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Abstract: In this paper, we study the exponential integrator method (EIM) for solving the nonlinear
Helmholtz equation (NLHE). As the wave number or the characteristic coefficient in the nonlinear term
is large, the NLHE becomes a highly oscillatory and indefinite nonlinear problem, which makes most
of numerical methods lose their expected computational effects. Based on the shooting method, the
NLHE is firstly transformed into an initial-value-type problem. Then, the EIM is utilized for solving the
deduced problem, by which we not only can capture the oscillation very well, but also avoid to search
the nonlinear iteration method and to solve indefinite linear equations at each iteration step. Therefore,
the high accuracy simulations with relative large physical parameters in the NLHE become possible
and lots of computational costs can be saved. Some numerical examples, including the extension to the
nonlinear Helmholtz system, are shown to verify the accuracy and efficiency of the proposed method.
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1. Introduction

When the electromagnetic wave propagates in the materials, the medium responses, which reflect
the materials’ properties such as the magnetic permeability or electric permittivity, usually happen.
Considering the propagation of the electromagnetic wave in the nonlinear optics, if one is only
interested in the propagation of the monochromatic wave, then the Maxwell’s equation which describes
the propagation of the electromagnetic wave can be reduced to the nonlinear Helmholtz equation
(NLHE) [2, 4, 10, 21, 23] under some reasonable assumptions.

To search efficient numerical methods for solving the NLHE is a very interesting field, especially
for the large wave number and the strong nonlinear (large characteristic coefficients in the nonlinear
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term) problems, which has attracted many attentions in the past decades. There are mainly two topics in
the references when designing approximation methods: high accuracy spatial discretization methods
and robust iteration schemes for the generated nonlinear equations. For the former, a finite element
method was constructed in [18] for the problem with discontinuous coefficients. Later, combining a
new variable separation method with a fourth order finite difference scheme, an efficient approximation
method was investigated in [1]. Recently, the existence, uniqueness and the error estimate with explicit
wave numbers for the finite element approximation were analyzed in [19]. And based on the rearranged
Taylor series, we proposed a new finite difference method in [10]. As the wave number increases, the
solution of the NLHE becomes highly oscillatory, which makes many spatial discratization methods
lose their expected accuracy. Besides the approximation method for the spatial discretization, a robust
iteration scheme is also necessary to be considered due to the nonlinearity of the NLHE. In [2],
the Newton’s iteration method was investigated. Then, the authors studied the pseudo-time iteration
method in [21]. Later, a modified Newton’s method was also proposed in [23]. Recently, we study the
error correction iteration method by modifying the original iteration solution with a residual in [10].
From the analysis in [19], we can see that the convergence of the iteration method heavily depends
on the wave number and the characteristic coefficient in the nonlinear term. Moreover, in all methods
referred above, linear equations are needed to be solved at each iteration step. However, when the wave
number is large, the linear equations generated from the NLHE become indefinite, which are difficult
for solving efficiently.

In this paper, we will study the exponential integrator method (EIM) for solving the NLHE. The
EIM is a kind of very efficient method for solving the initial-value-type ordinary differential equation,
especially for the oscillatory problem [7, 12]. This idea was extended to solve the second-order
oscillatory differential equation in [9] and the partial differential equations, such as the nonlinear Dirac
equation [15, 16], the Klein-Gordon equation [5, 14] and so on. Although the NLHE is a boundary-
value-type problem, based on the shooting method, we can transform it into an initial-value-type one.
Then the EIM can be applied to the deduced problem, in which the nonlinear term of the NLHE is
treated explicitly. Compared with the methods in the references, the proposed method not only can
capture the oscillation very well, but also avoid the nonlinear iteration. Moreover, we don’t need to
solve indefinite linear equations at each iteration step. Therefore, the considered method here can be
implemented very efficiently.

The rest of this paper is organized as follows. In the next section, after brief introducing the EIM, we
extend the method to approximate the NLHE. Then, in Section 3, we show some numerical examples
to confirm the efficiency of the proposed method, including the extension to the nonlinear Helmholtz
system. Finally, conclusions are made in Section 4.

2. Methods for solving the NLHE

In this section, we first briefly introduce the idea of the EIM. Then, based on the shooting method,
we will extend it to approximate the NLHE.

