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Abstract: In this work, the ADI-FDTD method with fourth-order accuracy in time for the 2-D
Maxwell’s equations without sources and charges is proposed. We mainly focus on energy analysis of
the proposed ADI-FDTD method. By using the energy method, we derive the numerical energy identity
of the ADI-FDTD method and show that the ADI-FDTD method is approximately energy-preserving.
In comparison with the energy in theory, the numerical one has two perturbation terms and can be used
in computation in order to keep it approximately energy-preserving. Numerical experiments are given
to show the performance of the proposed ADI-FDTD method which confirm the theoretical results.
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1. Introduction

Maxwell’s equations are very important partial differential equations and they play a significant
role in electromagnetic theory. Numerical solutions for Maxwell’s equations are extensive in science
and engineering, for example, for radio-frequencies, antennas, microwaves, wireless engineering and
the design of CPUs in microelectronics. There are many efficient numerical methods for solving
Maxwell’s equations, such as the finite-difference time-domain (FDTD) method [1, 2], the finite
element method [3], the weak Galerkin finite element method [4] and so on.

The FDTD method (also called Yee′s scheme) was first introduced by Yee [1] in 1966, and later
applied to many problems in computational electromagnetics [5–19]. However, the traditional FDTD
method is conditionally stable and must satisfy the Courant-Friedrichs-Lewy (CFL) stability condition;
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see [5, 20–22]. For the 2-D Maxwell’s problem, the CFL condition is

c∆t ≤ [
1

(∆x)2 +
1

(∆y)2 ]−
1
2 ,

where c is the maximum of the wave velocity, i.e., the speed of light in vacuum, ∆t is the time step size
and ∆x and ∆y are the spatial step sizes. This implies that the maximum time step size is limited by
the minimum spatial size, and that computation of the FDTD method needs much CPU time when the
spatial step sizes are small.

Many numerical methods have been proposed for Maxwell’s equations to get rid of this restriction.
One of these methods is the alternating direction implicit FDTD method, which was proposed in 1999
by Namiki [2] and which zheng et al. [12] proved to be unconditionally stable. The ADI-FDTD scheme
consists of two stages and can be solved directly by using the Thomas algorithm, since each stage
includes tri-diagonal systems of linear equations. By truncation error analysis, it was found that this
method has second-order accuracy in both time and space. The ADI-FDTD method is quickly applied
to various electromagnetic computations and the ADI-FDTD methods with high-order accuracy were
developed. Based on Yoshida’s work [9], Tan and Ding [23] proposed a new ADI-FDTD method with
fourth-order accuracy in time for 2D-wave propagation in a lossless, isotropic medium. The new ADI-
FDTD method was proved to be unconditionally stable by the Fourier method, i.e., this method is free
from the constraints of the CFL conditions. However, energy analysis of the new method in terms of
energy preservation and convergence are not available.

Analysis of the energy of the methods and construction of energy-preserving methods are popular
and valuable. As Li and Vu-Quoc said in [10], to some extent, the ability to preserve some invariant
properties of the original differential equation is a criterion to judge the success of a numerical
simulation. Therefore, it is important to develop energy-preserving algorithms and analyze the energy
of existing algorithms for solving Maxwell’s equations. It is well known that the FDTD method is
a popular numerical method in computational electromagnetics, but it is not unconditionally stable
and fails to satisfy the energy conservation property. In order to make up for these shortcomings,
various energy-preserving methods have been applied to solve Maxwell’s equations based on the ADI
and splitting techniques. For example, a new splitting FDTD scheme for Maxwell’s equations was
proposed in [24]. It proved that the new scheme was unconditionally stable and energy-preserving.
Furthermore, Chen et al. [25] proposed the symmetric energy-conserved splitting FDTD scheme (i.e.,
symmetric EC-S-FDTD). It was proved that this symmetric EC-S-FDTD method is unconditionally
stable and has second-order convergence in both time and space. In [26], a symmetric EC-S-FDTD
method for Maxwell’s equations in negative index metamaterials was proposed. We note that these
works are limited to cases with homogeneous boundary conditions. In addition, a proper summation by
parts (SBP) formula was found for the approximate derivative in [27]. A “simultaneous approximation
term” was used to treat the inhomogeneous boundary conditions. Appelö and Bokil [28] presented
the construction of novel SBP-FDTD methods for the numerical discretization of the Maxwell-
Duffing models and derived energy estimates for the semi-discrete methods that are analogous to the
continuous energy estimates. Boundary and interface conditions were handled by the simultaneous
approximation technique. In [29], a new framework to construct time-stable finite-difference schemes
was proposed for hyperbolic systems base on the application of strong boundary conditions. Sufficient
conditions for strong time stability and conservation were derived for the linear advection equation
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and coupled system of hyperbolic equations using the energy method. For other energy-preserving
methods of Maxwell’s equations, please see the relevant references [30–33]. In quantum mechanics,
the conservative methods are also favored by researchers; see [34–38].

In this paper, we consider the following 2-D transverse electric (TE) problem in a lossless medium
and without sources and charges:

∂Ex

∂t
=

1
ε

∂Hz

∂y
, (1.1)

∂Ey

∂t
= −

1
ε

∂Hz

∂x
, (1.2)

∂Hz

∂t
=

1
µ

(
∂Ex

∂y
−
∂Ey

∂x

)
(1.3)

with (x, y) ∈ Ω = [0, a] × [0, b] and t ∈ (0,T ], where ε is the electric permittivity of the medium, µ is
the magnetic permeability and E = (Ex(x, y, t), Ey(x, y, t)) and Hz = Hz(x, y, t) are the electric field and
the magnetic field, respectively.

