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Abstract: This investigation theoretically describes the exact solution of an unsteady fractional a second-
grade fluid upon a bottom plate constrained by two walls at the sides which are parallel to each other and 
are normal to the bottom plate. The flow in the fluid is induced by the time dependent motion of the 
bottom plate. Initially the flow equation along with boundary and initial conditions are considered which 
are then transformed to dimensionless notations using suitable set of variables. The Laplace as well as 
Fourier transformations have been employed to recover the exact solution of flow equation. The time 
fractional differential operator of Caputo-Fabrizio has been employed to have constitutive equations of 
fractional order for second-grade fluid. After obtaining the general exact solutions for flow 
characteristics, three different cases at the surface of bottom plate are discussed; namely (i) Stokes first 
problem (ii) Accelerating flow (iii) Stokes second problem. It has noticed in this study that, for higher 
values of Reynolds number the flow characteristics have augmented in all the three cases. Moreover, 
higher values of time variable have supported the flow of fractional fluid for impulsive and constantly 
accelerated motion and have opposeed the flow for sine and cosine oscillations. 
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1. Introduction 

Fractional calculus plays a significant role in the solution of complex engineering problems. To 
tackle with solutions of different flow problems many researchers and scientists choose fractional 
model due to its important role in physical elaboration of flow problems. In contrast of ordinary 
differential equations (ODEs), the fractional model recovers the solution in more precise and 
accurate form and describes the solution of flow system at minute level. The operator used by 
Caputo and other scientists has involved kernel of singular form and has resulted in complex series 
solutions even for Newtonian fluid models. In order to overcome this complexity Fabrizio and 
Caputo [1] has introduced new operator of fractional form, the utilization of which was a simple task. 
Later, many researchers have used this concept for discussion of various fluid flow problems with 
the influence of various flow conditions and different geometries. A new fractional order derivative 
consisting of nonsingular kernel has introduced by Alshabanat et al. [2]. The authors of this study 
have used exponential as well as trigonometric functions in the flow problem. Hamid et al. [3] have 
studied numerically the unsteady fractional fluid flow upon a plate placed vertically subject to 
naturally convective thermal radiations. Singh et al. [4] have used the idea of fractional derivatives 
for determination of virus in computer system by considering epidemiological fractional model and 
have solved the modeled equations using the iterative method. Shah and Khan [5] have used the 
concept of Caputo-Fabrizio derivatives to discuss the heat transfer characteristics for oscillatory fluid 
motion past a vertical surface. In this study the exact solution has been determined for thermal and 
velocity profiles by using Laplace transformation. A comparative work has also been conducted in 
this study for integer and fractional orders where the authors have established that fractional 
parameter has augmented the flow of fluid. Hamid et al. [6] have evaluated a numerical solution 
efficiently, for MHD fractional model and have concluded that thermal profiles have been augmented 
with upsurge in radiation factor. Usman et al. [7] have analyzed the fractional model for Jeffery fluid 
past a vertical plate subject to unsteady diffusivity and conductivity. Other similar studies can be 
seen in Refs. [8–10]. 

The growing tendency in various applications at industrial level has appealed many researchers 
to analyze the mathematical models for non-Newtonian fluid. The important applications of these 
fluids at industrial level have enhanced this desire to a maximum level. The main applications of 
these fluids include spinning of metals, refinement of melted metals from non-metallic inclusion, 
shoes manufacturing (some shoes are normally filed with non-Newtonian fluid to protect feet from 
injury), metal extrusion, food, medicine industry etc. Many attempts have been made by different 
researchers to determine the exact solutions to different flow problems involving non-Newtonian 
fluid of second grade. Ali et al. [11] have determined the closed form solution for free convective 
unsteady fluid flow over oscillating vertical plate. The authors of this study have used Laplace 
transformation to determine the closed form solution of flow problem and have also discussed the 
influence of different substantial parameters upon velocity and temperature profiles. The closed form 
solution of Stokes flow problem for nanofluid has been determined by Taha et al. [12]. In this work 
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the flow has induced by motion of lower plate and the partial differential equations have converted to 
dimensionless form by implementing Lie symmetry approach. For free convection unsteady fluid 
flow, the closed form solution has determined by Toki and Tokis [13] by employing Laplace 
transformation. Different cases such as impulsive flow and accelerating have also investigated in this 
study along with the effects of different flow parameters upon motion of fluid. Asif et al. [14] have 
determined the closed form solution for fluid flow through channel by considering different form of 
solution under the impact of various cases. 