2.1. Exponential integrator method

For completeness, we give a brief introduction to the EIM in this subsection. Considering the
second order ordinary differential equation:
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d2q(t)
dt2 = −Ω2q(t) + g(q(t)), t > 0, (2.1)

q(0) = q0,
dq
dt

∣∣∣∣
t=0

= p0, (2.2)

where Ω a positive number, g is a nonlinear function and p0, q0 are two given numbers. We are always
interested in the case Ω � 1. Setting p(t) = q′(t), then (2.1) can be transformed into[

q′(t)
p′(t)

]
=

[
0 1
−Ω2 0

] [
q(t)
p(t)

]
+

[
0

g(q(t))

]
.

Applying the variation-of-constants formula, we arrive at [12][
q(t)
p(t)

]
= R(tΩ)

[
q(0)
p(0)

]
+

∫ t

0

[
Ω−1 sin((t − s)Ω)

cos((t − s)Ω)

]
g(q(s))ds, (2.3)

where

R(tΩ) = exp
(
t
[

0 1
−Ω2 0

])
=

[
cos(tΩ) Ω−1 sin(tΩ)
−Ω sin(tΩ) cos(tΩ)

]
.

Assuming that a uniform partition with a step size h is used for the temporal discretization, i.e., tn =

nh (n = 0, 1, 2, . . . ), approximating g(q(s)) with g(qn) in (2.3), Gautschi [8] proposed the one-step
method [

qn+1

pn+1

]
= R(hΩ)

[
qn

pn

]
+

h
2

[
hsinc2(h

2Ω)
2sinc(hΩ)

]
g(qn), (2.4)

and the two-step method

qn+1 − 2 cos(hΩ)qn + qn−1 = h2sinc2
(
h
2

Ω

)
g(qn), (2.5)

where sincξ = sin ξ/ξ, qn and pn are the approximations of q(tn) and p(tn), respectively.
Then, using the trapezoid rule for g(q(s)) in (2.3), Deuflhard [6] improved the schemes (2.4)

and (2.5) and constructed the folllowing one-step method[
qn+1

pn+1

]
= R(hΩ)

[
qn

pn

]
+

h
2

[
hsinc(hΩ)g(qn)

cos(hΩ)g(qn) + g(qn+1)

]
, (2.6)

and the two-step method

qn+1 − 2 cos(hΩ) + qn−1 = h2sinc(hΩ)g(qn). (2.7)

Later, many high-order EIMs are also widely developed, such as the Runge-Kutta EIM [20] and
the Rosenbrock EIM [13, 17]. Although we only focus on the simplest schemes (2.4) and (2.5), (2.6)
and (2.7) in the following, the idea can be directly extended to these high-order ones.
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2.2. Application to the NLHE

When the electric field E and the material coefficient vary only in one direction z, the Maxwell
equation can be reduced to the following NLHE under some reasonable assumptions [2, 4, 10, 21, 23]:

d2E(z)
dz2 + k2

0(1 + ε|E(z)|2)E(z) = f (z), z ∈ (0,Zmax), (2.8)(
d
dz

+ ik0

)
E
∣∣∣∣
z=0

= 2ik0,

(
d
dz
− ik0

)
E
∣∣∣∣
z=Zmax

= 0, (2.9)

where k0 = ω0/c is the wave number with ω0 being the frequency and c being the speed of light in
vacuum, ε is the nonlinear characteristic coefficient and i =

√
−1 is the imaginary unit. As it is well

known that, when the number k0 is large, the Helmholtz equation becomes an indefinite problem and
its solution oscillates heavily, which result that the classical numerical methods lose their expected
computational effect. The case becomes much worse for the NLHE (2.8) and (2.9) due the existence
of the nonlinear effect, which needs to be solved with a robust iteration method.