Motivated by Tan and Ding [23], we present a ADI-FDTD scheme with fourth-order accuracy
in time for the TE problems (1.1)–(1.3), and an analysis of the energy of the scheme. We use the
energy method to derive the numerical energy identity of this method. It is found that the method
is approximately energy-preserving. In addition, numerical experiments are provided to verify the
numerical performance of the ADI-FDTD scheme with fourth-order accuracy in time.

The remaining part of the paper is organized as follows. In Section 2, we introduce some
preliminaries and notations. In Section 3, we give the detailed energy analysis of the scheme. In
Section 4, we present some numerical results to illustrate the accuracy, convergence and energy identity
of the scheme.

2. Preliminaries and notations

We consider the perfectly electric conductor (PEC) boundary condition as follows:

(E, 0) × (~n, 0) = 0, on (0,T ] × ∂Ω, (2.1)

where ∂Ω denotes the boundary of Ω and ~n is the outward normal vector on ∂Ω. The initial conditions
are

E(x, y, 0) = E0(x, y) = (Ex0(x, y), Ey0(x, y)),Hz(x, y, 0) = Hz0(x, y). (2.2)

It is well known that for suitably smooth data, the problem has a unique solution for all time; see [8].
Here, we assume that the solution of the Maxwell’s equations (1.1)–(1.3) has the following regularity
property:

E ∈ C((0,T ], [C3(Ω̄)]2) ∩C1([0,T ], [C1(Ω̄)]2) ∩C2([0,T ], [C(Ω̄)]2), (2.3)

Hz ∈ C((0,T ], [C3(Ω̄)]) ∩C1([0,T ], [C1(Ω̄)]) ∩C2([0,T ], [C(Ω̄)]). (2.4)

To simplify the notations we only consider the case of constant coefficients which are independent
of x and y. But the proposed method is valid for the case of variable coefficients with ε = ε(x, y) and
µ = µ(x, y).

For the problems in a lossless medium, Poynting’s theorem states that electromagnetic energy stays
constant for all time. The following lemma is an integral form of the Poynting’s theorem.
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Lemma 2.1. [24] If E and H are the solutions of the Maxwell’s equations (1.1)–((1.3) in a lossless
medium and satisfy the PEC boundary condition (2.1), then for any t ≥ 0, it holds that∫

Ω

(ε |E(x, t)|2 + µ|H(x, t)|2)dxdy ≡
∫

Ω

(ε |E(x, 0)|2 + µ|H(x, 0)|2)dxdy.

Consider the space domain Ω = [0, a] × [0, b] and time interval [0,T]. Let ∆x > 0 and ∆y > 0 be
space steps and ∆t > 0 be the time step; define

0 = x0 ≤ x1 ≤ · · · ≤ xi ≤ · · · ≤ xI = a,

0 = y0 ≤ y1 ≤ · · · ≤ y j ≤ · · · ≤ yJ = b,

0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ tN = T,

where 0 ≤ i ≤ I, 0 ≤ j ≤ J and 0 ≤ n ≤ N; I, J and N are integers. Define (xα, yβ, tθ) = (α∆x, β∆y, θ∆t),
where α is either i or i + 1

2 , β is either j or j + 1
2 and θ is either n or n + 1

2 . For a function F(x, y, t), define

Fm
α,β = F(α∆x, β∆y,m∆t), δtFm

α,β =
Fm+ 1

2
α,β − Fm− 1

2
α,β

∆t
, (2.5)

δxFm
α,β =

Fm
α+ 1

2 ,β
− Fm

α− 1
2 ,β

∆x
, δyFm

α,β =

Fm
α,β+ 1

2
− Fm

α,β− 1
2

∆y
, (2.6)

and δuδvFm
α,β = δu(δvFm

α,β) where u, v ∈ {x, y}.
Denote by Em

xi+ 1
2 , j

, Em
yi, j+ 1

2

and Hm
zi+ 1

2 , j+
1
2

the approximations of the electric field Ex(i + 1
2 , j, tm), Ey(i, j +

1
2 , t

m) and Hz(i + 1
2 , j + 1

2 , t
m), respectively. For a grid function Fα,β, where α = i, i + 1

2 and β = j, j + 1
2 ,

define the discrete L2 norms:

||F||2Ex
=

I−1∑
i=0

J−1∑
j=1

ε(Fi+ 1
2 , j

)2∆x∆y, ||F||2Ey
=

I−1∑
i=1

J−1∑
j=0

ε(Fi, j+ 1
2
)2∆x∆y, (2.7)

||F||2Hz
=

I−1∑
i=0

J−1∑
j=0

µ(Fi+ 1
2 , j+

1
2
)2∆x∆y, ||F||2δxEy

=

I−2∑
i=1

J−1∑
j=0

ε(Fi+ 1
2 , j+

1
2
)2∆x∆y, (2.8)

||F||2δxHz
=

I−1∑
i=1

J−1∑
j=0

µ(Fi, j+ 1
2
)2∆x∆y, ||F||2δyEx

=

I−1∑
i=0

J−2∑
j=1

ε(Fi+ 1
2 , j+

1
2
)2∆x∆y, (2.9)

||F||2δyHz
=

I−1∑
i=0

J−1∑
j=1

µ(Fi+ 1
2 , j

)2∆x∆y. (2.10)

For a grid function F = (U,V) over the mesh for the electric field, the L2 norms of the vector-valued
function is defined as follows:

||F||2E = ||U ||2Ex
+ ||V ||2Ey

.