The flows bounded by side walls and a solid surface are the channel flows. Due to its important 
applications various researchers have carried out many investigations with main focus upon fluid 
flow characteristics. The influence of Dufour effects upon free convection fluid flow inside a vertical 
channel has been investigated by Jha and Ajibade [15]. Ingham [16] has determined transition flow 
for free convective fluid over a flat sheet in vertical form. Raptis and Singh [17] have discussed the 
MHD convective flow past a flat surface where the surface has taken to be accelerated in vertical 
direction. The exponential plate has used by Singh and Kumar [18] for fluid flow and have 
determined the exact solution for expressions of skin friction and velocity of fluid. The MHD fluid 
flow past a flat surface has deliberated by Khan et al. [19] along with the influence of side walls 
upon the flow of fluid. Haq et al. [20] discussed flow of MHD fluid over a penetrable sheet. The 
authors of this study have investigated the influence of side boundaries over the liquid flow by 
considering the limiting cases for second grade fluid. Fetecau [21] has investigated the analytical 
solution for flow of fluid in a pipe. The author has used the Steklov expansion theorem to determine 
the exact solution for modeled equations. Bandelli and Rajagopal [22] have inspected the second 
grade fluid flow in a finite and unidirectional domain. The Fourier and Laplace transformations have 
applied by the authors to determine the closed form solution. Fetecau et al. [23] have used the 
Fourier sine transformation for exact solution of time dependent second grade fluid past a sheet. 
Different cases imposed upon the bottom plate have considered by the authors by addressing the 
limiting cases under the influence of side boundaries. Fetecau and Zierep [24] have determined the 
analytical solutions for fluid flow upon a surface. In this studt a sudden jerk has given to the bottom 
plate for inducing motion into the fluid and Fourier transformation has used for finding exact solution. 

From the above cited literature and other similar work, it has revealed that many investigations 
have been conducted for second grade fluid along with the determination of exact solutions by using 
different geometries. But no work has yet been conducted for exact solution of fractional second 
grade fluid flow through channel, which is the main novelty in the current work and is also a source 
of attraction for authors to conduct this investigation. In this study the authors have made an 
endeavor to determine the exact solution at the first time for second grade fractional fluid flowing in 
a channel by incorporating the combination of Laplace and Fourier transformations. The momentum 
equation is converted into dimensionless form by using set of suitable variables. The exact solution 
of resultant equations has been determined by employing Laplace and Fourier transformations 
[25,26]. After obtaining the general exact solutions for flow characteristics, three different cases at 
the surface of bottom plate are discussed; namely (i) Stokes first problem (ii) Accelerating flow 
(iii) Stokes second problem. The time fractional differential operator of Caputo-Fabrizio has 
employed to have constitutive equations of fractional order for second grade fluid. After recovering 
the exact solution for different cases we have then used Mathcad-15 for discussion of graphical 
view of the momentum equation. 
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2. Problem description  

Since the equation of motion for Newtonian as well as non-Newtonian fluid is described as [20] 

div ,d
dt

ρ =
V T


          (1) 

In Eq (1) T is the Cauchy stress tensor which can mathematically be expressed for second grade 

fluid as follows  

2
1 1 2 2 1 ,p µ α α= − + + +T I A A A         (2) 

In Eq (2) I is the identity tensor, p is pressure, 1 2,α α are normal stress moduli and 1 2,A A are 

first two Rivlin-Ericken kinematic tensors and can be expressed mathematically as 

1 ,∗= +A L L            (3) 

1
2 1 1,

d
dt

∗= + +
AA A L L A

         (4) 

In above equations L presents the gradient of velocity while ( )∗ is used for matrix transposition.  
In this problem we have considered a time-dependent flow of fractional second grade fluid past 

an endless plate bounded by two side walls with a distance ‘ d ’between them. These walls at the 
sides are normal to the plate at the bottom but are parallel to each other. The bottom plate supports 

the fluid flow because the plate along with fluid is at rest for 0t = while with 0t
+

= the plate at the 

bottom gets into motion with time-dependent flow ( )0U f t such that ( )0 0f = . The flow of fluid is 

unidirectional which is mathematically described as ( ), ,V u y z t i=  with 0v w= = (see Figure 1). 

