lindelöf), then
every soft swoc-subset of (E,T ,A) is mildly soft sw-compact (resp., mildly soft sw-Lindelöf).

Corollary 3.61. The intersection of a mildly soft sw-compact (resp., mildly soft sw-Lindelöf) set and a
soft swoc-set is mildly soft sw-compact (resp., mildly soft sw-Lindelöf).

Theorem 3.62. A softTS (E,T ,A) is mildly soft sw-compact (resp., mildly soft sw-Lindelöf) if and only
if
⋂̃

ρ∈I(Hρ,A) , φ̃ for every family C = {(Hρ,A) : ρ ∈ I} of soft swoc-sets has a finite (resp., countable)
intersection property.
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Proposition 3.63. The property of being a mildly soft sw-compact (resp., mildly soft sw-Lindelöf) set
is preserved by a surjective soft continuous mapping.

Proposition 3.64. The soft sw-continuous image of a mildly soft sw-compact (resp., mildly soft sw-
Lindelöf) set is mildly soft compact (resp., mildly soft Lindelöf).

Proposition 3.65. The property of being a mildly soft sw-compact (resp., mildly soft sw-Lindelöf) set
is preserved by a soft sw-irresolute mapping.

Lemma 3.66. An extended softTS (E,T ,A) is mildly soft sw-compact (resp., mildly soft sw-Lindelöf)
if and only if the universal set E and set of parameters A are finite (resp., countable).

Theorem 3.67. Every parametric topological space (E,Ta) inspired by a mildly soft sw-compact
(resp., mildly soft sw-Lindelöf) space (E,T ,A) is mildly sw-compact (resp., mildly sw-Lindelöf) for
each a ∈ A.

Example 3.15 also demonstrates that the converse of Theorem 3.67 is not true in general.

Theorem 3.68. Let A be a finite (resp., countable) parameter set and (E,T ,A) be a full softTS . Then,
all parametric topological spaces (E,Ta) inspired by (E,T ,A) is mildly sw-compact (resp., mildly
sw-Lindelöf) if and only if (E,T ,A) is mildly soft sw-compact (resp., mildly soft sw-Lindelöf).

Definition 3.69. We call (E,T ,A) a soft sw-locally indiscrete softTS if every soft sw-open set is soft
sw-closed.

Proposition 3.70. The next concepts are identical under a soft sw-locally indiscrete softTS (E,T ,A).

(i) (E,T ,A) is soft sw-compact (resp., soft sw-Lindelöf).

(ii) (E,T ,A) is almost soft sw-compact (resp., almost soft sw-Lindelöf).

(iii) (E,T ,A) is weakly soft sw-compact (resp., weakly soft sw-Lindelöf).

(iv) (E,T ,A) is mildly soft sw-compact (resp., mildly soft sw-Lindelöf).

Proof. We prove the proposition for compactness and the case of Lindelöfness is proved in a similar
way.

The proofs of the directions (i) → (ii) and (ii) → (iii) follow from Propositions 3.5 and 3.29,
respectively. To prove that (iii)→ (iv), let C = {(Hρ,A) : ρ ∈ I} be a soft swoc-cover of a weakly soft
sw-compact space (E,T ,A). Then there exists a finite subset δ of I such that Ẽ = swcl(

⋃̃
ρ∈δ(Hρ,A)).

Since (E,T ,A) is soft sw-locally indiscrete, swcl(
⋃̃

ρ∈δ(Hρ,A)) =
⋃̃

ρ∈δ(Hρ,A). Thus, (E,T ,A) is
mildly soft sw-compact. Finally, we prove that (iv)→ (i). To do this, let C = {(Hρ,A) : ρ ∈ I} be a soft
sw-open cover of a soft sw-locally indiscrete softTS (E,T ,A). Then C is also a soft swoc-cover. By
hypothesis of mildly soft sw-compactness, there exists a finite subset δ of I such that Ẽ =

⋃̃
ρ∈δ(Hρ,A).