Next, we apply the EIM introduced above to solve this problem. Rewriting (2.8) and (2.9) as
d2E
dz2 = −k2

0E + f − k2
0ε|E|

2E, z ∈ (0,Zmax),
E(0) = y,

E′(0) = (2 − y)ik0,

(2.10)

with y being an initial guess, we transform the NLHE into an initial-value-type problem similar to (2.1)
and (2.2) which can be solved by the shooting method to meet the boundary condition at z = Zmax

in (2.9) in some computational senses. Letting h = Zmax
M and zm = mh(m = 0, 1, · · · ,M), denoting

the approximation of E(zm) by Em and two different guesses of the shooting method for solving the
problem (2.10) by y j( j = 0, 1) and p j

0 = (2 − y j)ik0, then we can extend the schemes (2.4) and (2.5),
(2.6) and (2.7) to solve (2.10) with Ω2 = k2

0 and g = f − k2
0ε|E|

2E. Setting V j = p j
M − ik0E j

M and the
tolerance to be δ, we arrive at the mainly algorithm (a combination of the shooting method and the
EIM):

Algorithm 1 (SM-EIM)
Step 1. Given y = y j( j = 0, 1), approximate (2.10) by the EIM and get {E j

m};
If |V0| < δ or |V1| < δ, then {E0

n} or {E1
n} is the expected numerical solution,

stop; Else, go to Step 2;
Step 2. Let ŷ = y1 −

y1−y0
V1−V0 V1, approximate (2.10) by the EIM and get {Êm};

Step 3. If |V̂ | < δ, then {Êm} is the expected numerical solution, stop;
Else, set y0 = y1, V0 = V1 and y1 = ŷ, V1 = V̂ , go to Step 2.

There are mainly three advantages by applying Algorithm 1 to solve the NLHE. First, the oscillatory
solution can be captured very well thanks to the computational feature of the EIM. Second, the
nonlinear term in the NLHE is explicitly treated in Algorithm 1 which avoids to search a nonlinear
iteration method. Third, different from the classical methods to solve indefinite linear equations at each
iteration step, only an explicit scheme for an initial-value-type problem need to be solved and lots of
computational storages can be saved. Moreover, it is much easier (compared with the finite difference
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method) to deal with the problem with discontinuous coefficients. Therefore, better computational
accuracy and speed are possible by using Algorithm 1.

Remark 1. From the classical theory of the shooting method [11], we know that the initial guess
greatly impact the numerical result of the shooting method. Generally speaking, an approximation
equation’s solution (or an approximation of the solution) is a good initial guess when simulating, such
as an approximation equation’s solution is used in solving the nonlinear Helmholtz equation in the
following.

Remark 2. The authors in [9,12] have been proved that the EIMs (2.4) and (2.6) are both second-order
convergent with respect to the step size h. Therefore, if the shooting method is convergent with respect
to the initial guesses, Algorithm 1 (SM-EIM) which consists of the shooting method and the EIM will
be a second-order scheme, too.

3. Numerical experiments

In this section, we will show some numerical examples to verify the efficiency of the proposed
method above, including the extension to the nonlinear Helmholtz system.

3.1. Linear equation

First, we consider the following linear Helmholtz equation with a discontinuous coefficient [3]:
−E′′(z) − k2(z)E(z) = 0 z ∈ (0,Zmax),
−E′(0) = 1,
E′(Zmax) − ik(Zmax)E(Zmax) = 0,

where k(z) = ω/c(z) with ω being a constant and c(z) being a piecewise constant on a partition 0 =

z0 < z1 < · · · < zm = Zmax. Then, this problem’s solution is

E|[z j−1,z j] (z) = αi
je

iω/ciz + αr
je
−iω/ciz, E|[zmax−1,zmax] (z) = αi

zmax
eiω/czmax z,

where the coefficients αi
j and αr

j (αi
j and αr

j are the imaginary and real parts of α j) are determined by
solving a linear system satisfying the C1 compatibility conditions at each point z j (0 < j < m) and the
boundary condition −E′(0) = 1. For more details, the reader is referred to [3].

Letting
Zmax = 1,

c(z) =


1, 0 ≤ z < 0.2,
2, 0.2 ≤ z < 0.5,
4, 0.5 ≤ z ≤ 1,

and the initial guesses y0 = 0 and y1 = 1 in the shooting method, we test the computational accuracy of
Algorithm 1 in l∞- and l2-norms and collect the results in Tables 1 and 2. Since it is a linear problem
(the nonlinear term g ≡ 0), the SM-EIM has the unique form. As the frequency ω increasing, the
solution of the linear Helmholtz equation becomes more oscillatory, which makes it difficult to be
simulated by the classical numerical scheme. But as we can see in Tables 1 and 2, in all tested cases,
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the SM-EIM achieves very high computational accuracy despite the coefficient is discontinuous, and
the results don’t change as the frequency developing, which confirm that the proposed method can
capture the oscillation solution very well.