 

Figure 1. Graphical view of flow problem. 
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The equation that governs the flow problem is mathematically expressed as [14,20] 

, 0, 0 ,xyxzu y with z d
t z y

ττρ
∂∂ ∂

= + > ≤ ≤
∂ ∂ ∂       (5) 

From above we have  

1xy
u
y t

τ µ α∂ ∂ = + ∂ ∂   while
1 ,xz

u
z t

τ µ α∂ ∂ = + ∂ ∂       (6) 

The related conditions at boundaries are described as [27] 

( ) ( ) ( ) ( ) ( ) ( ) ( )0y, , y,0, 0, , ,0 , ,0 0, 0, , , , ,0 0,xz xzu d t u t y z y z U f t u z t u y zτ τ= = = = = =
 

While 
( ) ( ), ,

, , 0 , 0
u y z t

u y z t
y

∂
→ →

∂ for y →∞      (7) 

In above equations ρ is density, µ is dynamic viscosity, while ( ) 0f t ≠  for 0t > and ( )0 0f =  
For the purpose of converting the momentum equation and initial, boundary conditions into 
dimensionless form, the following set of variables is used [27]  

* *
* * * *0

2 2
0 0 0 0 0 0 0

, , , , , , ,xy xz
xy xz

z y tU d uz y t L u
d d d d U U U

τ ττ τ
ρ ρ

∗= = = = = = =
   (8) 

By substituting Eq (8) in Eqs (5) and (6) we obtain the following set of equations [20,27] 

, 0, 0 ,xyxzu y z L
t z y

ττ ∂∂ ∂
= + > ≤ ≤

∂ ∂ ∂      (9) 

1 1,
Re Rexy xz

u u
y t z t

τ α τ α∂ ∂ ∂ ∂   = + = +   ∂ ∂ ∂ ∂         (10) 

The conditions defined at boundaries along with initial condition are  

( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

y, 0, 0, 0, , , y, , 0, , , 0 0,

, ,
, , 0, 0

d tu t u z t f f t u L t u y z
U

u y z t
u y z t for y

y

 
== = = = = 

 
∂

→ → → ∞
∂   (11) 

In above equations the symbol 0d presents specified length, 
1

0d
αα
ρ

=
is dimensionless parameter for 

second grade fluid and 
0 0Re U d
v

=
portrays Reynolds number. 
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The constitutive equations for fractional derivative in generalized form are 

0 0
1 1, .

Re Re
CF CF

xy t xz t
u uD D
y z

α ατ α τ α∂ ∂   = + = +   ∂ ∂        (12) 

3. Problem solution 

Applying Laplace transform to Eqs (9) and (10) and employing Eq (12) we have  

xy xzsu
y z
τ τ∂ ∂

= +
∂ ∂ and ( ) ( )

1 1,
Re 1 Re 1xy xz

u s u u s u
y s y z s z

α ατ τ
β β β β

   ∂ ∂ ∂ ∂
= + = +      ∂ − + ∂ ∂ − + ∂     

After simplification of above equation we have  

( )( )
( )

2 2

2 2

Re 1
1 Re

su u su
y z s s

β β
β β α

 − +∂ ∂
+ =  

∂ ∂ − + +        (13) 

The conditions given in Eq (11) after using Laplace transform we have 

( ) ( ) ( ) ( ) ( )

( ) ( )

, , 0 0, y, , y, 0, 0, 0, , ,

, ,
, , 0, 0

u y z u L s u s u z s F s

u y z s
u y z s whenever y

y

= = = =

∂
→ → →∞

∂   (14) 

Multiplying the term 
( ) ( )

0 0

2 sin .sin
L

ny z dydzζ ψ
π

∞

∫ ∫
 with Eq (13) and employing Eq (14) with 

n
n
L
πψ =

 we have 

( ) ( ) ( )( )
( )( ) ( )( )( )

( )
2 2

Re 1 1 12,
Re 1 1 Re

n

sn
nn

F s s s
u s

s s s s
β α β ζ

ζ
π ψβ β β β α ψ ζ

  + + − − −
 =  

  + − + + − + +      (15) 