Now we give the ADI-FDTD scheme with fourth-order accuracy in time for the TE problems (1.1)–
(1.3). Let

V = (Hz, Ex, Ey)T , (2.11)

AIMS Mathematics Volume 8, Issue 1, 264–284.



268

and

P =


0 0 − 1

µ
· δx

0 0 0
−1
ε
· δx 0 0

 , (2.12)

and

Q =


0 1

µ
δy 0

1
ε
δy 0 0
0 0 0

 . (2.13)

The ADI-FDTD method consists of two steps:
Step 1:

(I −
∆t
2

P)Vn+ 1
2 = (I +

∆t
2

Q)Vn, (2.14)

Step 2:

(I −
∆t
2

Q)Vn+1 = (I +
∆t
2

P)Vn+ 1
2 , (2.15)

where I is a 3 × 3 identity matrix and un and un+1 are the fields at integer time steps. We know that
this method is second-order accurate in time. Motivated by the method in [23], we design the new
numerical scheme for the TE problems (1.1)–(1.3) as

(I − α1
∆t
2

P)Vn,1 = (I + α1
∆t
2

Q)Vn, (2.16)

(I − α1
∆t
2

Q)Vn,2 = (I + α1
∆t
2

P)Vn,1, (2.17)

(I − α0
∆t
2

P)Vn,3 = (I + α0
∆t
2

Q)Vn,2, (2.18)

(I − α0
∆t
2

Q)Vn,4 = (I + α0
∆t
2

P)Vn,3, (2.19)

(I − α1
∆t
2

P)Vn,5 = (I + α1
∆t
2

Q)Vn,4, (2.20)

(I − α1
∆t
2

Q)Vn+1 = (I + α1
∆t
2

P)Vn,5, (2.21)

where the coefficients α0 and α1 are given by

α0 =
−

3√2

2 − 3√2
, α1 =

1

2 − 3√2
.

From [9], we know that the coefficients are determined by

α0 + 2α1 = 1, α3
0 + 2α3

1 = 0.

It is easy to prove that the schemes described by (2.16)–(2.21) are unconditionally stable and have
fourth-order accuracy in time. In order to analyze the numerical energy of the schemes given by (2.16)–
(2.21), we rewrite them as follows:
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Stage 1: 
Hn,1

zi+ 1
2 , j+

1
2

+ α1∆t
2µ δxEn,1

yi+ 1
2 , j+

1
2

= Hn
zi+ 1

2 , j+
1
2

+ α1∆t
2µ δyEn

xi+ 1
2 , j+

1
2

,

En,1
xi+ 1

2 , j
= En

xi+ 1
2 , j

+ α1∆t
2ε δyHn

zi+ 1
2 , j
,

En,1
yi, j+ 1

2
+ α1∆t

2ε δxHn,1
zi, j+ 1

2
= En

yi, j+ 1
2

.

(2.22)

Stage 2: 
Hn,2

zi+ 1
2 , j+

1
2
−

α1∆t
2µ δyEn,2

xi+ 1
2 , j+

1
2

= Hn,1
zi+ 1

2 , j+
1
2
−

α1∆t
2µ δxEn,1

yi+ 1
2 , j+

1
2
,

−
α1∆t
2ε δyHn,2

zi+ 1
2 , j

+ En,2
xi+ 1

2 , j
= En,1

xi+ 1
2 , j
,

En,2
yi, j+ 1

2
= −α1∆t

2ε δxHn,1
zi, j+ 1

2
+ En,1

yi, j+ 1
2
.

(2.23)

Stage 3: 
Hn,3

zi+ 1
2 , j+

1
2

+ α0∆t
2µ δxEn,3

yi+ 1
2 , j+

1
2

= Hn,2
zi+ 1

2 , j+
1
2

+ α0∆t
2µ δyEn,2

xi+ 1
2 , j+

1
2
,

En,3
xi+ 1

2 , j
= En,2

xi+ 1
2 , j

+ α0∆t
2ε δyHn,2

zi+ 1
2 , j
,

En,3
yi, j+ 1

2
+ α0∆t

2ε δxHn,3
zi, j+ 1

2
= En,2

yi, j+ 1
2
.

(2.24)

Stage 4: 
Hn,4

zi+ 1
2 , j+

1
2
−

α0∆t
2µ δyEn,4

xi+ 1
2 , j+

1
2

= Hn,3
zi+ 1

2 , j+
1
2
−

α0∆t
2µ δxEn,3

yi+ 1
2 , j+

1
2
,

−
α0∆t
2ε δyHn,4

zi+ 1
2 , j

+ En,4
xi+ 1

2 , j
= En,3

xi+ 1
2 , j
,

En,4
yi, j+ 1

2
= −α0∆t

2ε δxHn,3
zi, j+ 1

2
+ En,3

yi, j+ 1
2
.

(2.25)

Stage 5: 
Hn,5

zi+ 1
2 , j+

1
2

+ α1∆t
2µ δxEn,5

yi+ 1
2 , j+

1
2

= Hn,4
zi+ 1

2 , j+
1
2

+ α1∆t
2µ δyEn,4

xi+ 1
2 , j+

1
2
,

En,5
xi+ 1

2 , j
= En,4

xi+ 1
2 , j

+ α1∆t
2ε δyHn,4

zi+ 1
2 , j
,

En,5
yi, j+ 1

2
+ α1∆t

2ε δxHn,5
zi, j+ 1

2
= En,4

yi, j+ 1
2
.

