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1. Introduction

To deal with imprecise information, Zadeh [1] proposed the concept of a fuzzy set (FS), which
has been widely used in various fields. Inspired by the idea of the FS, Atanassov [2] proposed the
concept of the intuitionistic fuzzy set (IFS), which is represented by the degree of membership (MD)
and the degree of non-membership (NMD), with the restriction that the sum of these two degrees
cannot exceed one. However, in some practical applications, the sum of MD and NMD may be greater
than unity, but their sum of squares is limited to unity. To bridge this gap, Yager [3, 4] extended the
scope of the IFS to Pythagorean fuzzy sets (PFS), where the sum of squares of MD and NMD is ≤
1. In the manufacturing sector, Han and Rani [5] evaluated the barriers of block chain technology
adoption in sustainable supply chain management in a Pythagorean fuzzy environment. Senapati and
Yager [6–8] pioneered the theory of Fermatean fuzzy sets (FFSs), broadening the field of IFSs and
PFSs, characterized by the MD and NMD of an element, and the sum of their cubes should be less than
or equal to 1. Further discussions and different applications related to Fermatean fuzzy sets are also
observed in [9–12].

In reality, the functions of uncertain information are becoming more and more diverse. Due to
the ambiguity of information and the lack of experience and knowledge of decision experts (DEs),
in many practical processes, decision experts often have difficulty describing their ideas adequately
with clear numbers; however, they can be expressed with a [0, 1] interval number representation. For
more information, the concept of the FFS has been extended to the IVFFS [13–15]. The benefit of this
extended theory is that it represents ambiguous data closer to DE expectations. It should be noted that
when the upper and lower bounds of the interval value are the same, IVFFS becomes FFS. In terms of
expressing information, IVFFS outperforms existing tools in describing human subjective intelligence.

A linear programming problem (LPP) is a problem concerned with determining the optimal value
of a given linear function. The main goal of LPP is to obtain an optimal solution. Bellman and Zadeh
[16] proposed the concept of a decision-making process in which goals and constraints are inherently
ambiguous. Zimmerman [17] proposed the concept of a fuzzy LPP. Mahato et al. [18] demonstrated
the effectiveness of defuzzification methods in redundant assignment problems with ambiguous values
using a genetic algorithm. In 2015, Sahoo [19] identified the impact of defuzzification methods on
solving fuzzy matrix games. Ali et al. [20] solved an intuitionistic fuzzy multi-objective LPP in a
neutrosophic setting. Recently, some researchers [21–27] have developed different methods to evaluate
LPPs in different environments. The physical distribution of products, sometimes referred to as the
transportation problem (TP), is one of the most important and effective applications of quantitative
analysis to solve business problems. Often, the goal is to reduce the cost of moving goods from one
station to another so that each arrival area is met, and each transportation facility operates within
its capacity. Transportation models provide a powerful framework to address this challenge. They
guarantee efficient transportation of raw materials and timely supply of final products. Hitchcock [28]
originally developed the basic structure of TP in 1941.

The FTP is a challenging task to optimize the ratio of one or more functions and has received
extensive attention from both methodological and practical perspectives. In 1962, Charnes and
Cooper [29] proposed the fractional programming problem (FPP). Pandey and Punnen [30] developed
an algorithm for solving piecewise linear FPPs. The FTP, first proposed by Swarup [31] in 1966, is
also significant in logistics and supply management, reducing costs and improving services. The
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related work on TPs and FTPs by different researchers is given in Table 1.

Table 1. Related work in TPs and FTPs.
Reference Year Significance Influence
Gupta et al. [32] 1993 Studied a paradox in linear FTP with mixed constraints
Monta [33] 2007 Defined some aspects of solving the linear FTP
Sivri et al. [34] 2011 Determined the solution of linear FTP
Joshi and Gupta [35] 2011 Developed the FTP with varying demands and supply
Kumar and Kaur [36] 2011 Gave applications of transportation techniques
Kaushal et al. [37] 2011 Provided an aspect of bilevel FTP
Guzel et al. [38] 2012 Provided a solution proposal for interval-valued TP
Ebrahimnejad [39] 2016 Proposed an improved approach to solve TP triangular fuzzy numbers
Liu [40] 2016 Introduced FTP in fuzzy environment
Ebrahimnejad [41] 2016 Developed a new method for solving TP with LR flat fuzzy numbers
Mohanaselvi and Ganesan [42] 2017 Proposed a new approach to solve linear fuzzy FTP
Safi and Ghasemi [43] 2017 Studied uncertainty of linear FTP
Bharati and Singh [44] 2018 Introduced TP using interval-valued intuitionistic fuzzy sets
Mahmoodirad et al. [45] 2019 Proposed a method to solve fully fuzzy TP
Kumar et al. [46] 2019 Proposed Pythagorean fuzzy approach to the TP
Bharati [47] 2019 Developed FTP with trapezoidal intuitionistic fuzzy numbers
Bharati [48] 2021 Introduced TP with interval-valued IFSs
Pratihar et al. [49] 2021 Developed modified Vogels approximation technique for TP
Veeramani et al. [50] 2021 Solved the multi-objective FTP using goal programming approach
Sahoo [51] 2021 Proposed TP based on new score function in Fermatean fuzzy environment
Sharma et al. [52] 2021 Developed fuzzy optimization approach for multi-objective aspirational level FTP
El Sayed & Abo-Sinna [53] 2021 Proposed a novel approach for solving fully intuitionistic fuzzy multi-objective FTP
Bas et al. [54] 2022 Presented a new method for solving linear FTP
Sing et al. [55] 2022 Introduced bilevel TP under neutrosophic environment

Due to the increasing complexity of several practical optimization problems, it is difficult for
decision makers to give the values of parameters in a precise manner. Therefore, some studies on FS
and IFS rankings have been published. Among several extensions of FSs, the concept of the
interval-valued IFS (IVIFS) is an interesting one and a very valuable tool for modeling and
decision-making in practical problems of uncertainty and hesitation. Thus, Mohanaselvi and
Ganesan [42] solved the fuzzy FTP, and Bharati [44, 48] solved the interval-valued intuitionistic fuzzy
TP. Inspired by these ideas, we develop a straightforward method for solving the FTP using TIVFFN
and extend the work of Bharati [44, 48] to the FTP to check the optimality of the solution. However,
IVFFS is a more general model than IVIFS and can handle higher levels of uncertainty than IVIFS.
Our main contributions are as follows:

• Define TIVFFN and its arithmetic operations.
• Use TIVFFN to formulate FTP in a Fermatean fuzzy environment.
• Develop a new method for solving FTP with TIVFFN and extend the optimality criterion for TP

given in [48] to FTP.
• Examples are provided to evaluate the precision and accuracy of the proposed method, and the

obtained FTP cost is represented graphically.
• The solutions obtained by our proposed method are compared with those of existing methods.

The rest of the study is structured as follows: Section 2 gives the main definitions. In Section 3,
FTP is formulated in an Interval-Valued Fermatean Fuzzy (IVFF) environment. Section 4 presents a
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solution method for IVFFFTP. Section 5 gives numerical examples. Section 6 compares the proposed
method with existing methods. The conclusions are drawn in Section 7.

2. Preliminaries

In this section, we describe some basic definitions used throughout the study.