Rearrange Eq (15) to get  

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )( )
( ) ( )

2 2

2 2 2 2
2

2 2 2 2
2

1 12,

1 Re 1
Re 1 1 Re1 12

Re 1
Re 1 1 Re

n

sn
n n

n n

n

n n n

F s
u s

s s
F s

s s

ζ
ζ

π ψ ψ ζ

β α ψ ζ ψ ζ β
β βζ

π ψ ψ ζ β α ψ ζ β β
β β

 − −  
=      +  

  + + + + +
  + +

 − −   − −    −       +  + + + −     + +   − −      (16) 
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Using Laplace inversion in combination of convolution theorem we have after simplification  

( ) ( ) ( )

( )
( )( )

( ) ( ) ( )
( ) ( )

( ) ( )( )1 2

2 2

1

2 2
21

1 12,

1 12 *
2

n n

n

sn
n n

n
n D t D t

n nn n

f t
u t

f t A f t
e e

A f tc
ζ ζ

ζ
ζ

π ψ ψ ξ

ζζ
π ψ ζζ ψ ξ

− −

 − −  
=      +  

   ′′ ′+ − −
 + −       ++      (17) 

Following relations have been incorporated in Eq (17) which are constant terms and have been used 
for convenience. These terms are carried out till the end of solutions with slight changes in notation only. 

( ) ( )
( ) ( ) ( )

( )

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

1 2

2 2

3

2
3 3 3

1 1 1 2 1

Re 1 1
, ,

1 Re 1 Re

Re 1
, ,

1 Re 1 Re

, ,
4 2 2

n n
n n

n
n

n n n
n n n n n

A A

A E

A A A
c E D c D c

β α ψ ζ β ψ ζ
ζ ζ

β β

β α ψ ζ β βζ
β β

ζ ζ ζ
ζ ζ ζ ζ ζ

+ + + + +
= =

− −

+ + + −
= =

− −

= − = + = − +
 (18) 

Now in light of Fourier inversion formulae, Eq (17) has simplified to following form  

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )

11 22

1 1

11 22 2 2
11

4 sin sin4, ,

sin
sin sin *

m

m m

y
m m

n nm m

tD tD

m m
o m m

f t e z z
u y z t

L L

e e y
f t f t y A f t y A d

c

ψ

ζ ζ

ψ ψ
ψ π ψ

ζ ζ
ζ ζ ζ ζ ζ

ψ ζ ζ

−∞ ∞

= =

− −∞

= +

 −
 ′′ ′× + +
 +
 

∑ ∑

∫
 (19) 

In above equation 2 1m n= − whereas  

( ) ( )
( ) ( ) ( )

( )

( )
( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

11 22

2 2 2
33

33 11

33 33
11 11 22 11

Re 1 1
, ,

1 Re 1 Re

Re 1
, ,

1 Re 4

,
2 2

m m
m m

m m
m m

m m
m m m m

A A

A
A c E

A A
D c D c

β α ψ ζ β ψ ζ
ζ ζ

β β

β α β ψ ζ ζ
ζ ζ

β

ζ ζ
ζ ζ ζ ζ

+ + + + +
= =

− −

+ + − +
= = −

−

= + = − +
  (20) 

Substitute 2L h= and transform the axis of coordinates by putting 
( )* 2 1

,
2m

n
z h z

h
π

γ
−

= + =
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while m mγ ψ= in Eq (19) which simplifies to  

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )
( ) ( )

1 2

1 1

1 1

1 2 2 2
0 1

cos 1 cos 12, , 2

sin
sin sin

m

m m

n ny
m m

n nm m

D t D t

m m
m m

f t z e z
u y z t

h h

e e y
f t f t y A y A f t d

c

γ

ξ ξ

γ γ
γ π γ

ξ ζ
ζ ζ ζ ζ ζ

γ ζ ζ

+ +−∞ ∞

= =

− −∞

− −   = +   
  

  −  ′ ′′× + +
  +   

∑ ∑

∫
 (21) 

In Eq (21) the following relations have been incorporated  

( ) ( )
( ) ( ) ( )

( )