Thus, (E,T ,A) is soft sw-compact. Hence, the proof is complete. �

4. Soft sw-connected spaces

In this section, we define the concept of soft sw-connected spaces and discuss its characterizations
induced from soft sw-open sets. Then, we describe this concept by disjoint soft open sets, which
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implies the equivalence between soft sw-connected and soft hyperconnected spaces. Also, we explore
the main properties of this concept; especially, those related to specific types of soft compactness,
soft separation axioms, and soft continuous mappings. Finally, with the aid of counterexamples, we
demonstrate that the property of this type of connectedness is not commutative between soft topologies
and their parametric topologies. We also prove that possessing this property by a full soft topology
implies possessing by its parametric topologies and vice versa.

Definition 4.1. We call the soft subsets (H,A) and (K,A) of a softTS (E,T ,A) sw-separated soft sets
if (H,A)

⋂̃
swcl(K,A) = φ̃ and swcl(H,A)

⋂̃
(K,A) = φ̃.

It is clear that a condition of sw-separated soft sets is proper stronger than a condition of disjoint.

Definition 4.2. A softTS (E,T ,A) is called soft sw-disconnected if there are two non-null sw-separated
soft sets (H,A) and (K,A) which their soft union is Ẽ. Otherwise, we call (E,T ,A) a soft sw-connected
softTS .

In this case, we call (H,A) and (K,A) a soft sw-disconnection of Ẽ.

Proposition 4.3. Every soft disconnected softTS is soft sw-disconnected.

Proof. Follows from the fact that swcl(H,A)⊆̃cl(H,A) for any soft subset (H,A) of Ẽ. �

A softTS displayed in Example 3.28 is soft connected. But it is soft sw-disconnected because
{(a, R̃), (b, ∅)} and {(a, ∅), (b, R̃)} are sw-separated soft sets in which their soft union is the absolute
soft set R̃. So, the converse side of Proposition 4.3 is not always true.

Proposition 4.4. The next properties are equivalent.

(i) (E,T ,A) is soft sw-connected.

(ii) It cannot exist two proper disjoint soft sw-closed sets whose soft union is Ẽ.

(iii) It cannot exist two proper disjoint soft sw-open sets whose soft union is Ẽ.

(iv) The absolute and null soft sets are the only soft sw-open and soft sw-closed.

Proof. (i) ⇒ (ii): If we consider there exist two disjoint proper soft sw-closed sets (H,A) and (K,A)
such that (H,A)

⋃̃
(K,A) = Ẽ. Then we obtain (H,A) and (K,A) are sw-separated soft sets because

swcl(H,A) = (H,A) and swcl(K,A) = (K,A). But this contradicts (i). Hence, (ii) hold true.
(ii)⇒ (iii): Obvious.
(iii) ⇒ (iv): Let us consider (H,A) is both soft sw-open and soft sw-closed set. This leads to that
(Hc,A) is soft sw-open such that (H,A)

⋂̃
(Hc,A) = φ̃ and (H,A)

⋃̃
(Hc,A) = Ẽ, which contradicts (iii).

Hence, (iv) hold true.
(iv) ⇒ (i): Suppose, by contrary, that there is a soft set (H,A) which is both soft sw-open and soft
sw-closed. Then swcl(H,A) = (H,A) and swcl(Hc,A) = (Hc,A). So, (H,A) and (Hc,A) are two sw-
separated soft sets such that their union is Ẽ, thus (E,T ,A) is soft sw-disconnected. Hence, (iv)⇒ (i)
hold true. �

Now, we describe the concept of soft sw-disconnectedness using soft open sets instead of soft sw-
open sets.
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Theorem 4.5. A softTS (E,T ,A) is soft sw-disconnected if and only if T contains two non-null disjoint
soft open sets.

Proof. To prove the necessary part, let (E,T ,A) be soft sw-disconnected. Then, it follows from (iii)
of Proposition 4.4 that there exist two proper non-null disjoint soft sw-open sets; say, (H,A) and
(K,A). Thus, there exist non-null disjoint soft open sets (G1,A), (G2,A) such that (G1,A)⊆̃(H,A)
and (G2,A)⊆̃(K,A), as required. To prove the sufficient part, let (U,A) and (V,A) be two non-null
disjoint soft open sets. Then, (U,A)⊆̃(Vc,A), which means that (Vc,A) is a proper soft sw-open set.
Accordingly, we obtain (V,A) and (Vc,A) are non-null disjoint soft sw-open subsets of Ẽ such that
their soft union is Ẽ. Hence, (E,T ,A) is soft sw-disconnected. �

The above theorem informs us that the concepts of soft sw-connected and soft hyperconnected
spaces are identical.