(2.26)

Stage 6: 
Hn+1

zi+ 1
2 , j+

1
2

−
α1∆t
2µ δyEn+1

xi+ 1
2 , j+

1
2

= Hn,1
zi+ 1

2 , j+
1
2
−

α1∆t
2µ δxEn,5

yi+ 1
2 , j+

1
2
,

−
α1∆t
2ε δyHn+1

zi+ 1
2 , j

+ En+1
xi+ 1

2 , j
= En,5

xi+ 1
2 , j
,

En+1
yi, j+ 1

2

= −α1∆t
2ε δxHn,5

zi, j+ 1
2

+ En,5
yi, j+ 1

2
.

(2.27)

The boundary and initial conditions are given by

En
xi+ 1

2 ,0
= En

xi+ 1
2 ,J

= En
y0, j+ 1

2

= En
yI, j+ 1

2

= 0, 0 ≤ n ≤ N, (2.28)

and
E0

xα,β = Ex0(α∆x, β∆y), E0
yα,β = Ey0(α∆x, β∆y),H0

zα,β = Hz0(α∆x, β∆y). (2.29)

3. Energy analysis

The goal of this section is to derive the numerical energy identity of the schemes described
by (2.22)–(2.27) and prove that this scheme is unconditionally stable. To this end, we fist prove the
following lemma.
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Lemma 3.1. Let En
yi, j+ 1

2

and Hn
zi+ 1

2 , j+
1
2

be the grid function in the ADI-FDTD schemes (2.22)–(2.27) that

satisfies the boundary condition (2.1). Then, it holds that

I−1∑
i=0

J−1∑
j=1

Hn
zi+ 1

2 , j+
1
2

δxEn
yi+ 1

2 , j+
1
2

= −

I−1∑
i=1

J−1∑
j=1

δxHn
zi, j+ 1

2

En
yi, j+ 1

2

.

Proof. Using the definition of the operator δx, we have

I−1∑
i=0

J−1∑
j=1

Hn
zi+ 1

2 , j+
1
2

δxEn
yi+ 1

2 , j+
1
2

=

J−1∑
j=1

(Hn
z 1

2 , j+
1
2

Eyn
1, j+ 1

2

− Eyn
0, j+ 1

2

∆x
+ Hn

z 3
2 , j+

1
2

Eyn
2, j+ 1

2

− Eyn
1, j+ 1

2

∆x
+ · · · + Hn

zI− 1
2 , j+

1
2

Eyn
I, j+ 1

2

− Eyn
I−1, j+ 1

2

∆x
).

The right side term of the above equation becomes

J−1∑
j=1

(−
Hn

z 1
2 , j+

1
2

Eyn
0, j+ 1

2

∆x
+

Hn
z 1

2 , j+
1
2

Eyn
1, j+ 1

2

∆x
−

Hn
z 3

2 , j+
1
2

Eyn
1, j+ 1

2

∆x
+

Hn
z 3

2 , j+
1
2

Eyn
2, j+ 1

2

∆x

+ · · · −

Hn
zI− 1

2 , j+
1
2

Eyn
I−1, j+ 1

2

∆x
+

Hn
zI− 1

2 , j+
1
2

Eyn
I, j+ 1

2

∆x
)

= −

I−1∑
i=1

J−1∑
j=1

δxHn
zi, j+ 1

2

En
yi, j+ 1

2

.

This completes the proof of Lemma 3.1. �

Next, we use Lemma 3.1 to derive the numerical energy identity for the schemes (2.22)–(2.27) .

Theorem 3.2. Let En = (En
xi+ 1

2 , j
, En

yi, j+ 1
2

) and Hn
zi+ 1

2 , j+
1
2

be the solutions of the schemes (2.22)–(2.27); then,

it holds that

‖En+1‖2E + ‖Hn+1
z ‖

2
Hz

+ ξ = ‖En‖2E + ‖Hn
z ‖

2
Hz

+ η, 0 ≤ n ≤ N − 1, (3.1)

where

ξ =
∆t2

4εµ
[α2

0(‖δyEn,4
x ‖

2
δyEx

+‖δyHn,4
z ‖

2
δyHz

)+α2
1(‖δyEn,2

x ‖
2
δyEx

+‖δyHn,2
z ‖

2
δyHz

+‖δyEn+1
x ‖

2
δyEx

+‖δyHn+1
z ‖

2
δyHz

)],

η =
∆t2

4εµ
[α2

0(‖δyEn,2
x ‖

2
δyEx

+‖δyHn,2
z ‖

2
δyHz

)+α2
1(‖δyEn,4

x ‖
2
δyEx

+‖δyHn,4
z ‖

2
δyHz

+‖δyEn
x‖

2
δyEx

+‖δyHn
z ‖

2
δyHz

)].

Proof. Square both sides of the equations in Stage 1 (2.22), so it is easy to get

(
Hn,1

zi+ 1
2 , j+

1
2

+ α1
∆t
2µδxEn,1

yi+ 1
2 , j+

1
2

)2
=

(
Hn

zi+ 1
2 , j+

1
2

+ α1
∆t
2µδyEn

xi+ 1
2 , j+

1
2

)2
,(

En,1
xi+ 1

2 , j

)2
=

(
En

xi+ 1
2 , j

+ α1
∆t
2εδyHn

zi+ 1
2 , j

)2
,(

En,1
yi, j+ 1

2
+ α1

∆t
2εδxHn,1

zi, j+ 1
2

)2
=

(
En

yi, j+ 1
2

)2
.