Definition 2.1. [6] Let Y be a universal set. A Fermatean fuzzy set ÃF on Y is defined to be a set of
the form

ÃF = {〈y, µÃF (y), νÃF (y)〉 : y ∈ Y},

where µÃF : Y → [0, 1], νÃF : Y → [0, 1], and

0 ≤ (µÃF (y))3 + (νÃF (y))3 ≤ 1,

for all y ∈ Y. The values µÃF (y) and νÃF (y) denote the membership degree and non-membership degree
of the element y in the set ÃF , respectively.

Further, for all y ∈ Y,

πÃF (y) =
3
√

1 − (µÃF (y))3 − (νÃF (y))3

denotes the degree of hesitation for the element y in ÃF .

Definition 2.2. [13, 15] Let Y be a universal set. An interval-valued Fermatean fuzzy set T on Y is
mathematically defined as follows:

T = {(yi, [λ−1T
(yi), λ+

1T
(yi)], [λ−2T

(yi), λ+
2T

(yi)]) : yi ∈ Y},

where 0 ≤ λ−1T
(yi) ≤ λ+

1T
(yi) ≤ 1, 0 ≤ λ−2T

(yi) ≤ λ+
2T

(yi) ≤ 1, and (λ+
1T

(yi))3 + (λ+
2T

(yi))3 ≤ 1. Here,
µT (yi) = [λ−1T

(yi), λ+
1T

(yi)] and νT (yi) = [λ−2T
(yi), λ+

2T
(yi)] represent the interval-valued membership and

non-membership degrees of yi ∈ Y, respectively. The function πT (yi) =[π−T (yi), π+
T (yi)] represents the

IVFF-hesitancy index of yi to T , where π−T (yi) = 3
√

1 − (λ+
1T

(yi))3 + (λ+
2T

(yi))3 and

π+
T (yi) = 3

√
1 − (λ−1T

(yi))3 + (λ−2T
(yi))3. For simplicity, an IVFFN is represented by

([λ−1T
(yi), λ+

1T
(yi)], [λ−2T

(yi), λ+
2T

(yi)]), which fulfills (λ+
1T

(yi))3 + (λ+
2T

(yi))3 ≤ 1.
Some special cases of the IVFFS are defined as follows:

(i) If λ−1T
(yi) = λ+

1T
(yi), and λ−2T

(yi) = λ+
2T

(yi), yi ∈ Y , then an IVFFS reduces to FFS.
(ii) If (λ+

1T
(yi)) + (λ+

2T
(yi)) ≤ 1, then an IVFFS reduces to an interval-valued IFS.

(iii) If (λ+
1T

(yi))2 + (λ+
2T

(yi))2 ≤ 1, then an IVFFS reduces to an interval-valued PFS.

The graphical representation of an IVFFS is given in Figure 1.
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Figure 1. Interval-valued Fermatean fuzzy set.

Definition 2.3. Let Y be a universal set. A triangular interval-valued Fermatean fuzzy number ÃF on
Y is represented as ÃF = {(y1, y2, y3), [λ−1 A, λ

+
1 A], [λ−2 A, λ

+
2 A]}, where λ−1 A : Y → [0, 1], λ+

1 A : Y → [0, 1]
denote the minimum and maximum degrees of membership, and λ−2 A : Y → [0, 1], λ+

2 A : Y → [0, 1]
denote the minimum and maximum degrees of non-membership, and these are:

λ−1 A(y) =



(y − y1)λ−1
y2 − y1

, y1 < y < y2,

λ−1 , y = y2,
(y3 − y)λ−1
(y3 − y2)

, y2 < y < y3,

(2.1)

λ+
1 ÃF (y) =



(y − y1)λ+
1

(y2 − y1)
, y1 < y < y2,

λ+
1 , y = y2,

(y3 − y)λ+
1

(y3 − y2)
, y2 < y < y3,

(2.2)

λ−2 ÃF (y) =


1 − (1 − λ−2 )

(y − y1)
(y2 − y1)

, y1 < y < y2,

λ−2 , y = y2,

λ−2 + (1 − λ−2 )
(y − y2)
(y3 − y2)

, y2 < y < y3,

(2.3)

λ+
2 ÃF (y) =


1 − (1 − λ+

2 )
(y − y1)
(y2 − y1)

, y1 < y < y2,

λ+
2 , y = y2,

λ+
2 + (1 − λ+

2 )
(y − y2)
(y3 − y2)

, y2 < y < y3.

(2.4)

The graphical representation of TIVFFN is given in Figure 2.
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Figure 2. Triangular interval-valued Fermatean fuzzy number.

2.1. Arithmetic operations

Let ÃF = {(x1, x2, x3), [λ−1 A, λ
+
1 A], [λ−2 A, λ

+
2 A]} and B̃F = {(y1, y2, y3), [λ−1 B, λ

+
1 B], [λ−2 B, λ

+
2 B]} be two

TIVFFNs. Then,

ÃF ⊕ B̃F ={(x1 + y1, x2 + y2, x3 + y3),
[min(λ−1 A, λ

−
1 B),min(λ+

1 A, λ
+
1 B)], [max(λ−2 A, λ

−
2 B),max(λ+

2 A, λ
+
2 B)]}, (2.5)

ÃF 	 B̃F ={(x1 − y3, x2 − y2, x3 + y1),
[min(λ−1 A, λ

−
1 B),min(λ+

1 A, λ
+
1 B)], [max(λ−2 A, λ

−
2 B),max(λ+

2 A, λ
+
2 B)]}, (2.6)

ÃF � B̃F =



{(x1y1, x2y2, x3y3), [min(λ−1 A, λ
−
1 B),min(λ+

1 A, λ
+
1 B)],

[max(λ−2 A, λ
−
2 B),max(λ+

2 A, λ
+
2 B)]} if x1, y1 ∈ R

+,

{(x1y3, x2y2, x3y3), [min(λ−1 A, λ
−
1 B),min(λ+

1 A, λ
+
1 B)],

[max(λ−2 A, λ
−
2 B),max(λ+

2 A, λ
+
2 B)]} if x1 < 0 and y1 > 0,

{(x1y3, x2y2, x3y1), [min(λ−1 A, λ
−
1 B),min(λ+

1 A, λ
+
1 B)],

[max(λ−2 A, λ
−
2 B),max(λ+

2 A, λ
+
2 B)]} if x3 < 0 and y1 > 0,

(2.7)

ÃF � B̃F =



{(
x1

y3
,

x2

y2
,

x3

y1
), [min(λ−1 A, λ

−
1 B),min(λ+

1 A, λ
+
1 B)],

[max(λ−2 A, λ
−
2 B),max(λ+

2 A, λ
+
2 B)]} if x1, y1 ∈ R

+,

{(
x1

y1
,

x2

y2
,

x3

y1
), [min(λ−1 A, λ

−
1 B),min(λ+

1 A, λ
+
1 B)],

[max(λ−2 A, λ
−
2 B),max(λ+

2 A, λ
+
2 B)]} if x1 < 0 and y1 > 0,

{(
x3

y1
,

x2

y2
,

x1

y3
), [min(λ−1 A, λ

−
1 B),min(λ+

1 A, λ
+
1 B)],

[max(λ−2 A, λ
−
2 B),max(λ+

2 A, λ
+
2 B)]} if x3 < 0 and y1 > 0,

(2.8)

kÃF =

{(kx1, kx2, kx3), [λ−1 A, λ
+
1 A], [λ−2 A, λ

+
2 A]} if k > 0,

{(kx3, kx2, kx1), [λ−1 A, λ
+
1 A], [λ−2 A, λ

+
2 A]} if k < 0.

