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Abstract: This paper studies a two-layer control strategy for optimal operational control which is
prevalent in industrial production. The upper layer determines and adjusts the target set values, while
the lower layer makes the loop output track the target value. In the two-layer structure optimal setting
control system, the widely used PID controller is used in the bottom layer. Firstly, the parameters of
the PID controller are obtained by solving linear matrix inequalities (LMI). Secondly, for industrial
processes with nonlinear harmonic disturbances, a disturbance observer is designed to estimate these
disturbances. Thirdly, the effects of disturbances or noises are minimized by dynamically adjusting the
setting points. This method does not change the structure or parameters of the bottom controller, and
thus meets the actual industrial requirements to a certain extent. Finally, in the numerical simulation
section, the value of the performance index before set-points adjustment is compared with that after
set-points adjustment.
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1. Introduction

With the development of modern industry and the increasingly fierce competition in the world
market, new requirements are continually put forward to the production control process by industrial
departments, which not only require the output of controlled equipment to track its set value to the
greatest extent, but also require good control of the operation of the whole industrial equipment to
improve the production quality, efficiency and energy consumption within some range. In fact, the
optimal operational control of many complex industrial processes consists of two layers-loop control
layer and operation control layer [1], which is shown in Figure 1. In Figure 1, the goal of the loop
control layer is to control the output of each loop on the production line, and the operation control
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layer is to dynamically adjust the set value of each loop to optimize the performance index such that
the value of the production performance index (such as economic profit or production cost) run with
the target range [2–8].

Figure 1. Schematic diagram of two-layered optimal setting control.

As we know, in some industrial production processes, once the production line is completed, the
underlying controller structure is difficult to change, so it is unrealistic to redesign the bottom layer
controller [9–14]. Moreover, the range of controller parameters adjustment is usually limited, and
thus the optimal operation of the whole production line is not easy to be realized. At present, many
literatures have studied other ways to improve the system performance on the premise of using fixed
controller, for example, the fixed multi-loop PID control is adopted for the grinding process to reduce
the particle size of ore and screen out valuable ore in [5] which shows that selecting appropriate set
points also works to improve the whole performance. In [6], the fixed controller operation optimization
method is applied for another industrial process called high concentration refining system in which the
pulp quality target, economic target and energy consumption target were tracked respectively to set
points. This method can significantly reduce the energy consumption for refining system and ensure
ideal pulp quality. In order to make the optimization algorithm easier for goethite process, a fixed PID
controller is also used in [14] to control the addition amount of zinc oxide and oxygen during operation,
and an optimization method is adopted based on set point tracking strategy to convert complex state
constraints into additional objectives, which can not only suppress disturbances, but also reduce raw
material consumption in the production process.

On the other hand, many practical systems are influenced by input (output) constraints, multiple
objective functions or noises [15–17]. When the basic site conditions change, the set point of each
loop can be hardly found in real time if only based on the experience of engineers and operators, so
the actual production can not always meet the technical requirements [18–20]. To this purpose, some
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intelligent algorithms are adopted to optimize performance indices. For example, in [18], in order to
improve the sewage purification efficiency, an adaptive multi-objective differential evolution algorithm
is used to find the appropriate set point to balance the working performance and operating cost of
the machine. In [19], a hybrid intelligent control optimization method is introduced based on multi-
objective evaluation in the roasting process of the shaft furnace. The set value of each control loop is
adjusted through real-time evaluation and on-line correction, which not only improves the combustion
efficiency of the shaft furnace, but also reduces the equipment faults. In [20], a blade pitch parameter
tuning optimization method is proposed based on intelligent genetic algorithm which rearranges the
mutation rate and crossover points according to the algorithm progress, and more successfully adjusts
the blade pitch of wind turbine under high wind speed.

Different from those intelligent optimization algorithms, this paper theoretically analyzes the
relationship between the PID controller and upper layer set points, and studies an optimal operational
control method with nonlinear harmonic disturbances. By designing a disturbance observer and
dynamically resetting the set-points, the outputs of the nonlinear control loops can be tracked to the
desired set points without changing the structure or parameters of the controllers.

The remainder of the paper is organized as follows: The optimal operational control process and
the system model will be described in Section 2. The bottom layer controller will be designed in
Section 3 and the disturbance observer will be designed in Section 4. In Section 5, the set points will
be dynamically adjusted. The effectiveness of the method is verified by simulation in Section 6, and
the conclusion is drawn in Section 7.