Corollary 4.6. The next properties are equivalent.

(i) (E,T ,A) is soft sw-connected.

(ii) There do not exist two non-null soft open sets are disjoint.

(iii) There do not exist two proper soft closed sets such that their union is Ẽ.

(iv) Every non-null soft open set is soft dense.

(v) The soft interior of any proper soft closed set is the null soft set.

(vi) Every soft subset is soft dense or soft nowhere dense.

(vii) There do not exist two soft points separated by disjoint soft neighbourhoods.

Proposition 4.7. A non-null proper subset (K,A) of a soft sw-connected space (E,T ,A) has a non-null
soft sw-boundary points.

Proof. Suppose, by contrary, that swb(K,A) = φ̃. Then swcl(K,A) = swint(K,A), which means that
(K,A) is both soft sw-open and soft sw-closed. But this contradicts the soft sw-connectedness of
(E,T ,A). Hence, swb(K,A) , φ̃, as required. �

Definition 4.8. A soft subset (K,A) of (E,T ,A) is called a soft sw-connected set if there do not exist
two non-null sw-separated soft sets (G,A) and (H,A) such that their union is (K,A). Otherwise (K,A)
is called a soft sw-disconnected set.

Lemma 4.9. Let (H,A) and (G,A) be two soft sw-disconnection sets of (E,T ,A). If (K,A) is a soft
sw-connected subset of (E,T ,A), then (K,A)⊆̃(H,A) or (K,A)⊆̃(G,A).

Proof. Since (H,A) and (G,A) are soft sw-disconnection sets of (E,T ,A), we obtain
(H,A)

⋃̃
(G,A) = Ẽ and [(H,A)

⋂̃
swcl(G,A)]

⋃̃
[swcl(H,A)

⋂̃
(G,A)] = φ̃. Now, (K,A) =

[(K,A)
⋂̃

(H,A)]
⋃̃

[(K,A)
⋂̃

(G,A)]. It is clear that

[((K,A)
⋂̃

(H,A))
⋂̃

swcl((K,A)
⋂̃

(H,A))]
⋃̃

[((K,A)
⋂̃

(G,A))
⋂̃

swcl((K,A)
⋂̃

(G,A))]

⊆̃[(K,A)
⋂̃

swcl(H,A)]
⋃̃

[(K,A)
⋂̃

swcl(G,A)] = φ̃.
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So, we infer that (K,A)
⋂̃

(H,A) and (K,A)
⋂̃

(G,A) are soft sw-disconnection sets of (K,A). But
this contradicts the soft sw-connectedness of (K,A). Hence, (K,A)

⋂̃
(H,A) = φ̃ or (K,A)

⋂̃
(G,A) = φ̃,

which means that (K,A)⊆̃(H,A) or (K,A)⊆̃(G,A). �

Theorem 4.10. Let (K,A) be a soft subset of (E,T ,A) such that for each Pe
a, P

x
b ∈ (K,A) there is a

soft sw-connected subset (F,A) of (K,A) containing Pe
a, P

x
b. Then (K,A) is soft sw-connected.

Proof. Suppose, by contrary, that (K,A) is soft sw-disconnected. Then there exist soft sw-
disconnection sets (H,A) and (G,A) of (K,A). So there are soft points Pe

a, P
x
b such that Pe

a ∈ (H,A)
and Px

b ∈ (G,A). By the given, there exists a soft sw-connected set (F,A) containing Pe
a, P

y
e

such that (F,A)⊆̃(K,A) = (H,A)
⋃̃

(G,A). By Lemma 4.9, we get (F,A)⊆̃(H,A) or (F,A)⊆̃(G,A).
Consequentially, (H,A)

⋂̃
(G,A) , φ̃, which contradicts that (H,A) and (G,A) are soft sw-

disconnection of (K,A). This means that (K,A) is soft sw-connected. �

Corollary 4.11. If (K,A) is a soft union of soft sw-connected sets (Hρ,A) such that their soft
intersection is non-null, then (K,A) is soft sw-connected.