(2.9)
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Definition 2.4. Let ÃF = {(x1, x2, x3), [λ−1 A, λ
+
1 A], [λ−2 A, λ

+
2 A]} be a TIVFFN. Then, its ranking is defined

as

R(ÃF) =
(x1 + 2x2 + x3)(λ−1 A + λ+

1 A + 2 − λ−2 A − λ
+
2 A)

16
.

Let ÃF and B̃F be two TIVFFNs. Then,

1) If R(ÃF) > R(B̃F), then ÃF � B̃F .

2) If R(ÃF) < R(B̃F), then ÃF ≺ B̃F .

3) If R(ÃF) = R(B̃F), then ÃF ≈ B̃F .

Definition 2.5. Two TIVFFNs ÃF = {(x1, x2, x3), [λ−1 A, λ
+
1 A], [λ−2 A, λ

+
2 A]} and B̃F = {(y1, y2, y3),

[λ−1 B, λ
+
1 B], [λ−2 B, λ

+
2 B]} are said to be equal (that is, ÃF = B̃F) if and only if x1 = y1, x2 = y2, x3 = y3,

λ−1 A = λ−1 B, λ
+
1 A = λ+

1 B, λ
−
2 A = λ−2 B, and λ+

2 A = λ+
2 B.

3. Linear interval-valued Fermatean fuzzy fractional transportation model

The linear IVFFFTP is designed for the transportation of varying quantities of a single
homogeneous product from multiple origins to different destinations, while keeping overall IVFF
fractional transportation costs to a minimum. Suppose there are m sources from which items must be
delivered to n destinations. Let Ĉ = (ĉi j)m×n be the IVFF cost matrix, where ĉi j denotes the IVFF cost
to transport the product from the source i to destination j. Let P̂ = ( p̂i j)m×n denote the IVFF profit
matrix, and p̂i j denotes the obtained IVFF profit, if a commodity is moved from source i to destination
j. Let x̂i j denote unknown number of items from source i to destination j. Let ĉ0 and p̂0 denote the
specified fixed IVFF costs and profits. Then, the mathematical model of the linear IVFFFTP is

MinQ̂(x) ≈

∑m
i=1
∑n

j=1{(c
i j
1 , c

i j
2 , c

i j
3 ), [λ−1 c, λ

+
1 c], [λ

−
2 c, λ

+
2 c]}xi j + ĉ0∑m

i=1
∑n

j=1{(pi j
1 , pi j

2 , pi j
3 ), [λ−1 p, λ

+
1 p], [λ−2 p, λ

+
2 p]}xi j + p̂0

n∑
j=1

xi j � bi

m∑
i=1

xi j � a j

a j ≈ bi

xi j � 0, ∀i, j. (3.1)

As we are evaluating the fraction of a linear IVFF function, it is possible that the denominator for
some x̂i j is equal to zero. To prevent this problem, we suppose that∑m

i=1
∑n

j=1{(pi j
1 , pi j

2 , pi j
3 ), [λ−1 p, λ

+
1 p], [λ−2 p, λ

+
2 p]}xi j + p̂0 , 0̂.

Remark. The main objective for expressing FFNs in practical problems with TIVFFNs is that they
are easy to use and interpret. Furthermore, these numbers can handle higher levels of uncertainty
and accurately represent the situation. Therefore, we propose a new method to model and solve the
IVFFFTP in which all parameters are denoted as TIVFFNs.
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4. Methodology

In this section, we develop a new method to find the IVFF optimal solution of the linear IVFFFTP.
Proceed as follows.

(i) Represents the given linear IVFFFTP in tabular form (see Table 2).

Table 2. Linear IVFFFTP.
Destination 1 Destination 2 . . . Destination k Supply

Source 1 ĉ11 ĉ12 . . . ĉ1n â1

p̂11 p̂12 . . . p̂1n

Source 2 ĉ21 ĉ22 . . . ĉ2n â2

p̂21 p̂22 . . . p̂2n

. . . . . . . . . . . . . . . . . .

Source m ĉm1 ĉm2 . . . ĉmn âm

p̂m1 p̂m2 . . . p̂mn

Demands b̂1 b̂2 . . . b̂n

(ii) Find the difference between the two lowest IVFF costs ĉi j for each row and column. Similarly, find
the difference between the two lowest IVFF profits p̂i j for each row and column.

(iii) Determines the sum of the differences between ĉi j and p̂i j for all rows and columns.

(iv) Indicate the row or column with the largest sum of differences compared to all other rows and
columns.

(v) Suppose the jth column has the largest sum of differences. Find the line with the smallest
ĉi j

p̂i j
and

make the largest allocation in it.

(vi) This process is repeated until all goods in the source have been moved.

(vii) Compute û
′

i, û
′′

i and v̂
′

j, v̂
′′

j for the allocated cells using ĉi j = û
′

i + v̂
′

j and p̂i j = û
′′

i + v̂
′′

j by setting a
multiplier to zero and connecting it to the row or column of the transportation table with the most
allocated cells. Here, û

′

1, û
′

2, . . . û
′

m and û
′′

1 , û
′′

2 , . . . û
′′

m are the multipliers for IVFF cost and IVFF
profit to the m constraints, and v̂

′

1, v̂
′

2, . . . v̂
′

n and v̂
′′

1 , v̂
′′

2 , . . . v̂
′′

n are the multipliers for IVFF cost and
IVFF profit to the n constraints.

(viii) Compute 4
′

i j = û
′

i + v̂
′

j − ĉi j and 4
′′

i j = û
′′

i + v̂
′′

j − p̂i j, and then the optimal criterion is given by
4i j � 0̂, where 4i j = Q̂(x)4

′

i j −4
′′

i j ∀i, j for unassigned units of the IVFF fractional transportation
table.

5. Numerical examples

Example 5.1. [56] A firm owns three electric power stations that fulfill the needs of four communities.
Each power station may generate the following numbers of megawatt-hours (MWh).
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Station 1 Station 2 Station 3
Supply(MWh) 40 45 35

The peak electricity demands of these communities are as follows (in MWh).

Community 1 Community 2 Community 3 Community 4
Demand(MWh) 35 35 25 25

Transportation costs and profits vary based on various uncontrollable factors, such as weather,
traffic, and gasoline prices. The values of cost and profit do not handle the situation properly; to
overcome this, we use the TIVFFNs as parameters. The IVFF cost of transporting 1 MWh of
electricity from a power station to a community is determined by the distance traveled (see Table 3),
and the IVFF profit earned by the firm for each 1 MWh of electricity delivered is shown in Table 4.