2. Problem description

Figure 1 is an industrial operation control process in which the operation indicators ξ∗ can be
obtained through the planning and scheduling of performance indicators J. During operation,
engineers will determine the set point r∗j ( j = 1, 2, · · · , n) for each control loop according to
experience, and the controllers will produce required inputs u j (t) ( j = 1, 2, · · · , n) to ensure that its
outputs y j (t) ( j = 1, 2, · · · , n) track the set point r∗j such that the overall performance can be
optimized. In general industrial processes, the performance index J represents profit and energy cost,
which can be usually written as:

J=

∫ T f

T0

[
qm (τ) (pu (τ) − pl (τ)) −C0 (τ)

]
dτ, (2.1)

where qm (τ) is the product quantity in time interval
[
T0,T f

]
, pu (τ) is the unit price function of the

product at time τ, pl (τ) is the unit price of raw materials, and C0 (τ) is the energy consumption.
In Figure 1, di (t) is the disturbance in each loop. When there exist disturbances, the dynamic set

point can be re selected and applied to the operation control layer as follows [2]:

ṙ (t) = h
(
r (t) , y (t) , d̂ (t) , r∗ (t)

)
, (2.2)

where h (·) is a unknown function with respect to the design of operation index r∗ (t), output y (t) and
disturbance estimation d̂ (t), and r (t) is the reselected set point.
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In the two-layer system, it is assumed that the dynamic model of each bottom loop can be expressed
as follows:

Loopi :
{

ẋi (t) = Aixi (t) + Biui (t) + fi (xi (t)) + di (t)
yi (t) = Cixi (t)

i = 1, 2, · · · , n, (2.3)

where xi ∈ Rni×1 is the state vector of each subsystem, yi ∈ Rmi×1 is the system output, ui ∈ Rpi×1 is
the control input, Ai ∈ Rni×ni , Bi ∈ Rni×pi and Ci ∈ Rmi×ni are the system matrices of the subsystem
respectively, while di ∈ Rni×1 is the disturbance, and fi is the nonlinear function which meets the
following assumptions:
Assumption 2.1: For any x1 (t) and x2 (t), the nonlinear function fi (x (t)) satisfies

‖ fi (x1(t)) − fi (x2(t))‖ ≤ ‖Ui (x1(t) − x2(t))‖ , (2.4)

where Ui are given Lipschitz constants and || · || stands for Euclidean norm for vectors.
The composite system for (2.3) can be written as:{

ẋ (t) = Ax (t) + Bu (t) + f (x (t)) + d (t) ,
y (t) = Cx (t) ,

(2.5)

where the composite vectors x, y, u are written as x =
[
xT

1 , · · · x
T
n

]T
, y =

[
yT

1 , · · · y
T
n

]T
, u =

[
uT

1 , · · · u
T
n

]T
;

A, B and C are system matrices which are denoted as A = diag {A1, · · · , An}, B = diag {B1, · · · , Bn} and
C = diag {C1, · · · ,Cn}, d (t) = diag {d1, · · · , dn}.

Denote the tracking error as ε (t), then it can be expressed as follows:

ε (t) = r∗ (t) − y (t) .

The residual e (t) between the setpoint r (t) and the actual control output y (t) can be defined as

e (t) = r (t) − y (t) .

If the disturbances are not considered, the relationship between the tracking error ε (t) and residual
e (t) is as follows:

e (t) = ε (t) = r∗ (t) − y (t) .

3. Bottom layer controller design

Due to technical and economic constraints, PID controllers are still widely used in many industrial
processes [21–29]. Because PID controllers are simple in structure and easy to operate, in order to
make the algorithm in this paper more adaptive, this paper still uses PID control in the loop control
layer shown in Figure 1, and tries to use LMI algorithms to determine the controller parameters. The
PID controller of the loop control layer can be expressed as follows:

u (t) = KPe (t) + KI

∫ t

0
e (τ)dτ + KDė (t) . (3.1)

Substitute the PID control law (3.1) into (2.5), we get

ẋ (t) = Ax (t) + B
(
KPe (t) + KI

∫ t

0
e (τ)dτ + KDė (t)

)
+ f (x (t)) .
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In the ideal case (without considering disturbance), e (t) = ε (t) = r∗ (t) − y (t), in order to make the
algorithm more explicit, we assume that the state is measurable and let C = I, then

ε̇ (t) = ṙ∗ (t) − ẋ (t)

= ṙ∗ (t) − A (r∗ − ε) − f (x (t)) − BKPe (t) − BKI

∫ t

0
e (τ)dτ − BKDė (t)

= (A − BKP) ε (t) − BKI

∫ t

0
e (τ)dτ − BKDė (t) − f (x (t)) + ṙ∗ (t) − Ar∗ (t) .