Proof. Suppose, by contrary, that (K,A) is soft sw-disconnected. Then there are two soft sw-
disconnection sets (F,A) and (G,A) of (K,A). Since

⋂̃
(Hρ,A) , φ̃, then there is a soft point Pe

a

such that Pe
a ∈ (Hρ,A) for each ρ. Now, either Pe

a ∈ (F,A) or Pe
a ∈ (G,A). Say, Pe

a ∈ (F,A). Then
[
⋂̃

(Hρ,A)]
⋂̃

(F,A) , φ̃. According to the above theorem we obtain (Hρ,A)⊆̃(F,A) for each ρ. This
means that (K,A)⊆̃(F,A). But this is a contradiction. Hence, (K,A) is soft sw-connected. �

Proposition 4.12. Let Ωπ be a soft continuous mapping of a soft sw-connected space (E,TE,A) onto
a softTS (X,TX,A). Then Ωπ(Ẽ) soft sw-connected.

Proof. Suppose that Ωπ(Ẽ) = X̃ is soft sw-disconnected. Then, by Theorem 4.5 we get TX contains
two non-null disjoint soft open sets (F,A) and (H,A). By hypothesis, Ω−1

π (F,A) and Ω−1
π (H,A) are

disjoint soft open subsets in TE. Since Ωπ is surjective, these soft open sets are non-null. Again it
follows from Theorem 4.5 that (E,TE,A) is soft sw-disconnected. But this is a contradiction. Hence,
(X,TX,A) is soft sw-connected. �

Proposition 4.13. (i) Any type of soft sw-Hausdorff space is soft sw-disconnected.

(ii) Every soft sw-connected is almost soft sw-compact.

A softTS displayed in Example 3.19 is almost soft sw-compact, but it is soft sw-disconnected. The
next example provides a softTS which is soft sw-disconnected, but not pp-soft swT2.

Example 4.14. Let T = {φ̃, Ẽ, (G1,A), (G2,A)} be a soft topology over the universal set E =

{x, y, z} with a set of parameters A = {a, b}, where (G1,A) = {(a, {x}), (b, {x})} and (G2,A) =

{(a, {y, z}), (b, {y, z})}. It is clear that (E,T ,A) is soft sw-disconnected, but it is not pp-soft swT2.

Proposition 4.15. Let (E,T ,A) be a softTS such that E or A is infinite countable (resp., uncountable).
Then every soft sw-disconnected is not soft sw-compact (resp., soft sw-Lindelöf).

The converse of the above proposition need not be true as illustrated by Example 3.4.

Proposition 4.16. The next properties are identical under a soft sw-connected space (E,T ,A).
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(i) (E,T ,A) is almost soft sw-Lindelöf.

(ii) (E,T ,A) is almost soft sw-compact.

(iii) (E,T ,A) is weakly soft sw-Lindelöf.

(iv) (E,T ,A) is weakly soft sw-compact.

(v) (E,T ,A) is mildly soft sw-Lindelöf.

(vi) (E,T ,A) is mildly soft sw-compact.

Proof. The proof follows from the fact that swcl(H,A) = Ẽ for any non-null soft open subset (H,A) of
a soft sw-connected space (E,T ,A). �

In rest of this section, we study the relationships between soft topologies and their parametric
topologies with respect to this type of connectedness. A softTS displayed in Example 3.15 is soft sw-
disconnected, whereas its parametric topological spaces are sw-connected. This means the property
of being sw-connectedness does not navigate from parametric topologies to soft topology. On the
other hand, the property of being soft sw-connectedness does not transmit from soft topology to its
parametric topologies as we elaborate by the next example.

Example 4.17. Let E = {x, y, z} be the universal set and the set of natural numbers N be a set of
parameters. Then, the family {φ̃, Ẽ, (Hρ,N) : Hρ(n) = E for all but finitely many n ∈ N} forms a soft
topology over E with N. It can be checked that the families of soft open sets and soft sw-open sets are
equal. Since we cannot get two disjoint soft open sets, (E,T ,N) is soft sw-connected. Whereas all
parametric topological spaces inspired by (E,T ,N) is sw-disconnected.