Table 3. Transportation costs in dollars.
Station 1 Station 2 Station 3

Community 1 {(7,8,9),[0.3,0.5],[0.2,0.4]} {(10,12,15),[0.4,0.5],[0.1,0.3]} {(12,14,16),[0.4,0.7],[0.1,0.3]}
Community 2 {(4,6,7),[0.5,0.6],[0.2,0.3]} {(10,12,13),[0.5,0.8],[0.4,0.7]} {(12,13,14),[0.2,0.3],[0.15,0.95]}
Community 3 {(14,15,16),[0.5,0.7],[0.2,0.4]} {(10,13,17),[0.6,0.8],[0.2,0.6]} {(13,16,20),[0.2,0.7],[0.6,0.8]}
Community 4 {(6,9,10),[0.4,0.45],[0.25,0.4]} {(5,7,9),[0.5,0.6],[0.3,0.4]} {(9,11,14),[0.7,0.8],[0.3,0.4]}

Table 4. Profit of firm in dollars.
Station 1 Station 2 Station 3

Community 1 {(3,5,6),[0.2,0.3],[0.3,0.35]} {(3,5,6),[0.8,0.9],[0.5,0.6]} {(6,8,10),[0.3,0.5],[0.2,0.3]}
Community 2 {(3,4,5),[0.4,0.5],[0.1,0.4]} {(1,2,3),[0.6,0.7],[0.2,0.8]} {(3,4,5),[0.75,0.85],[0.65,0.7]}
Community 3 {(4,6,8),[0.3,0.4],[0.2,0.5]} {(2,3,6),[0.4,0.7],[0.5,0.6]} {(4,6,7),[0.5,0.7],[0.4,0.6]}
Community 4 {(2,3,8),[0.35,0.7],[0.2,0.5]} {(3,4,6),[0.4,0.7],[0.1,0.4]} {(3,4,6),[0.3,0.6],[0.4,0.5]}

Let

P(x) = {(7, 8, 9), [0.3, 0.5], [0.2, 0.4]}x11 + {(4, 6, 7), [0.5, 0.6], [0.2, 0.3]}x12 + {(14, 15, 16), [0.5, 0.7],
[0.2, 0.4]}x13 + {(6, 9, 10), [0.4, 0.45], [0.25, 0.4]}x14 + {(10, 12, 15), [0.4, 0.5], [0.1, 0.3]}x21

+ {(10, 12, 13), [0.5, 0.8], [0.4, 0.7]}x22 + {(10, 13, 17), [0.6, 0.8], [0.2, 0.6]}x23 + {(5, 7, 9),
[0.5, 0.6], [0.3, 0.4]}x24 + {(12, 14, 16), [0.4, 0.7], [0.1, 0.3]}x31 + {(12, 13, 14), [0.2, 0.3],
[0.15, 0.95]} + {(13, 16, 20), [0.2, 0.7], [0.6, 0.8]}x33 + {(9, 11, 14), [0.7, 0.8], [0.3, 0.4]}x34,

R(x) = {(3, 5, 6), [0.2, 0.3], [0.3, 0.35]}x11 + {(3, 4, 5), [0.4, 0.5], [0.1, 0.4]}x12 + {(4, 6, 8), [0.3, 0.4],
[0.2, 0.5]}x13 + {(2, 3, 8), [0.35, 0.7], [0.2, 0.5]}x14 + {(3, 5, 6), [0.8, 0.9], [0.5, 0.6]}x21 + {(1, 2, 3),
[0.6, 0.7], [0.2, 0.8]}x22 + {(2, 3, 6), [0.4, 0.7], [0.5, 0.6]}x23 + {(3, 4, 6), [0.4, 0.7], [0.1, 0.4]}x24

+ {(6, 8, 10), [0.3, 0.5], [0.2, 0.3]}x31 + {(3, 4, 5), [0.75, 0.85], [0.65, 0.7]}x32 + {(4, 6, 7), [0.5, 0.7],
[0.4, 0.6]}x33 + {(3, 4, 6), [0.3, 0.6], [0.4, 0.5]}x34.

Then, the mathematical model of the linear IVFFFTP is

Min
P(x)
R(x)
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subject to
4∑

j=1

x1 j ≤ 40,
4∑

j=1

x2 j ≤ 45,
4∑

j=1

x3 j ≤ 35,

3∑
i=1

xi1 ≥ 35,
3∑

i=1

xi2 ≥ 35,
3∑

i=1

xi3 ≥ 25,
3∑

i=1

xi4 ≥ 25,

xi j ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4. (5.1)

We represent the given linear IVFFFTP in Table 5.

Table 5. Data of Example 5.1.
{(7,8,9),[0.3,0.5],[0.2,0.4]} {(4,6,7),[0.5,0.6],[0.2,0.3]} {(14,15,16),[0.5,0.7],[0.2,0.4]} {(6,9,10),[0.4,0.45],[0.25,0.4]} 40
{(3,5,6),[0.2,0.3],[0.3,0.35]} {(3,4,5),[0.4,0.5],[0.1,0.4]} {(4,6,8),[0.3,0.4],[0.2,0.5]} {(2,3,8),[0.35,0.7],[0.2,0.5]}
{(10,12,15),[0.4,0.5],[0.1,0.3]} {(10,12,13),[0.5,0.8],[0.4,0.7]} {(10,13,17),[0.6,0.8],[0.2,0.6]} {(5,7,9),[0.5,0.6],[0.3,0.4]} 45
{(3,5,6),[0.8,0.9],[0.5,0.6]} {(1,2,3),[0.6,0.7],[0.2,0.8]} {(2,3,6),[0.4,0.7],[0.5,0.6]} {(3,4,6),[0.4,0.7],[0.1,0.4]}
{(12,14,16),[0.4,0.7],[0.1,0.3]} {(12,13,14),[0.2,0.3],[0.15,0.95]} {(13,16,20),[0.2,0.7],[0.6,0.8]}} {(9,11,14),[0.7,0.8],[0.3,0.4]} 35
{(6,8,10),[0.3,0.5],[0.2,0.3]} {(3,4,5),[0.75,0.85],[0.65,0.7]} {(4,6,7),[0.5,0.7],[0.4,0.6]} {(3,4,6),[0.3,0.6],[0.4,0.5]}
35 35 25 25

By applying the proposed method, the initial interval-valued Fermatean fuzzy basic feasible solution
(FFBFS) is given in Table 6.

Table 6. Initial interval-valued FFBFS of problem 5.1.
{(7,8,9),[0.3,0.5],[0.2,0.4]} {(4,6,7),[0.5,0.6],[0.2,0.3]} {(14,15,16),[0.5,0.7],[0.2,0.4]} {(6,9,10),[0.4,0.45],[0.25,0.4]} 40
5 35
{(3,5,6),[0.2,0.3],[0.3,0.35]} {(3,4,5),[0.4,0.5],[0.1,0.4]} {(4,6,8),[0.3,0.4],[0.2,0.5]} {(2,3,8),[0.35,0.7],[0.2,0.5]}
{(10,12,15),[0.4,0.5],[0.1,0.3]} {(10,12,13),[0.5,0.8],[0.4,0.7]} {(10,13,17),[0.6,0.8],[0.2,0.6]} {(5,7,9),[0.5,0.6],[0.3,0.4]} 45

20 25
{(3,5,6),[0.8,0.9],[0.5,0.6]} {(1,2,3),[0.6,0.7],[0.2,0.8]} {(2,3,6),[0.4,0.7],[0.5,0.6]} {(3,4,6),[0.4,0.7],[0.1,0.4]}
{(12,14,16),[0.4,0.7],[0.1,0.3]} {(12,13,14),[0.2,0.3],[0.15,0.95]} {(13,16,20),[0.2,0.7],[0.6,0.8]}} {(9,11,14),[0.7,0.8],[0.3,0.4]} 35
30 5
{(6,8,10),[0.3,0.5],[0.2,0.3]} {(3,4,5),[0.75,0.85],[0.65,0.7]} {(4,6,7),[0.5,0.7],[0.4,0.6]} {(3,4,6),[0.3,0.6],[0.4,0.5]}
35 35 25 25

Hence, the initial interval-valued FFBFS to the given linear IVFFFTP is obtained as x11 = 5, x12 =

35, x23 = 20, x24 = 25, x31 = 30, x33 = 5 and

Q̂(x) =
{(925, 1185, 1435), [0.1, 0.3], [0.6, 0.8]}
{(435, 595, 810), [0.2, 0.3], [0.5, 0.6]}

= {(1.14, 1.99, 3.3), [0.1, 0.3], [0.6, 0.8]}.