Table 1. Errors in l∞-norm of the SM-EIM for solving the linear Helmholtz equation.

M 100 200 400 800 1000
ω = 1 1.49e-12 1.92e-14 3.09e-15 1.05e-15 2.08e-16
ω = 10 1.73e-11 1.52e-13 2.11e-14 1.87e-15 1.81e-15
ω = 20 2.56e-11 5.30e-13 8.88e-14 1.81e-14 3.69e-15
ω = 40 2.94e-10 1.73e-12 1.65e-13 4.77e-14 3.15e-14

Table 2. Errors in l2-norm of the SM-EIM for solving the linear Helmholtz equation.

M 100 200 400 800 1000
ω = 1 1.40e-12 1.53e-14 1.90e-15 4.49e-16 1.16e-16
ω = 10 1.60e-11 1.23e-13 1.05e-14 8.00e-16 7.92e-16
ω = 20 2.48e-11 3.43e-13 4.18e-14 5.03e-15 2.02e-15
ω = 40 2.78e-10 1.40e-12 9.86e-14 2.23e-14 1.35e-14

3.2. Nonlinear equation

In this part, we consider the popular example for testing the numerical method’s computational
effect in the nonlinear Helmholtz equation (see [2, 10]). For given f , k0, Zmax and ε, the exact solution
of this problem can be determined (see [2, 10] for the detail). Thus, the errors of the approximation
methods can be calculated in this case, too. Setting f = 0, Zmax = 10, the initial guesses y0 = 0, y1 = 1
(two approximation values of the corresponding linear problem) in the shooting method and ε = 0.01,
with different k0, we compare the errors of the second-order standard finite difference method (SFDM),
the finite volume method (FVM) [2], the fourth-order compact finite difference method (CFDM) [10]
and Algorithm 1 with (2.4) and (2.5) (SM-EIM-G), (2.6) and (2.7) (SM-EIM-D) in Table 3. The
results suggest that better simulations can be got by applying the SM-EIM, especially by the high-
order approximation method SM-EIM-D. Then, fixed k0 = 10, with other computational parameters
taking the same values as above, we show the convergence orders in Figure 1, which is consistent
with the claimed second-order convergence in Remark 2. Moreover, fixed Zmax = 1, we investigate
the robustness of different iteration methods, which are performed in Table 4. Compared with that
for solving nonlinear equations by the frozen-nonlinearity method (FNM) [23], the error correction
method (ECM) [10], the Newton method (NM) and the modified Newton’s method (MNM) [23], the
robustness for satisfying the shooting accuracy by the SM-EIM-G and SM-EIM-D are much better
when the wave number or the characteristic coefficient is large, and this advantage becomes more and
more obvious as the parameter increasing.
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Table 3. Errors in l∞-norm for the nonlinear Helmholtz equation (ε=0.01).

M 100 200 400 800 1600
SFDM 2.14 1.05 2.69e-1 6.71e-2 1.67e-3
FVM [2] 1.59 5.03e-1 1.29e-1 3.23e-2 8.09e-3

k0 = 10 CFDM [10] 5.38e-1 3.70e-2 3.27e-3 6.67e-4 2.72e-4
SM-EIM-G 4.90e-2 1.13e-2 2.78e-3 6.92e-4 1.72e-4
SM-EIM-D 1.92e-3 4.68e-4 1.15e-4 2.81e-5 6.49e-6
SFDM 2.31 2.13 1.80 5.33e-1 1.34e-1
FVM [2] 2.00 2.00 9.76e-1 2.60e-1 6.52e-2