Theorem 4.18. Let A be a finite set of parameters. If all parametric topological spaces inspired by a
softTS (E,T ,A) is sw-disconnected, then (E,T ,A) is soft sw-disconnected.

Proof. Without loss of generality, take A = {a, b}. By hypothesis, (E,Ta) and (E,Tb) are sw-
disconnected. Then, there exist two disjoint nonempty open sets V,W in Ta and two disjoint
nonempty open sets X,Y in Tb. This implies that there exist four non-null soft open subsets
(H1,A), (H2,A), (H3,A), (H4,A) of (E,T ,A) such that H1(a) = V,H2(a) = W and H3(b) = X,H4(b) =

Y . Now, we have two cases:

(i) there exist two soft open sets of them are disjoint.

(ii) there does not exist two soft open sets of them are disjoint. Then, (H5,A) = (H1,A)
⋂̃

(H2,A) and
(H6,A) = (H3,A)

⋂̃
(H4,A) are non-null soft open sets. Since H5(a) = ∅ and H6(b) = ∅, (H5,A)

and (H6,A) are disjoint.

Hence, according to Theorem 4.5, (E,T ,A) is soft sw-disconnected. �

By Example 3.15, we see that the converse of the above theorem fails.

Theorem 4.19. Let (E,T ,A) be a full softTS . Then, (E,T ,A) is soft sw-disconnected if and only if all
parametric topological spaces inspired by (E,T ,A) is sw-disconnected.
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Proof. Necessity: Let (E,T ,A) be soft sw-disconnected. Then, according to Theorem 4.5, T contains
two disjoint non-null soft open sets (F,A) and (H,A). Since (E,T ,A) is full, F(a) and H(a) are both
nonempty disjoint open subsets of (E,Ta) for each a ∈ A. This implies that (E,Ta) is sw-disconnected
for each a ∈ A.

Sufficiency: Let a parametric topological space (E,Ta) be sw-disconnected. Then, there exist two
disjoint nonempty open sets V,W in Ta. So, there exist two non-null soft open subsets (F,A) and (H,A)
of (E,T ,A) such that F(a) = V and H(a) = W. Obviously, (F,A)

⋂̃
(H,A) is a soft open set with an

empty component; i.e. (F
⋂

H)(a) = ∅. Since (E,T ,A) is full, we obtain (F
⋂

H)(a) = ∅ for all a ∈ A.
This means that (F,A) and (H,A) are also disjoint. Hence, (E,T ,A) is soft sw-disconnected. �

5. Conclusion remarks and future works

Soft set theory has been widely used in many real-world applications for its tremendous practical
value. Typologists have exploited soft sets to define soft topological spaces and studied classical
topological concepts via soft frame. As we noted in the published literature the abstract topological
concepts in soft settings such as soft compactness [8], soft separation axioms [12] and generalized soft
open sets [13] have been successfully applied to address practical issues in the information systems,
economic and medical science. Also, the variety of belonging and non-belonging relations between
ordinary points and soft sets produces a fruitful environment to display classical topological concepts
from different standpoints as illustrated to soft compact spaces and soft separation axioms.

In this manuscript, we have benefited from one of the generalizations of soft open sets called “soft
sw-open sets” to introduce the concepts of compactness, Lindelöfness and connectedness via the frame
of soft topologies. First, we have presented novel types of soft compact and Lindelöf spaces namely,
soft sw-compact, soft sw-Lindelöf, almost soft sw-compact, almost soft sw-Lindelöf, weakly soft sw-
compact, weakly soft sw-Lindelöf, mildly soft sw-compact and mildly soft sw-Lindelöf spaces. We
have established the main properties of these spaces and provided some interesting examples to show
the relationships between them. Some exciting results described the behaviours of these spaces via soft
topology and its parametric topologies have been obtained and illustrated with some counterexamples.