( )
( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

1 2

2 2 2
3

3 1

3 3
1 1 2 1

Re 1 1
, ,

1 Re 1 Re

Re 1
, ,

1 Re 4

,
2 2

m m
m m

m m
m m

m m
m m m m

A A

A
A c E

A A
D c D c

β α γ ζ β γ ζ
ζ ζ

β β

β α β γ ζ ζ
ζ ζ

β

ζ ζ
ζ ζ ζ ζ

+ + + + +
= =

− −

+ + − +
= = −

−

= + = − +
    (22) 

4. Cases of interest  

Next different cases will be considered keeping in mind the side walls of the flow system 

4.1. When the gap between the side walls is maximum i.e. h →∞  

Whenever the gap between the walls of the system is maximized the flow will remain unaltered 
due to these side walls, in such situation Eqn. (21) simplifies to  

( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
( )

( )1 2

1 2

0

1

sin sin

, 1 / sin
*

.

L t L t

f t f t y A A y f t

u y t d f te e y

c

ζ ζ

ζ ζ ζ ζ

π ζζ

ζ ζ

∞

− −

 ′ ′′+ +
 
 = +− 
 
 

∫

  (23) 

In above equation, the following relations have been incorporated  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2

1 2 3

2
3 3 3

1 1 1 2 1

Re 1 1 Re 1
, ,

1 Re 1 Re 1 Re

, ,
4 2 2

A A A

A A A
c E D c D c

β α ζ β ζ β α ζ β
ζ ζ ζ

β β β

ζ ζ ζ
ζ ζ ξ ζ ζ

+ + + + + −
= = =

− − −

= − = + = − +
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4.2. Stokes first problem when ( ) ( )f t H t=
 

Replace ( )f t by ( )H t in Eq (21) where ( )H t is named as unit step function, we will have in 
this case 

( ) ( ) ( )( )

( )( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1

2

1

1

2
2 1 1 1 2

21
1 1 2 2 2

2 2
1 0 1 1 2

2 cos 1
, z,

cos 12 . .sin

m

m

m

n y
m

n m

tD
m m m m m

tDn
m m m m mm

n m m m m n

H t z e
u y t

h

D A D D A e

D A D A D ez
y d

h D c D

γ

ζ

ζ

γ
γ

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζγ
ζ ζ

π γ ζ ζ ζ ψ ζ

+ −∞

=

−

−+ ∞∞

=

−
= +

 −
 
 − − −−  

+

∑

∑ ∫
 (24) 

By removing the side walls we will have mathematically as h →∞ , in this situation Eq (24) 
reduces as  

( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1

2

2
2 1 1 2 1

2
1 1 2 2 2

1 1 20

1, .sin

tL

tL

L A L A L e

L A L A L e
u y t H t y d

L c L

ζ

ζ

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ
ζ ζ

π ζ ζ ζ ζ

−

−∞

 −
 
 − − − = + ∫

  (25) 

4.3. For ( ) af t t= (for accelerating plate) 

By employing ( ) af t t= in Eq (21) the following relation has obtained 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )
( )( )

1 2

1 1

1 1

2

2 12 2 2
0 1

cos 1 cos 12, , 2

sin
sin sin *

m

m m

n nya
m m

n nm m

tD tDa a
a

m m
m m

z e ztu y z t
h h

e e yd t d t
A y t A y d

dt dt c

γ

ζ ζ

γ γ
γ π γ

ζ ζ
ζ ζ ζ ζ ζ

ξ γ ζ

+ +−∞ ∞

= =

− −∞

− −
= +

    −
   × + +

    +   

∑ ∑

∫
  (26) 

Equation (26) depicts the solution of an accelerated case for fluid flow. Specifically if the 

bottom plate is moving with a constant acceleration then one can have ( )f t t= . With this value, Eq 
(21) simplifies to  

( ) ( )( ) ( )( )

( )
( )( )

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 1

1 2

1 1

1 1

1 2
1 2 2 2

1 2 1 2
2 2

0 1 2 2
1 1 2 3 2 1

cos 1 cos 12, , 2

sin

2

m

m m

m m

n n
ym m

n nm m

D t D tm m
m m

m m m m

D t D tm m
m m m m m m

z ztu y z t e
h h

A A
D e D ey D D D D d

c
c D D t A D e D e

γ

ζ ζ

ζ ζ

γ γ
γ π γ

ζ ζ
ζ ζζ ζ ζ ζ ζ ζ ζ

ζ ζ γ
ζ ζ ζ ζ ζ ζ

+ +∞ ∞
−

= =

− −
∞

− −

− −
= +

 
− + 

×  
+  − − + −  

∑ ∑

∫
 (27) 
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For limiting case we have h →∞ , for which the flow field is expressed as 

( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 1

2 1

1 2
1 2 2 2

2 1 2 1

10 2 2
1 2 1 3 1 2

sin
, 1 /

2

L t L t

tL tL

A A
L e L ey L L L Lu y t t d

c
c L L t A L e L e

ζ ζ

ζ ζ

ζ ζ
ζ ζζ ζ ζ ζ ζπ ζ

ζ ζ
ζ ζ ζ ζ ζ ζ

− −
∞

− −

 
− + 

= +  
 − − − +  

∫
 (28) 

4.4. For ( ) ( )itf t e H tω=  

It is to be noticed that if the bottom plate is moving with some oscillation then the fraction fluid 

will have oscillational velocities denoted by cu and su . These oscillating velocities correspond to 
cosine as well as sine oscillations and we have 
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Now if the effect of the side walls   upon the motion of fractional fluid is ignored then as a limiting 
case we have h →∞  and in such a case we have from above equations 
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5. Limiting case 

It is obvious that by taking ` 1β →  our fractional second grade fluid model reduces to the 
solutions obtained by Haq et al. [20] that validates our solutions.  
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By using the property we have: 
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Using the above limiting case in all the fractional order solutions we see that our solution has 
reduced to published results as given in Ref [20] which verifies and validates our solutions as a 
limiting case. 

6. Discussion of results 

This investigation theoretically describes the exact solution of an unsteady fractional fluid flow 
upon a bottom plate bounded by two side walls. The flow is induced by the time dependent motion 
of the bottom plate. Initially the flow equation along with boundary and initial conditions are 
considered which are then transformed to dimensionless notations using suitable set of variables. The 
Laplace as well as Fourier transformations have been employed to recover the exact solution of flow 
equation. The time fractional differential operator of Caputo-Fabrizio has been employed to have 
constitutive equations of fractional order for second grade fluid. After obtaining the general exact 
solutions for flow characteristics, three different cases at the surface of bottom plate have been 
discussed. 

Figures 2–5 describe the flow profiles for Stokes first problem. It has noticed from Figure 2 that 

augmentation in the values of time variable ( )t results in decay in fractional fluid flow profiles for
0.1,Re 20, 0.1, 1.0hα β= = = = . Figure 3 portrays the influence of Reynolds number ( )Re upon flow 

profiles. Since it is the ratio of inertial to viscous forces so for augmentation in values of ( )Re up to a 
specific range the behavior of fluid flow is laminar so flow profiles will augment in such case by 
keeping 0.1, 3.2, 0.1, 1.0t hα β= = = =  as depicted in Figure 3. Form Figures 4 and 5 it has noticed 

that there is an inverse relationship between fractional parameter ( )β and second grade parameter
( )α , because flow is a declining function of these parameters. 
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Figure 2. Flow profiles for fluid impulsive motion versus variations in t . 

 

Figure 3. Flow profiles for fluid impulsive motion versus variations in Re . 
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Figure 4. Flow profiles for fluid impulsive motion versus variations in β . 

 

Figure 5. Flow profiles for fluid impulsive motion versus variations inα . 

Figures 6–9 depict the flow characteristics for constantly accelerated flow of fractional fluid. It 
has observed from Figure 6 that by keeping 0.1, 0.1α β= = and Re 10= with augmentation in time 

variable ( )t the fractional fluid motion declines within the prescribed domain. Similar to Stokes first 
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problem in response of augmentation in Reynolds number ( )Re the flow characteristics jumps up by 
considering 0.15, 0.003, 2.5, 1.0, / 3t hα β ω π= = = = = as depicted in Figure 7. It has also 

concluded that with augmentation in fractional parameter ( )β and second grade parameter ( )α there is 
a reduction in momentum of fractional fluid. So an inverse relationship between flow characteristics 
and these parameters exists as presented in Figures 8 and 9.  

 

Figure 6. Flow of fluid with constant acceleration versus variations in t . 