(3.2)
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We sum over all the terms over all i and j, and then add these equations together, yielding

I−1∑
i=0

J−1∑
j=0

(
µ(Hn,1

zi+ 1
2 , j+

1
2

)2 + α1∆tHn,1
zi+ 1

2 , j+
1
2

δxEn,1
yi+ 1

2 , j+
1
2

+
α2

1∆t2ε

4εµ
(δxEn,1

yi+ 1
2 , j+

1
2

)2
)

=

I−1∑
i=0

J−1∑
j=0

(
µ(Hn

zi+ 1
2 , j+

1
2

)2 + α1∆tHn
zi+ 1

2 , j+
1
2

δyEn
xi+ 1

2 , j+
1
2

+
α2

1∆t2ε

4εµ
(δyEn

xi+ 1
2 , j+

1
2

)2
)
, (3.3)

and

ε

I−1∑
i=0

J−1∑
j=1

(En,1
xi+ 1

2 , j
)2 =

I−1∑
i=0

J−1∑
j=1

(
ε(En

xi+ 1
2 , j

)2 +
α2

1∆t2µ

4εµ
(δyHn

zi+ 1
2 , j

)2 + α1∆tEn
xi+ 1

2 , j
δyHn

zi+ 1
2 , j

)
, (3.4)

and

ε

I−1∑
i=1

J−1∑
j=0

(En
yi, j+ 1

2

)2 =

I−1∑
i=1

J−1∑
j=0

(
ε(En,1

yi, j+ 1
2

)2 +
α2

1∆t2µ

4εµ
(δxHn,1

zi, j+ 1
2

)2 + α1∆tδxHn,1
zi, j+ 1

2

En,1
yi, j+ 1

2

)
. (3.5)

For the above equations given by (3.3)–(3.5), using Lemma 3.1 and the PEC boundary condition, we
have

‖En,1
x ‖

2
Ex

+ ‖En,1
y ‖

2
Ey

+ ‖Hn,1
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δxEn,1

y ‖
2
δxEy

+ ‖δxHn,1
z ‖

2
δxHz

)

= ‖En
x‖

2
Ex

+ ‖En
y‖

2
Ey

+ ‖Hn
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δxEn

y‖
2
δxEy

+ ‖δxHn
z ‖

2
δxHz

). (3.6)

In a similar way, from the equations in (2.23), we can obtain that

µ

I−1∑
i=0

J−1∑
j=0

(Hn,2
zi+ 1

2 , j+
1
2

)2 +

I−1∑
i=0

J−1∑
j=0

α2
1∆t2ε

4εµ
(δyEn,2

xi+ 1
2 , j+

1
2

)2 −

I−1∑
i=0

J−1∑
j=0

α1∆tHn,2
zi+ 1

2 , j+
1
2

δyEn,2
xi+ 1

2 , j+
1
2

= µ

I−1∑
i=0

J−1∑
j=0

(Hn,1
zi+ 1

2 , j+
1
2

)2 +

I−1∑
i=0

J−1∑
j=0

α2
1∆t2ε

4εµ
(δxEn,1

yi+ 1
2 , j+

1
2

) −
I−1∑
i=0

J−1∑
j=0

α1∆tHn,1
zi+ 1

2 , j+
1
2

δxEn,1
yi+ 1

2 , j+
1
2

, (3.7)

and

ε

I−1∑
i=0

J−1∑
j=1

(En,1
xi+ 1

2 , j
)2

=

I−1∑
i=0

J−1∑
j=1

α2
1∆t2µ

4εµ
(δyHn,2

zi+ 1
2 , j

)2 + ε

I−1∑
i=0

J−1∑
j=1

(En,2
xi+ 1

2 , j
)2 −

I−1∑
i=0

J−1∑
j=1

α1∆tδyHn
zi+ 1

2 , j
En,2

xi+ 1
2 , j
, (3.8)

and

ε

I−1∑
i=1

J−1∑
j=0

(En,2
yi, j+ 1

2

)2
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=

I−1∑
i=1

J−1∑
j=0

α2
1∆t2µ

4εµ
(δxHn,2

zi, j+ 1
2

)2 + ε

I−1∑
i=1

J−1∑
j=0

(En,1
yi, j+ 1

2

)2 −

I−1∑
i=1

J−1∑
j=0

α1∆tδxHn,1
zi, j+ 1

2

En,1
yi, j+ 1

2

. (3.9)

We take the sum of (3.7)–(3.9), and get that

‖En,2
x ‖

2
Ex

+ ‖En,2
y ‖

2
Ey

+ ‖Hn,2
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δyEn,2

x ‖
2
|δyEx

+ ‖δyHn,2
z ‖

2
δyHz

)

= ‖En,1
x ‖

2
Ex

+ ‖En,1
y ‖

2
Ey

+ ‖Hn,1
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δxEn,1

y ‖
2
δxEy

+ ‖δxHn,1
z ‖

2
δxHz

). (3.10)

Similar to the derivation of (3.6), from (2.23) we get

‖En,3
x ‖

2
Ex

+ ‖En,3
y ‖

2
Ey

+ ‖Hn,3
z ‖

2
Hz

+
α2

0∆t2

4εµ
(‖δxEn,3

y ‖
2
δxEy

+ ‖δxHn,3
z ‖

2
δxHz

)

= ‖En,2
x ‖

2
Ex

+ ‖En,2
y ‖

2
Ey

+ ‖Hn,2
z ‖

2
Hz

+
α2

0∆t2

4εµ
(‖δyEn,2

x ‖
2
δyEx

+ ‖δyHn,2
z ‖

2
δyHz

). (3.11)