Put û
′

1 = 0, and we get
û
′

2 = {(−7, 3, 13), [0.2, 0.5], [0.6, 0.8]},
û
′

3 = {(3, 6, 9), [0.3, 0.5], [0.2, 0.4]},
v̂
′

1 = {(7, 8, 9), [0.3, 0.5], [0.2, 0.4]},
v̂
′

2 = {(4, 6, 7), [0.5, 0.6], [0.2, 0.3]},
v̂
′

3 = {(4, 10, 17), [0.2, 0.5], [0.6, 0.8]},
v̂
′

4 = {(−6, 4, 11), [0.2, 0.3], [0.5, 0.6]}.
Similarly, put {û

′′

1 = 0}, and then
û
′′

2 = {(−5, 0, 9), [0.2, 0.3], [0.5, 0.6]},
û
′′

3 = {(0, 3, 7), [0.2, 0.3], [0.3, 0.35]},
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v̂
′′

1 = {(3, 5, 6), [0.2, 0.3], [0.3, 0.35]},
v̂
′′

2 = {(3, 4, 5), [0.4, 0.5], [0.1, 0.4]},
v̂
′′

3 = {(−3, 3, 7), [0.2, 0.3], [0.4, 0.6]},
v̂
′′

4 = {(−6, 4, 11), [0.2, 0.3], [0.5, 0.6]}.
The net evaluation corresponding to all non-basic cells is

4
′

13 = û
′

1 + v̂
′

3 − ĉ13

= 0 + {(4, 10, 17), [0.2, 0.5], [0.6, 0.8]} − {(14, 15, 16), [0.5, 0.7], [0.2, 0.4]}
= {(−12, 1, 3), [.2, 0.5], [0.6, 0.8]},

4
′′

13 = û
′′

1 + v̂
′′

3 − p̂13

= 0 + {(−3, 3, 7), [0.2, 0.3], [0.4, 0.6]} − {(4, 6, 8), [0.3, 0.4], [0.2, 0.5]}
= {(−11,−3, 11), [0.2, 0.3], [0.4, 0.6]},

Q̂(x)4
′

13 − 4
′′

13 = {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}{(−12, 1, 3), [.2, 0.5], [0.6, 0.8]}
− {(−11,−3, 11), [0.2, 0.3][0.4, 0.6]}
= {(−50.6, 4.99, 20.9), [0.1, 0.3], [0.6, 0.8]} < 0.

4
′

14 = û
′

1 + v̂
′

4 − ĉ14

= 0 + {(−6, 4, 11), [0.2, 0.3], [0.5, 0.6]} − {(6, 9, 10), [0.4, 0.45], [0.25, 0.4]}
= {(−16,−5, 5), [0.2, 0.3], [0.5, 0.6]},

4
′′

14 = û
′′

1 + v̂
′′

4 − p̂14

= 0 + {(−6, 4, 11), [0.2, 0.3], [0.5, 0.6]} − {(2, 3, 8), [0.35, 0.7], [0.2, 0.5]}
= {(−14, 1, 9), [0.2, 0.3], [0.5, 0.6]},

Q̂(x)4
′

14 − 4
′′

14 = {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}{(−16,−5, 5), [0.2, 0.3], [0.5, 0.6]}
− {(−14, 1, 9), [0.2, 0.3], [0.5, 0.6]}
= {(−61.8,−10.95, 30.5), [0.1, 0.3], [0.6, 0.8]} < 0.

4
′

21 = û
′

2 + v̂
′

1 − ĉ21

= {(−7, 3, 13), [0.2, 0.5], [0.6, 0.8]} + {(7, 8, 9), [0.3, 0.5], [0.2, 0.4]}
− {(10, 11, 15), [0.4, 0.5], [0.1, 0.3]}
= {(−15,−1, 12), [0.2, 0.5], [0.6, 0.8]},

4
′′

21 = û
′′

2 + v̂
′′

1 − p̂21

= {(−5, 0, 9), [0.2, 0.3], [0.5, 0.6]} + {(3, 5, 6), [0.2, 0.3], [0.3, 0.35]}
− {(3, 5, 6), [0.8, 0.9], [0.5, 0.6]}
= {(−8, 0, 12), [0.2, 0.3], [0.5, 0.6]}

Q̂(x)4
′

21 − 4
′′

21 = {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}{(−15,−1, 12), [0.2, 0.5], [0.6, 0.8]}
− {(−8, 0, 12), [0.2, 0.3], [0.5, 0.6]}
= {(−48.672,−1.094, 40.337), [0.2, 0.3], [0.6, 0.8]} < 0.
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4
′

22 =û
′

2 + v̂
′

2 − ĉ22

= {(−7, 3, 13), [0.2, 0.5], [0.6, 0.8]} + {(4, 6, 7), [0.5, 0.6], [0.2, 0.3]}
− {(10, 12, 13), [0.5, 0.8], [0.4, 0.7]}
= {(−16,−3, 10), [0.2, 0.5], [0.6, 0.8]},

4
′′

22 = û
′′

2 + v̂
′′

2 − p̂22

= {(−5, 0, 9), [0.2, 0.3], [0.5, 0.6]} + {(3, 4, 5), [0.4, 0.5], [0.1, 0.4]}
− {(1, 2, 3), [0.6, 0.7], [0.2, 0.8]}
= {(−5, 2, 13), [0.2, 0.3], [0.5, 0.8]},

Q̂(x)4
′

22 − 4
′′

22 = {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}{(−16,−3, 10), [0.2, 0.5], [0.6, 0.8]}
− {(−5, 2, 13), [0.2, 0.3], [0.5, 0.8]}
= {(−65.8,−7.97, 35), [0.1, 0.3], [0.6, 0.8]} < 0.

4
′

32 = û
′

3 + v̂
′

2 − ĉ32

= {(3, 6, 9), [0.3, 0.5], [0.2, 0.4]} + {(4, 6, 7), [0.5, 0.6], [0.2, 0.3]}
− {(12, 13, 14), [0.2, 0.3], [0.15, 0.95]}
= {(−7,−1, 4), [0.2, 0.3], [0.2, 0.95]},

4
′′

32 = û
′′

3 + v̂
′′

2 − p̂32

= {(0, 3, 7), [0.2, 0.3], [0.3, 0.35]} + {(3, 4, 5), [0.4, 0.5], [0.1, 0.4]}
− {(3, 4, 5), [0.75, 0.85], [0.65, 0.7]}
= {(−2, 3, 9), [0.3, 0.35], [0.65, 0.7]},

Q̂(x)4
′

32 − 4
′′

32 = {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}{(−7,−1, 4), [0.2, 0.3], [0.2, 0.95]}
− {(−2, 3, 9), [0.3, 0.35], [0.65, 0.7]}
= {(−32.1,−4.99, 15.2), [0.1, 0.3], [0.65, 0.8]} < 0.