k0 = 20 CFDM [10] 2.17 1.02 7.16e-2 5.46e-3 8.00e-4
SM-EIM-G 5.70e-1 9.57e-2 2.20e-2 5.41e-3 1.34e-3
SM-EIM-D 1.37e-2 2.51e-3 6.11e-4 1.47e-4 3.35e-5
SFDM 1.24 2.35 2.13 2.03 1.03
FVM [2] - 2.00 1.99 1.70 5.16e-1

k0 = 40 CFDM [10] 1.22 2.36 1.76 1.40e-1 9.86e-3
SM-EIM-G 2.02 1.10 1.89e-1 4.35e-2 1.07e-2
SM-EIM-D 2.96e-2 2.52e-2 4.55e-3 1.08e-3 2.45e-4
SFDM 1.07 1.05 2.32 2.29 2.02
FVM [2] - - 2.00 1.98 1.97

k0 = 80 CFDM [10] 1.04 1.21 2.31 1.99 0.29
SM-EIM-G 1.97 2.02 1.84 3.75e-1 8.58e-2
SM-EIM-D 7.03e-2 7.16e-2 5.79e-2 9.50e-3 1.29e-3
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Figure 1. Convergence order for the nonlinear Helmholtz equation (left:l∞-norm, right:l2-
norm, k0=10).
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Table 4. Iteration numbers for the nonlinear Helmholtz equation.

k0 10 20 40 80 160 320 640 1280
FNM [23] 5 5 6 7 9 12 17 38
ECM [10] 3 4 4 4 4 4 5 6
MNM [23] 5 6 7 8 10 14 22 -

ε = 0.01 NM 4 4 5 5 6 8 11 -
SM-EIM-G 4 4 4 5 5 5 4 4
SM-EIM-D 4 4 4 5 5 5 4 4
FNM [23] 5 6 7 9 12 19 45 -
ECM [10] 4 4 4 4 5 5 7 9
MNM [23] 6 7 8 10 14 23 - -

ε = 0.02 NM 4 5 5 6 8 11 - -
SM-EIM-G 4 4 4 5 5 5 6 5
SM-EIM-D 4 4 4 5 5 5 6 5
FNM [23] 6 8 9 13 22 55 - -
ECM [10] 4 4 5 5 6 8 13 -
MNM [23] 7 9 10 16 25 - - -

ε = 0.04 NM 5 5 6 8 10 - - -
SM-EIM-G 5 5 5 6 6 5 6 7
SM-EIM-D 5 5 5 6 6 5 6 7
FNM [23] 8 10 14 20 89 - - -
ECM [10] 5 5 6 7 9 - - -
MNM [23] 9 11 17 25 - - - -

ε = 0.08 NM 5 6 8 11 - - - -
SM-EIM-G 6 7 5 5 7 7 10 8
SM-EIM-D 6 7 5 5 7 7 10 10

Finally, we show the numerical solutions got by the SM-EIM-D with ε = 0.01, 0.1, 0.5, 1 and 1.6
in Figures 2–6, from which we can see that the numerical solutions are almost the same with the exact
one. Furthermore, we collect the CPU times(s) in Table 5. It suggests that much less computational
time is used in the SM-EIM-D than in the SFDM, and this superiority is enhanced when the step
size decreasing. All results verify that the proposed method in this paper is very efficient because
of avoiding to search the nonlinear iteration method and to solve indefinite linear equations at each
iteration step.

Table 5. CPU time(s) of the nonlinear Helmholtz equation with k0 = 10.

M 100 200 400 800 1600
SFDM 0.008383 0.019812 0.022328 0.104701 0.283752
SM-EIM-D 0.000234 0.00043 0.000784 0.00170 0.002954

AIMS Mathematics Volume 7, Issue 9, 17313–17326.



17321

Figure 2. Solutions of the nonlinear Helmholtz equation with ε = 0.01 (red: SM-EIM-D,
blue: Exact one).

Figure 3. Solutions of the nonlinear Helmholtz equation with ε = 0.1 (red: SM-EIM-D,
blue: Exact one).
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Figure 4. Solutions of the nonlinear Helmholtz equation with ε = 0.5 (red: SM-EIM-D,
blue: Exact one).