Similarly, from (2.24)–(2.27), we also obtain the following identities:

‖En,4
x ‖

2
Ex

+ ‖En,4
y ‖

2
Ey

+ ‖Hn,4
z ‖

2
Hz

+
α2

0∆t2

4εµ
(‖δyEn,4

x ‖
2
δyEx

+ ‖δyHn,4
z ‖

2
δyHz

)

= ‖En,3
x ‖

2
Ex

+ ‖En,3
y ‖

2
Ey

+ ‖Hn,3
z ‖

2
Hz

+
α2

0∆t2

4εµ
(‖δxEn,3

y ‖
2
δxEy

+ ‖δxHn,3
z ‖

2
δxHz

), (3.12)

and

‖En,5
x ‖

2
Ex

+ ‖En,5
y ‖

2
Ey

+ ‖Hn,5
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δxEn,5

y ‖
2
δxEy

+ ‖δxHn,5
z ‖

2
δxHz

)

= ‖En,4
x ‖

2
Ex

+ ‖En,4
y ‖

2
Ey

+ ‖Hn,4
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δyEn,4

x ‖
2
δyEx

+ ‖δyHn,4
z ‖

2
δyHz

), (3.13)

and

‖En+1
x ‖

2
Ex

+ ‖En+1
y ‖

2
Ey

+ ‖Hn+1
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δyEn+1

x ‖
2
δyEx

+ ‖δyHn+1
z ‖

2
δyHz

)

= ‖En,5
x ‖

2
Ex

+ ‖En,5
y ‖

2
Ey

+ ‖Hn,5
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δxEn,5

y ‖
2
δxEy

+ ‖δxHn,5
z ‖

2
δxHz

). (3.14)

Take the sum of (3.6)–(3.14), and then we have

‖En+1
x ‖

2
Ex

+ ‖En+1
y ‖

2
Ey

+ ‖Hn+1
z ‖

2
Hz

+
α2

1∆t2

4εµ
(‖δyEn,2

x ‖
2
δyEx

+ ‖δyHn,2
z ‖

2
δyHz

)

+
α2

0∆t2

4εµ
(‖δyEn,4

x ‖
2
δyEx

+ ‖δyHn,4
z ‖

2
δyHz

) +
α2

1∆t2

4εµ
(‖δyEn+1

x ‖
2
δyEx

+ ‖δyHn+1
z ‖

2
δyHz

)

= ‖En
x‖

2
Ex

+ ‖En
y‖

2
Ey

+ ‖Hn
z ‖

2
Hz

+
α2

0∆t2

4εµ
(‖δyEn,2

x ‖
2
δyEx

+ ‖δyHn,2
z ‖

2
δyHz

)

+
α2

1∆t2

4εµ
(‖δyEn,4

x ‖
2
δyEx

+ ‖δyHn,4
z ‖

2
δyHz

) +
α2

1∆t2

4εµ
(‖δyEn

x‖
2
δyEx

+ ‖δyHn
z ‖

2
δyHz

). (3.15)

It shows that the ADI-FDTD schemes (2.22)–(2.27) are approximately energy-preserving. This
proof is completed. �
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4. Numerical experiments

In this section, we provide some numerical results to verify the numerical performance of the ADI-
FDTD schemes (2.16)–(2.21) for the TE models (1.1)–(1.3).

4.1. Example 1

Set Ω = [0, 1] × [0, 1] surrounded by a perfect conductor and consider the TE models (1.1)–(1.3)
in a lossless medium with normalized electric permittivity and magnetic permeability, i.e., ε = 1 and
µ = 1. The exact solutions of the problems (1.1)–(1.3) are

Ex(x, y, t) = −cos(
√

2πt)cos(πx)sin(πy),

Ey(x, y, t) = cos(
√

2πt)sin(πx)cos(πy),

Hz(x, y, t) = −
√

2sin(
√

2πt)cos(πx)cos(πy).

The drive routines were written in Matlab, and the computation was run using a 2.20 GHz PC with 8
GB RAM and a Windows 10 operating system.

By calculation and simulation, we obtained some numerical results, as shown in Figures 1–9. The
parameters were ∆t = 1/40, ∆x=∆y=∆t2 and T = 1.

In Figures 1 and 2, we provide the surfaces between the exact solution Ex and the numerical
solution En

x with T = 1. From the figures we can see clearly that the numerical solution behavior
can approximate well the exact solution.

Figure 1. Exact solution Ex. Figure 2. Numerical solution En
x.

In Figure 3, the contour of the error Ex − En
x is given. We can see clearly that the maximums

absolute values of errors were close to 8 × 10−6, which means that the new scheme is effective for the
problems (1.1)–(1.3).
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Figure 3. Contour plot for Ex − En
x with T = 1, ∆t = 1/40.

In addition, we provide the surfaces between the exact solution Ey and the numerical solution En
y in

Figures 4 and 5, as well as the contour of the error Ey−En
y in Figure 6. One can see that the maximums

of absolute values of errors were close to 2.3 × 10−5 from Figure 6. From these figures, we can see
clearly that the numerical solution En

y behavior can approximate well the exact solution Ey.
Similarly, Figures 7 and 8 show the surfaces between the exact solution Hz and the numerical

solution Hn
z . The contour of the error Hz − Hn

z is presented in Figure 9; we can see that the maximums
of absolute values of errors were close to 1.25 × 10−5. From these results, it is clear that the numerical
solution Hn

z behavior can approximate well the exact solution Hz.

Figure 4. Exact solution Ey. Figure 5. Numerical solution En
y .