4
′

34 = û
′

3 + v̂
′

4 − ĉ34

= {(3, 6, 9), [0.3, 0.5], [0.2, 0.4]} + {(−6, 4, 11), [0.2, 0.3], [0.5, 0.6]}
− {(9, 11, 14), [0.7, 0.8], [0.3, 0.4]}
= {(−17,−1, 11), [0.2, 0.3], [0.5, 0.6]},

4
′′

34 = û
′′

3 + v̂
′′

4 − p̂34

= {(0, 3, 7), [0.2, 0.3], [0.3, 0.35]} + {(−6, 4, 11), [0.2, 0.3], [0.5, 0.6]}
− {(3, 4, 6), [0.3, 0.6], [0.4, 0.5]}
= {(−12, 3, 15), [0.2, 0.3], [0.5, 0.6]},

Q̂(x)4
′

34 − 4
′′

34 = {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}{(−17,−1, 11), [0.2, 0.3], [0.5, 0.6]}
− {(−12, 3, 15), [0.2, 0.3], [0.5, 0.6]}
= {(−71.1,−4.99, 48.3), [0.1, 0.3], [0.6, 0.8]} < 0.

Finally, we obtain Q̂(x)4
′

i j − 4
′′

i j < 0 for all non-basic cells. Therefore, x11 = 5, x12 = 35, x23 =
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20, x24 = 25, x31 = 30, x33 = 5 are optimal solutions, and the IVFF optimal value is

Q̂(x) =
{(925, 1185, 1435), [0.1, 0.3], [0.6, 0.8]}
{(345, 535, 720), [0.2, 0.3], [0.5, 0.6]}

= {(1.14, 1.99, 3.30), [0.1, 0.3], [0.6, 0.8]}.

The graphical representation of the IVFF optimal value is given in Figure 3.

Figure 3. IVFF optimal value.

Example 5.2. [56] A car firm wants to transfer cars from three different supply stations (W1, W2, and
W3) to three different sales locations (M1, M2, and M3). There are 30, 30 and 10 cars available at the
supply points, respectively. The three sales locations have demands for 25, 25 and 20 cars, respectively.
The profit and cost per car shipped from supply to sales locations are shown in the Tables 7 and 8,
respectively.

Table 7. Cost per car.
M1 M2 M3

W1 {(8, 10, 11), [0.3, 0.7], [0.5, 0.8]} {(5, 7, 9), [0.2, 0.4], [0.5, 0.8]} {(10, 12, 13), [0.3, 0.6], [0.1, 0.2]}
W2 {(7, 10, 12), [0.3, 0.6], [0.4, 0.8]} {(5, 8, 9), [0.3, 0.5], [0.2, 0.7]} {(4, 8, 12), [0.1, 0.2], [0.3, 0.7]}
W3 {(20, 23, 25), [0.4, 0.5], [0.3, 0.4]} {(12, 14, 16), [0.1, 0.2], [0.6, 0.7]} {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]}

Table 8. Profit per car.
M1 M2 M3

W1 {(4, 7, 8), [0.5, 0.6], [0.4, 0.8]} {(4, 5, 10), [0.3, 0.7], [0.4, 0.6]} {(7, 10, 14), [0.1, 0.4], [0.3, 0.7]}
W2 {(3, 4, 9), [0.1, 0.5], [0.4, 0.8]} {(1, 2, 3), [0.1, 0.4], [0.4, 0.9]} {(13, 15, 17), [0.1, 0.4], [0.2, 0.5]}
W3 {(5, 6, 7), [0.4, 0.6], [0.1, 0.3]} {(1, 2, 4), [0.3, 0.5], [0.8, 0.9]} {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}

Let

P(x) = {(8, 10, 11), [0.3, 0.7], [0.5, 0.8]}x11 + {(5, 7, 9), [0.2, 0.4], [0.5, 0.8]}x12 + {(10, 12, 13), [0.3, 0.6],
[0.1, 0.2]}x13 + {(7, 10, 12), [0.3, 0.6], [0.4, 0.8]}x21 + {(5, 8, 9), [0.3, 0.5], [0.2, 0.7]}x22 + {(4, 8, 12),
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[0.1, 0.2], [0.3, 0.7]}x23{(20, 23, 25), [0.4, 0.5], [0.3, 0.4]}x31 + {(12, 14, 16), [0.1, 0.2], [0.6, 0.7]}x32

+ {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]}x33,

R(x) = {(4, 7, 8), [0.5, 0.6], [0.4, 0.8]}x11 + {(4, 5, 10), [0.3, 0.7], [0.4, 0.6]}x12 + {(7, 10, 14), [0.1, 0.4],
[0.3, 0.7]}x13 + {(3, 4, 9), [0.1, 0.5], [0.4, 0.8]}x21 + {(1, 2, 3), [0.1, 0.4], [0.4, 0.9]}x22 + {(13, 15, 17),
[0.1, 0.4], [0.2, 0.5]}x23 + {(5, 6, 7), [0.4, 0.6], [0.1, 0.3]}x31 + {(1, 2, 4), [0.3, 0.5], [0.8, 0.9]}x32

+ {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}x33.

Then, the mathematical model of the linear IVFFFTP is

Min
P(x)
R(x)

subject to
3∑

j=1

x1 j ≤ 30,
3∑

j=1

x2 j ≤ 30,
3∑

j=1

x3 j ≤ 10,

3∑
i=1

xi1 ≥ 25,
3∑

i=1

xi2 ≥ 25,
3∑

i=1

xi3 ≥ 20,

xi j ≥ 0, i = 1, 2, 3, j = 1, 2, 3. (5.2)

We represent the given linear IVFFFTP in Table 9.

Table 9. Data of Example 5.2.
{(8,10,11),[0.3,0.7],[0.5,0.8]} {(5,7,9),[0.2,0.4],[0.5,0.8]} {(10,12,13),[0.3,0.6],[0.1,0.2]} 30
{(4,7,8),[0.5,0.6],[0.4,0.8]} {(4,5,10),[0.3,0.7],[0.4,0.6]} {(7,10,14),[0.1,0.4],[0.3,0.7]}
{(7,10,12),[0.3,0.6],[0.4,0.8]} {(5,8,9),[0.3,0.5],[0.2,0.7]} {(4,8,12),[0.1,0.2],[0.3,0.7]} 30
{(3,4,9),[0.1,0.5],[0.4,0.8]} {(1,2,3),[0.1,0.4],[0.4,0.9]} {(13,15,17),[0.1,0.4],[0.2,0.5]}
{(20, 23, 25), [0.4, 0.5], [0.3, 0.4]} {(12, 14, 16), [0.1, 0.2], [0.6, 0.7]} {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]} 10
{(5, 6, 7), [0.4, 0.6], [0.1, 0.3]} {(1, 2, 4), [0.3, 0.5], [0.8, 0.9]} {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}
25 25 20

By applying the proposed method, the initial interval-valued FFBFS is given in Table 10.