Then, we have introduced the concept of soft sw-connected spaces and described by soft sw-open
and sw-closed sets. One of the important results that we have proved is the identity between soft sw-
connected and soft hyperconnected spaces. We have also scrutinized the relationships that associate
this concept with some types of soft compactness and soft separation axioms. Moreover, we have
elaborated that the property of being sw-connectedness is commutative between soft topology and its
parametric topological spaces under a condition of full soft topology.

We draw attention to that the concepts introduced herein have some unique characterizations that
are invalid for their counterparts defined by the other types of famous generalizations of soft open sets
such as soft α-open, soft semi-open, soft pre-open, soft b-open and soft β-open sets. For example,
the properties of being soft sw-compact and soft sw-Lindelöf (mildly soft sw-compact and mildly soft
sw-Lindelöf) spaces are transmitted to all their parametric topological spaces; see, Theorems 3.14
and 3.67. But it is imposed a condition of extended soft topology to preserve this characteristic for
the other types given in the published literature. Also, some descriptions of the previous types of
compactness and Lindelöfness are preserved under a condition of extended soft topology, whereas
these descriptions are satisfied for the current types of compactness and Lindelöfness under a condition
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of full soft topology; see, Theorems 3.21, 3.41, 3.53 and 3.68. With respect to soft sw-connectedness,
it has been shown that the property of being a soft sw-connected space is navigated to all its parametric
topological spaces provided that a set of parameters is finite; see, Theorem 4.18. Also, it has been
demonstrated that this property is interchangeable between soft topology and its parametric topologies
under a condition of full soft topology; see, Theorem 4.19.

Regarding the relationships between the current covering properties and the previous ones, it can
be noted that the covering properties produced by soft α-open and soft semi-open sets are special cases
of their counterparts introduced herein. This fact can be seen from Example 3.15. On the other hand,
any indiscrete softTS defined over an uncountable universal set and a softTS displayed in Example 3.16
clarify that the current covering properties and those defined by soft pre-open, soft b-open and soft
β-open sets are independent of each other.

In future work, we are going to study further topological concepts via the family of soft sw-open
sets such as paracompactness, local compactness, and local connectedness. Also, we will research
the possibility of applying the concepts introduced herein to handle some real-life issues as presented
in [8]. Moreover, we analysis rough set models via soft frame using the concepts of soft sw-open sets
as given in the classical frame by [10, 11].
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regular closed sets, Afr. Mat., 33 (2022). https://doi.org/10.1007/s13370-021-00952-z

8. T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the
information system, J. Math., 2021 (2021), 6699092. https://doi.org/10.1155/2021/6699092

9. T. M. Al-shami, Homeomorphism and quotient mappings in infra soft topological spaces, J. Math.,
2021 (2021), 3388288. https://doi.org/10.1155/2021/3388288

10. T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using
somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-
021-06358-0

11. T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8
(2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x

AIMS Mathematics Volume 8, Issue 1, 815–840.

http://dx.doi.org/https://doi.org/10.3390/math8050672
http://dx.doi.org/https://doi.org/10.1007/s40815-021-01225-4
http://dx.doi.org/https://doi.org/10.1155/2022/5200590
http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2022.e09954
http://dx.doi.org/https://doi.org/10.1155/2022/9860015
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2008.11.009
http://dx.doi.org/https://doi.org/10.1007/s13370-021-00952-z
http://dx.doi.org/https://doi.org/10.1155/2021/6699092
http://dx.doi.org/https://doi.org/10.1155/2021/3388288
http://dx.doi.org/https://doi.org/10.1007/s00500-021-06358-0
http://dx.doi.org/https://doi.org/10.1007/s00500-021-06358-0
http://dx.doi.org/https://doi.org/10.1007/s40747-022-00704-x


839

12. T. M. Al-shami, On soft separation axioms and their applications on decision-making problem,
Math. Probl. Eng., 2021 (2021), 8876978. https://doi.org/10.1155/2021/8876978

13. T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to
nutrition, Comput. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314-022-01919-x

14. T. M. Al-shami, M. E. El-Shafei, M. Abo-Elhamayel, Almost soft compact and
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Lindelöf spaces using soft somewhere dense set, AIMS Math., 6 (2021), 8064–8077.
https://doi.org/10.3934/math.2021468
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