Figure 6. Contour plot for Ey − En
y with T = 1, ∆t = 1/40.
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Figure 7. Exact solution Hz. Figure 8. Numerical solution Hn
z .

Figure 9. Contour plot for Hz − Hn
z at with T = 1, ∆t = 1/40.

In the following, we continue to describe some experiments to test the stability, convergence and
energy conservation ability of the ADI-FDTD schemes (2.16)–(2.21). Let ErrE and ErrH be defined
by

||ErrE||2E =

I−1∑
i=0

J−1∑
j=1

ε(Ex(i +
1
2
, j, tn) − En

xi+ 1
2 , j

)2∆x∆y,+
I−1∑
i=1

J−1∑
j=0

ε(Ey(i, j +
1
2
, tn) − En

yi, j+ 1
2

)2∆x∆y,

||ErrH||2Hz
=

I−1∑
i=0

J−1∑
j=0

µ(Hz(i +
1
2
, j +

1
2
, tn) − Hn

zi+ 1
2 , j+

1
2

)2∆x∆y,

In+1 = (‖En+1‖2E + ‖Hn+1
z ‖

2
Hz

+ ξ)1/2,

In = (‖En‖2E + ‖Hn
z ‖

2
Hz

+ η)1/2,

E1 = max
1≤n≤N−1

((‖En+1‖2E + ‖Hn+1
z ‖

2
Hz

)1/2 − (‖En‖2E + ‖Hn
z ‖

2
Hz

))1/2,

E2 = max
1≤n≤N−1

|In+1 − In|,
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where Ex(i + 1
2 , j, tn), Ey(i, j + 1

2 , tn) and Hz(i + 1
2 , j + 1

2 , tn) are the exact solutions of the problems (1.1)–
(1.3) and En

xi+ 1
2 , j
, En

yi, j+ 1
2

,Hn
zi+ 1

2 , j+
1
2

are the solutions of the ADI-FDTD methods (2.16)–(2.21) for n ≥ 0.

I2
n+1 is the left side of the identity (3.1) and I2

n is the right side of the identity (3.1). E1 is the energy
difference between the n + 1 and n levels. E2 is the difference between the two sides of the Eq (3.1).

In calculation, we take ∆x = ∆y = (∆t)2, T = 1 and T = 2. Tables 1 and 2 give the errors of the
numerical solution of (1.1)–(1.3) as computed by the ADI-FDTD methods described by (2.16)–(2.21)
in the discrete L2 norms and given convergence rates in different time step sizes ∆t = T/N.

Table 1. Convergence rates of ErrE and ErrH by time step, with T = 1.

N ErrE Rate ErrH Rate
5 3.705969E-02 1.879096E-02

10 2.987580E-03 3.63 1.511953E-03 3.64
20 2.013062E-04 3.90 1.0247E-004 3.88
40 1.283300E-05 3.97 6.5455E-006 3.97
80 8.060774E-07 3.99 4.114049E-07 3.99

Table 2. Convergence rates of ErrE and ErrH by time step, with T = 2.

N ErrE Rate ErrH Rate
5 4.141165E-01 2.508505E-01

10 4.272966E-02 3.28 4.959246E-02 2.34
20 3.309908E-03 3.70 4.254614E-03 3.54
40 2.219418E-04 3.90 2.897803E-04 3.88
80 1.413955E-05 3.97 1.851503E-05 3.97

Tables 3 and 4 give the energy difference between the level n and level n + 1 in the discrete L2 norm
and the difference between the two sides of the identity given by (3.1).

Table 5 shows the results for In − I0, E1 and E2 for the spatial steps ∆x = ∆y = 0.01 and time step
of ∆t = 0.001.

Table 3. Energy errors with T = 1.

N E1 E2

5 1.017911E-02 1.525899E-03
10 4.667802E-04 1.859628E-05
20 1.655990E-05 1.656034E-07
40 5.326041E-07 1.331381E-09
80 1.677347E-08 1.111833E-11
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Table 4. Energy errors with T = 2.

N E1 E2

5 1.134799E-01 1.533521E-02
10 1.020233E-02 3.836721E-04
20 4.734900E-04 4.716336E-06
40 1.656010E-05 4.140171E-08
80 5.328719E-07 3.351354E-10

Table 5. Energy errors when ∆t = 0.001 and ∆x = ∆y = 0.01.

n 100 200 400 1000 2000 4000
In-I0 1.045597E-06 3.62990E-06 5.478538E-06 5.301066E-06 1.518304E-06 4.448625E-06
E1 4.274359E-14 5.534462E-14 5.534462E-14 5.534462E-14 5.534462E-14 5.534462E-14
E2 1.665334E-15 2.442491E-15 2.442491E-15 2.664535E-15 2.664535E-15 2.775558E-15

From the numerical results in Tables 1–5, we get the following observations:

• Tables 1 and 2 show the errors and convergence rates with T = 1 and T = 2. We can see that the
ADI-FDTD schemes (2.22)–(2.27) are efficient and have fourth-order accuracy in time.
• Tables 3 and 4 show the energy error between layer n and n + 1 and the difference between the

left and right sides of the equation (3.1) with T = 1, T = 2. From the tables, we can see that E1

and E2 tend to zero, which verifies the theoretical results in Theorem 3.2.
• Table 5 shows the values of In − I0, E1 and E2 at n = 100, 200, 400, 800, 1000, 2000 and 4000.

From the second line we can see that the ADI-FDTD schemes (2.22)–(2.27) are stable and
approximately energy-preserving. The third line shows the energy error between layer n and
n + 1; we can see that the values of E1 were close to 5.5 × 10−14. The fourth line shows that the
difference between the left and right sides of the equation defined by (3.1) was close to 10−15,
which verifies Theorem 3.2.