Table 10. Initial interval-valued FFBFS of problem 5.2.
{(8,10,11),[0.3,0.7],[0.5,0.8]} {(5,7,9),[0.2,0.4],[0.5,0.8]} {(10,12,13),[0.3,0.6],[0.1,0.2]} 30
15 15
{(4,7,8),[0.5,0.6],[0.4,0.8]} {(4,5,10),[0.3,0.7],[0.4,0.6]} {(7,10,14),[0.1,0.4],[0.3,0.7]}
{(7,10,12),[0.3,0.6],[0.4,0.8]} {(5,8,9),[0.3,0.5],[0.2,0.7]} {(4,8,12),[0.1,0.2],[0.3,0.7]} 30
10 20
{(3,4,9),[0.1,0.5],[0.4,0.8]} {(1,2,3),[0.1,0.4],[0.4,0.9]} {(13,15,17),[0.1,0.4],[0.2,0.5]}
{(20, 23, 25), [0.4, 0.5], [0.3, 0.4]} {(12, 14, 16), [0.1, 0.2], [0.6, 0.7]} {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]} 10

10
{(5, 6, 7), [0.4, 0.6], [0.1, 0.3]} {(1, 2, 4), [0.3, 0.5], [0.8, 0.9]} {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}
25 25 20

Hence, the initial interval-valued FFBFS to the given linear IVFFFTP is obtained as x11 = 5, x12 =

AIMS Mathematics Volume 7, Issue 9, 17327–17348.



17341

35, x23 = 20, x24 = 25, x31 = 30, x33 = 5 and

Q̂(x) =
{(545, 755, 930), [0.1, 0.2], [0.6, 0.8]}
{(420, 540, 740), [0.1, 0.4], [0.8, 0.9]}

= {(0.74, 1.39, 2.21), [0.1, 0.2], [0.8, 0.9]}.

Put û
′

1 = 0, and we get
û
′

2 = {(−4, 0, 4), [0.3, 0.6], [0.5, 0.8]},
û
′

3 = {(3, 7, 11), [0.1, 0.2], [0.6, 0.8]},
v̂
′

1 = {(8, 10, 11), [0.3, 0.7], [0.5, 0.8]},
v̂
′

2 = {(5, 7, 9), [0.2, 0.4], [0.5, 0.8]},
v̂
′

3 = {(0, 8, 16), [0.1, 0.2], [0.5, 0.8]}.
Similarly, put û

′′

1 = 0, and then
û
′′

2 = {(−5,−3, 5), [0.1, 0.5], [0.4, 0.8]},
û
′′

3 = {(−9,−3, 0), [0.1, 0.4], [0.4, 0.8]},
v̂
′′

1 = {(4, 7, 8), [0.5, 0.6], [0.4, 0.8]},
v̂
′′

2 = {(4, 5, 10), [0.3, 0.7], [0.4, 0.6]},
v̂
′′

3 = {(8, 18, 22), [0.1, 0.4], [0.4, 0.8]}.
The net evaluation corresponding to all non-basic cells is

4
′

13 = û
′

1 + v̂
′

3 − ĉ13

= 0 + {(0, 8, 16), [0.1, 0.2], [0.5, 0.8]} − {(10, 12, 13), [0.3, 0.6], [0.1, 0.2]}
= {(−13,−4, 6), [0.1, 0.2], [0.5, 0.8]},

4
′′

13 = û
′′

1 + v̂
′′

3 − p̂13

= 0 + {(8, 18, 22), [0.1, 0.4], [0.4, 0.8]} − {(7, 10, 14), [0.1, 0.4], [0.3, 0.7]}
= {(−6, 8, 15), [0.1, 0.4], [0.4, 0.8]},

Q̂(x)4
′

13 − 4
′′

13 = {(0.74, 1.39, 2.21), [0.1, 0.2], [0.8, 0.9]}{(−13,−4, 6), [0.1, 0.2], [0.5, 0.8]}
− {(−6, 8, 15), [0.1, 0.4], [0.4, 0.8]}
= {(−43.73,−13.56, 19.26), [0.1, 0.2], [0.8, 0.9]} < 0.

4
′

22 = û
′

2 + v̂
′

2 − ĉ22

= {(−4, 0, 4), [0.3, 0.6], [0.5, 0.8]} + {(5, 7, 9), [0.2, 0.4], [0.5, 0.8]}
− {(5, 8, 9), [0.3, 0.5], [0.2, 0.7]}
= {(−8,−1, 3), [0.2, 0.4], [0.5, 0.8]},

4
′′

22 = û
′′

2 + v̂
′′

2 − p̂22

= {(−5,−3, 5), [0.1, 0.5], [0.4, 0.8]} + {(4, 5, 10), [0.3, 0.7], [0.4, 0.6]}
− {(1, 2, 3), [0.1, 0.4], [0.4, 0.9]}
= {(−4, 0, 14), [0.1, 0.4], [0.4, 0.9]},

Q̂(x)4
′

22 − 4
′′

22 = {(0.74, 1.39, 2.21), [0.1, 0.2], [0.8, 0.9]}{(−8,−1, 3), [0.2, 0.4], [0.5, 0.8]}
− {(−4, 0, 14), [0.1, 0.4], [0.4, 0.9]}
= {(−31.68,−1.39, 10.63), [0.1, 0.2], [0.8, 0.9]} < 0.
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4
′

31 = û
′

3 + v̂
′

1 − ĉ31

= {(3, 7, 11), [0.1, 0.2], [0.6, 0.8]} + {(8, 10, 11), [0.3, 0.7], [0.5, 0.8]}
− {(20, 23, 25), [0.4, 0.5], [0.3, 0.4]}
= {(−14,−6, 2), [0.1, 0.2], [0.6, 0.8]},

4
′′

31 = û
′′

3 + v̂
′′

1 − p̂31

= {(−9,−3, 0), [0.3, 0.5], [0.8, 0.9]} + {(4, 7, 8), [0.5, 0.6], [0.4, 0.8]}
− {(5, 6, 7), [0.4, 0.6], [0.1, 0.3]}
= {(−12,−2, 3), [0.3, 0.5], [0.8, 0.9]},

Q̂(x)4
′

13 − 4
′′

13 = {(0.74, 1.39, 2.21), [0.1, 0.2], [0.8, 0.9]}{(−14,−6, 2), [0.1, 0.2], [0.6, 0.8]}
− {(−12,−2, 3), [0.3, 0.5], [0.8, 0.9]}
= {(−33.94,−6.34, 16.42), [0.1, 0.2], [0.8, 0.9]} < 0.

4
′

33 = û
′

3 + v̂
′

3 − ĉ33

= {(3, 7, 11), [0.1, 0.2], [0.6, 0.8]} + {(0, 8, 16), [0.1, 0.2], [0.5, 0.8]}
− {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]}
= {(−14, 0, 14), [0.1, 0.2], [0.8, 0.9]},

4
′′

33 = û
′′

3 + v̂
′′

3 − p̂33

= {(−9,−3, 0), [0.3, 0.5], [0.8, 0.9]} + {(8, 18, 22), [0.1, 0.4], [0.4, 0.8]}
− {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}
= {(−7, 10, 18), [0.2, 0.3], [0.8, 0.9]},

Q̂(x)4
′

13 − 4
′′

13 = {(0.74, 1.39, 2.21), [0.1, 0.2], [0.8, 0.9]}{(−14, 0, 14), [0.1, 0.2], [0.8, 0.9]}
− {(−7, 10, 18), [0.2, 0.3], [0.8, 0.9]}
= {(−48.94,−10, 37.94), [0.1, 0.2], [0.8, 0.9]} < 0.