 

Figure 7. Flow of fluid with constant acceleration versus variations in Re . 
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Figure 8. Flow of fluid with constant acceleration versus variations in β . 

 
Figure 9. Flow of fluid with constant acceleration versus variations inα . 

Figures 10–13 exhibit the behavior of flow characteristics in response of variations in different 
parameters for sine oscillation. Figures 10 and 11 depict that augmentation in time variable and 
Reynolds number results a corresponding growth in fraction second grade fluid motion for fixed 
values of the parameters 0.01, 0.01,Re 20, 1, / 3hα β ω π= = = = = in case of variations in time, and 

0.01, 0.01, 1.05, 1, / 3t hα β ω π= = = = =  in case of variations in Reynolds number. On the other 
hand Figures 12 and 13 show that flow profiles of fractional fluid reduced with augmentation in the 

values of fractional parameter ( )β and second grade parameter ( )α . Actually with augmenting values 
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of these parameters the momentum boundary layer thickness reduced. The influence of different 
parameters upon flow profiles for cosine oscillations is presented in Figures 14–17. A similar 
behavior for fractional fluid motion is observed in response of variations in different flow 
parameters. Furthermore, it is of worth noting that Figures 13 and 17 are plotted to compare the 

fractional solutions to the classical solutions for ( )1β = which are reduced to the solutions obtained by 
Haq et al. [20] that validates our obtained solutions. 

 

Figure 10. Fluid flow with sine oscillations versus variations in t . 

 

Figure 11. Fluid flow with sine oscillations versus variations in Re . 
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Figure 12. Fluid flow with sine oscillations versus variations inα . 

 

Figure 13. Fluid flow with sine oscillations versus variations in β . 
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Figure 14. Fluid flow with cosine oscillations versus variations in t . 

Figure 15. Fluid flow with cosine oscillations versus variations in Re . 
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Figure 16. Fluid flow with cosine oscillations versus variations inα . 

 

Figure 17. Fluid flow with cosine oscillations versus variations in β . 
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In Figure 18 a graphical comparison between 0.8, 1.0α α= = has been carried out in current 
investigation by taking other parameter values as Re 20, 3.2, 0.1, 1.0t hβ= = = = .  

 

Figure 18. Flow profiles for fluid motion for 0.8, 1.0α = . 

7. Conclusions 

This investigation theoretically describes the exact solution of an unsteady fractional fluid flow 
upon a bottom plate bounded by two side walls. The flow is induced by the time dependent motion 
of the bottom plate. Initially the flow equation along with boundary and initial conditions are 
considered which are then transformed to dimensionless notations using suitable set of variables. The 
Laplace as well as Fourier transformations have been employed to recover the exact solution of flow 
equation. After obtaining the general exact solutions for flow characteristics, three different cases at 
the surface of bottom plate have been discussed with the help of graphical view. The following points 
are concluded after an insight of the problem: 

• It has established in this investigation that augmentation in time variable declines the flow 
profiles for impulsive and constantly acceleration cases. On the other hand a growth in flow 
characteristics has been observed for higher values of time variable for both sine and cosine 
oscillations.  

• Growth in Reynolds number results an augmentation in the flow characteristics for impulsive 
and constantly acceleration as well as for sine and cosine oscillations. 

• It has also concluded that augmentation in fractional parameter and second grade parameter 
supports the flow profiles in all the three cases namely Stokes first problem, accelerating flow 
and Stokes second problem. 



444 

AIMS Mathematics  Volume 8, Issue 1, 423–446. 

Nomenclature  

Symbol Description Symbol Description 
, ,u v w  Velocity components ( )1.m s−  

f  Constant velocity ( )1.m s−  
,y z  Cartesian coordinates ( )m  cu , su  Oscillational velocities ( )1.m s−  
t  Time variable ( )Sec  

Re  Reynolds number 

d  Distance between plates ( )m  
0

tDα

 Fractional derivative 

Greek letters 

β  Fractional parameter .xz xyτ τ  Shear stresses ( )Pa  
α  Dimensionless parameter for 

second grade fluid 
µ  Dynamic viscosity ( )2. 1.m s−  

ρ  Fluid density ( )3kgm−

 
  

Abbreviations 
ODEs Ordinary differential equations MHD Magneto-hydrodynamics 
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