Figure 5. Solutions of the nonlinear Helmholtz equation with ε = 1 (red: SM-EIM-D, blue:
Exact one).
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Figure 6. Solutions of the nonlinear Helmholtz equation with ε = 1.6 (red: SM-EIM-D,
blue: Exact one).
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3.3. Nonlinear system

The third numerical example we consider here is the coupled nonlinear Helmholtz system,
which describes the third-harmonic signal generation and enhancement in nonlinear photonic crystals
(PhCs) [22]

 d2E1(z)
dz2 + (k0n1)2E1(z) = −3

4k2
0χ

(3)
1 (E2

1(z)E1(z) + E3(z)E
2
1(z)),

d2E3(z)
dz2 + (3k0n3)2E3(z) = −1

4 (3k0)2χ(3)
3 (E3

1(z) + 6E3(z)E1(z)E1(z)),
(3.1)

where z ∈ (0,Zmax) and the boundary conditions are

 dE1
dz (0) = −2iαa + iαbE1(0), dE1

dz (Zmax) = −iα0E1(Zmax),
dE3
dz (0) = iγbE3(0), dE3

dz (Zmax) = −iγ0E3(Zmax),
(3.2)

where E1 and E3 are the electric field intensities of fundamental frequency and third-harmonic, z is
the wave propagation direction, α0, αa, αb, γ0, γb are constants, ni(i = 1, 3) is the refractive index, and
χ(1)

1 and χ(3)
1 are the third-order nonlinear susceptibility tensors. The system (3.1) and (3.2) can be

derived from the Maxwell’s equation under the assumption that the electric and magnetic fields are
time harmonic and the incident direction of pulsed laser is perpendicular to the 1-D PhCs with a third-
order nonlinear medium. For more details, the reader is referred to [22]. Besides the difficulty in the
NLHE, the difference between the solutions of E1 and E3 is very big due to the third-harmonic intensity
E3 are much weaker than the fundamental frequency intensity E1 in this system. Thus, high accurate
numerical methods are required when approximating it. Similar to (2.10), rewriting (3.1) and (3.2)
to an initial-value-type system and extending Algorithm 1 (SM-EIM) with two nonlinear terms being

approximated by −3
4k2

0χ
(3)
1

[
E

(n)
1 (E(n)

1 )2 + E(n)
3 (E

(n)
1 )2

]
and −1

4 (3k0)2χ(3)
3

[
(E(n+1)

1 )3 + 6E(n)
3 E(n+1)

1 E
(n+1)
1

]
in

sequence, we get the SM-EIM for solving the nonlinear Helmholtz system. Taking Zmax = 1, n1 = n3 =

αa = αb = α0 = γb = γ0 = 1, χ(3)
1 = χ(3)

3 = 0.1, we show the numerical solutions got by applying
the SM-EIM (we only used SM-EIM-D here) with M = 100 in Figures 7 and 8. And the solutions
obtained by the second-order SFDM with M = 10000 is used as a reference one. We can find that
the numerical solutions generated by the SM-EIM are almost the same with the reference one. When
k0 = 12, the imaginary of E1 is about in the range of −2 × 10−1 to 2 × 10−1, whereas the imaginary
of E3 is about in the range of −2 × 10−3 to 2 × 10−3. These are successfully captured by the proposed
method. The similar simulation results are got when k0 = 40. Moreover, we study the CPU time(s) in
Table 6, which confirms the fact suggested in the above subsection again. The SM-EIM is also very
efficient for solving the nonlinear Helmholtz system.

Table 6. CPU time(s) of the nonlinear Helmholtz system with k0 = 12.

M 100 500 1000 5000 10000
SFDM 0.0112 0.1420 0.5158 13.380 59.070
SM-EIM 0.0039 0.0124 0.0200 0.0663 0.1625

AIMS Mathematics Volume 7, Issue 9, 17313–17326.
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Figure 7. Solutions of the nonlinear Helmholtz system when k0 = 12 (red: SM-EIM-D, blue:
Reference one).

Figure 8. Solutions of the nonlinear Helmholtz system when k0 = 40 (red: SM-EIM-D, blue:
Reference one).
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4. Conclusions

In this paper, a combination of the shooting method and the exponential integrator method has been
investigated for solving the nonlinear Helmholtz equation. The proposed method performs very fast
and generates much high accurate simulations. This idea can be extended to other nonlinear problems,
too.
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