4.2. Example 2

Set Ω = [0, 1] × [0, 1], kx = 1, ky = 2, ε = µ = 1; the exact solutions of the problems (1.1)–(1.3) are

Ex(x, y, t) =
2
√

5
cos(
√

5πt)cos(πx)sin(2πy),

Ey(x, y, t) = −
1
√

5
cos(
√

5πt)sin(πx)cos(2πy),

Hz(x, y, t) = sin(
√

5πt)cos(πx)cos(2πy).

This example is presented for studying error estimates of the schemes (2.16)–(2.21) with kx , ky. The
parameters were ∆t = 1/40, ∆x=∆y=∆t2 and T = 1. All calculation results are shown in Figures 10–18.

In Figures 10 and 11, we provide the surfaces between the exact solution Ex and the numerical
solution En

x with t = 1. From the figures we can see clearly that the numerical solution behavior can
approximate well the exact solution.
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Figure 10. Exact solution Ex. Figure 11. Numerical solution En
x.

The contour of the error Ex − En
x is presented in Figure 12. One can see that the maximums of

absolute values of errors was close to 1.64 × 10−4, i.e., the new schemes (2.16)–(2.21) are effective for
the problems (1.1)–(1.3).

In addition, we provide the surfaces between the exact solution Ey in Figure 13 and the numerical
solution En

y in Figure 14, as well as the contour of the error Ey − En
y in Figure 15. One can see that the

maximums of absolute values of errors was close to 6.92×10−5 from this Figure 15. From these figures
we can see clearly that the numerical solution En

y behavior can approximate well the exact solution Ey.

Similarly, Figures 16 and 17 show the surfaces between the exact solution Hz and the numerical
solution Hn

z . Figure 18 shows the contour of the error Hz − Hn
z , we can see that the maximums of

absolute values of errors was close to 2.07 × 10−4. From these figures we can see clearly that the
numerical solution Hn

z behavior can approximate well the exact solution Hz, i.e., the the numerical
schemes (2.16)–(2.21) are efficient.

Figure 12. Contour plot for Ex − En
x with T = 1, ∆t = 1/40.
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Figure 13. Exact solution Ey. Figure 14. Numerical solution En
y .

Figure 15. Contour plot for Ey − En
y with T = 1, ∆t = 1/40.

Figure 16. Exact solution Hz. Figure 17. Numerical solution Hn
z .
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Figure 18. Contour plot for Hz − Hn
z with T = 1, ∆t = 1/40.

Furthermore, taking ∆x = ∆y = (∆t)2 and T = 1, some calculation results are shown in Tables 6
and 7. Table 6 shows the error of the numerical solution of (1.1)–(1.3) as computed by using (2.16)–
(2.21) in the discrete L2 norms and convergence rates in different time step sizes ∆t = T/N. The results
in Table 6, clearly show that the method is efficient and has fourth-order accuracy in time. E1 which
is the difference in energy between level n and level n + 1 and E2 which is the difference between the
two sides of the identity (3.1) are presented in Table 7. The results of E1 and E2 in Table 7 verify the
theoretical results in Theorem 3.2.

Let E3 be defined by

E3 = ((‖En‖2E + ‖Hn
z ‖

2
Hz

)1/2 − (‖E0‖2E + ‖H0
z ‖

2
Hz

))1/2,

we show the errors E1, E2 and E3 in Table 8 with ∆x = ∆y = 0.01 and ∆t = 0.001. It is clearly
shown that for a long time, the numerical solution of the schemes (2.16)–(2.21) keep the approximate
energy-preserving nature in the discrete energy norms and are consistent with the theoretical results
obtained in Theorem 3.2.

Table 6. Convergence rates of ErrE and ErrH by time step, with T = 1.

N ErrE Rate ErrH Rate
5 1.060494E-01 1.856493E-01

10 1.669285E-02 2.67 2.029985E-02 3.20
20 1.338319E-03 3.64 1.559344E-03 3.70
40 8.913728E-05 3.90 1.035249E-04 3.91
80 5.660689E-06 3.97 6.573273E-05 3.97
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Table 7. Energy errors with T = 1.

N E1 E2

5 1.685892E-02 9.258177E-03
10 1.183114E-03 1.827276E-04
20 4.861785E-05 1.945590E-06
40 1.656051E-06 1.656084E-08
80 5.280528E-08 1.323115E-10

Table 8. Energy errors when ∆t = 0.001 and ∆x = ∆y = 0.01.

n 100 200 400 1000 2000 4000
E1 1.715294E-13 1.742217E-13 1.742217E-13 1.742773E-13 1.743050E-13 1.743050E-13
E2 2.742251E-14 2.786660E-14 2.797762E-14 2.797762E-14 2.797762E-14 2.808864E-14
E3 1.035361E-11 2.412220E-11 2.642497E-12 1.132772E-11 2.466771E-11 9.283129E-13

5. Conclusions

In this paper, an ADI-FDTD method with fourth-order accuracy in time for the 2-D TE problem
without sources and charges has been proposed and the numerical identity of the method has been
derived. It is strictly proved that the proposed method is approximately energy-preserving, and
that the two perturbation terms in the energy identity will affect the energy conservation in theory.
Numerical experiments to compute the energies and convergence orders in time were carried out, and
the computed results confirmed the theoretical analysis. The perturbation terms derived can be used to
improve the application of the ADI-FDTD scheme.
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