Finally, we obtain Q̂(x)4
′

i j − 4
′′

i j < 0 for all non-basic cells. Therefore, x11 = 15, x12 = 15, x21 =

10, x23 = 20 , x32 = 10 are optimal solutions, and the IVFF optimal value is

Q̂(x) =
{(350, 535, 700), [0.1, 0.2], [0.5, 0.8]}
{(425, 520, 765), [0.1, 0.4], [0.4, 0.8]}

= {(0.74, 1.39, 2.21), [0.1, 0.2], [0.8, 0.9]}.

The graphical representation of the IVFF optimal value is given in Figure 4.

6. Comparative analysis

Now, if we solve Example 5.2 by maximum profit and Vogel’s approximation methods [56] (with
respect to cost), then the initial interval-valued FFBFSs are given in Tables 11 and 12 , respectively.
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Figure 4. IVFF optimal value.

Table 11. Solution by maximum profit method.
{(8,10,11),[0.3,0.7],[0.5,0.8]} {(5,7,9),[0.2,0.4],[0.5,0.8]} {(10,12,13),[0.3,0.6],[0.1,0.2]} 30
5 25
{(4,7,8),[0.5,0.6],[0.4,0.8]} {(4,5,10),[0.3,0.7],[0.4,0.6]} {(7,10,14),[0.1,0.4],[0.3,0.7]}
{(7,10,12),[0.3,0.6],[0.4,0.8]} {(5,8,9),[0.3,0.5],[0.2,0.7]} {(4,8,12),[0.1,0.2],[0.3,0.7]} 30
10 20
{(3,4,9),[0.1,0.5],[0.4,0.8]} {(1,2,3),[0.1,0.4],[0.4,0.9]} {(13,15,17),[0.1,0.4],[0.2,0.5]}
{(20, 23, 25), [0.4, 0.5], [0.3, 0.4]} {(12, 14, 16), [0.1, 0.2], [0.6, 0.7]} {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]} 10
10
{(5, 6, 7), [0.4, 0.6], [0.1, 0.3]} {(1, 2, 4), [0.3, 0.5], [0.8, 0.9]} {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}
25 25 20

So, the initial interval-valued FFBFS to the given linear IVFFFTP using the maximum profit method
is obtained as x11 = 5, x12 = 25, x21 = 10, x23 = 20, x31 = 10 and

Q̂(x) =
{(515, 715, 890), [0.1, 0.2], [0.5, 0.8]}
{(610, 730, 980), [0.1, 0.4], [0.4, 0.8]}

= {(0.53, 0.98, 1.46), [0.1, 0.2], [0.5, 0.8]}.

Table 12. Solution by Vogel’s approximation method.
{(8,10,11),[0.3,0.7],[0.5,0.8]} {(5,7,9),[0.2,0.4],[0.5,0.8]} {(10,12,13),[0.3,0.6],[0.1,0.2]} 30
5 25
{(4,7,8),[0.5,0.6],[0.4,0.8]} {(4,5,10),[0.3,0.7],[0.4,0.6]} {(7,10,14),[0.1,0.4],[0.3,0.7]}
{(7,10,12),[0.3,0.6],[0.4,0.8]} {(5,8,9),[0.3,0.5],[0.2,0.7]} {(4,8,12),[0.1,0.2],[0.3,0.7]} 30
20 10
{(3,4,9),[0.1,0.5],[0.4,0.8]} {(1,2,3),[0.1,0.4],[0.4,0.9]} {(13,15,17),[0.1,0.4],[0.2,0.5]}
{(20, 23, 25), [0.4, 0.5], [0.3, 0.4]} {(12, 14, 16), [0.1, 0.2], [0.6, 0.7]} {(13, 15, 17), [0.3, 0.5], [0.8, 0.9]} 10

10
{(5, 6, 7), [0.4, 0.6], [0.1, 0.3]} {(1, 2, 4), [0.3, 0.5], [0.8, 0.9]} {(4, 5, 6), [0.2, 0.3], [0.8, 0.9]}
25 25 20
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Therefore, the initial interval-valued FFBFS to the given linear IVFFFTP using Vogel’s
approximation method (with respect to cost) is obtained as
x11 = 5, x12 = 25, x21 = 20, x23 = 10, x33 = 10, and

Q̂(x) =
{(475, 655, 810)}, [0.1, 0.2], [0.8, 0.9]
{(350, 440, 700), [0.1, 0.3], [0.8, 0.9]}

= {(0.68, 1.49, 2.31), [0.1, 0.2], [0.8, 0.9]}.

Comparison of the proposed method with the maximum profit and Vogel’s approximation methods
is given in Table 13. It is clear that the proposed method gives better results than the maximum profit
and Vogel’s approximation methods.

Table 13. Comparison of the solutions for Example 5.2.
Maximum profit Vogel’s method [56] Proposed method
method [56] (with respect to cost)

X∗ (5,25,0,10,0,20,10,0,0) (5,25,0,20,0,10,0,0,10) (15,15,0,10,0,20,0,10,0)
Q̂(x) {(0.53,0.98,1.46),[0.1,0.2],[0.5,0.8]} {(0.68,1.49,2.31),[0.1,0.2],[0.8,0.9]} {(0.74,1.39,2.21),[0.1,0.2],[0.8,0.9]}
Ranking 0.25 0.22 0.21

The above table shows that our proposed method for determining the interval-valued Fermatean
fuzzy optimal cost of the IVFFFTP is preferable compared to the maximum profit and Vogel
methods [56]. Also, the maximum profit method simply maximizes the profit, i.e., maximizes the
denominator of the FTP, without considering the cost of the FTP (i.e., the numerator of the FTP). In
this way, Vogel’s method also determines the interval-valued Fermatean fuzzy optimal cost of the
IVFFFTP. On the other hand, our proposed method determines the interval-valued Fermatean fuzzy
optimal cost of the IVFFFTP by considering the cost and profit of the IVFFFTP. Therefore, our
proposed method is preferable compared to these methods.

7. Conclusions

The FTP is designed for the movement of varying quantities of a single homogeneous item from
multiple origins to multiple destinations while minimizing overall transportation costs. In this
manuscript, we have defined the TIVFFN and formulated its arithmetic operations. We have proposed
a straightforward method for solving a linear IVFFFTP. By applying the aforementioned IVFF
algorithm and ordering, we have obtained the IVFF optimal solution for a given linear IVFFFTP
without re-transforming the original problem into a classical one. We have provided numerical
examples to demonstrate the performance and superiority of the proposed method. Furthermore, we
have compared our proposed method with maximal profit and Vogel’s methods [56]. One of the main
advantages of the proposed method is the minimum cost of the IVFFFTP is obtained, compared to the
maximum profit and Vogel methods [56]. However, this approach is only valuable if demand and
supply are given as clear values. In the future, we will develop an LP-type method for determining the
optimal solution of the FTP in the Fermatean fuzzy environment. Furthermore, we would like to point
out that the proposed method cannot be used to determine the Fermatean fuzzy optimal solution for an
unbalanced IVFFFTP. Therefore, further research to extend the proposed method to address these
shortcomings is an interesting way for future research. We will report significant results from these
ongoing projects in the near future. Furthermore, we plan to extend our research work to address the
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multi-objective fractional transport problem.
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