(3.2)

Let s (t) =
∫ t

0
ε (τ) dτ, then(

ε̇(t)
ṡ(t)

)
=

(
∆−1Π −∆−1BKI

I 0

) (
ε(t)
s(t)

)
+ ∆−1

(
ṙ∗(t) − Ar∗

0

)
+

(
∆−1 f (r∗ − ε)

0

)
, (3.3)

where ∆ = I + BKD, Π = A − BKP, and KP, KI , KD represent the proportional coefficient, integral
coefficient and differential coefficient of PID controller, respectively.
Theorem 3.1. If there exist P > 0, KP ∈ Rm×m, KI ∈ Rm×m and KD ∈ Rm×m such that the following two
matrix inequalities hold

P=

(
P1 P2

P2
T P3

)
> 0, (3.4)


Φ ψ1 ψ2 ψ3

ψT
1 −I 0 0

ψT
2 0 −I 0

ψT
3 0 0 −I

 < 0, (3.5)

where

Φ =

(
Φ11 Φ12

ΦT
12 Φ22

)
, (3.6)

ψ1 = λP
(

∆−1

0

)
, ψ2 =

√
2
λ

(
U1

T

0

)
, ψ3 = P

(
∆−1A

0

)
,

Φ11 = sym
(
P1∆

−1Π + P2

)
,

Φ12 = −P1∆
−1BKI + ΠT ∆−T P2 + P3,

Φ22 = sym
(
−PT

2 ∆−1BKI

)
,

then the composite system (3.3) is asymptotically stable.
Proof. Construct the following Lyapunov function:

V1 =
[
εT (t) sT (t)

] [ P1 P2

PT
2 P3

] [
ε (t)
s (t)

]
+

1
λ2

∫ t

0
‖U1 (r∗ − ε (τ))‖2 − ‖ f (r∗ − ε (τ))‖2dτ.

(3.7)
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Taking the derivative of V1 (t) with respect to t yields

V̇1 =
[
εT (t) sT (t)

]
Φ

[
ε (t)
s (t)

]
+ 2

[
εT (t) sT (t)

]
P

[
∆−1

0

]
(ṙ∗ (t) − Ar∗)

+ 2
[
εT (t) sT (t)

]
P

[
−∆−1

0

]
f (r∗ − ε (t)) +

1
λ2

[
‖U1 (r∗ − ε (t))‖2 − ‖ f (r∗ − ε (t))‖2

]
≤

[
εT (t) sT (t)

] [
Φ + λP2

[
∆−1∆−T 0

0 0

]
PT +

[ 2
λ2 U1

T U1 0
0 0

]
+ P

[
∆−1AAT ∆−T 0

0 0

]
PT

] [
ε (t)
s (t)

]
+ r∗T r∗ +

1
λ2 ṙ∗T UT

1 U1ṙ∗

≤ −σ0

∥∥∥∥∥∥
(
ε

s

)∥∥∥∥∥∥2

+ λmax,

where λmax is the maximum eigenvalue of matrix r∗T r∗ + 1
λ2 ṙ∗T UT

1 U1ṙ∗. Therefore, when

∥∥∥∥∥∥
(
ε

s

)∥∥∥∥∥∥ ≥
σ
− 1

2
0 λmax

1
2 , V̇1 < 0, and the state vector

(
εT sT

)
satisfies∥∥∥∥∥∥

(
ε (t)
s (t)

)∥∥∥∥∥∥ ≤ max
{
σ
− 1

2
0 λmax

1
2 ,

∥∥∥∥∥∥
(
ε (0)
s (0)

)∥∥∥∥∥∥
}
.

In the ideal case (without considering the disturbances), let θ (t) be the trajectory of the composite
loop system (3.3), then

lim
t→∞

θ (t) = θ0,

where θ0 is a constant vector, and
lim
t→∞

θ̇ (t) = 0,

because of ṡ (t) = ε (t), we have
lim
t→∞

ε (t) = 0,

the proof is completed.
According to the Schur complement lemma [30], it can be easily proven that (3.5) in Theorem 3.1[

Φ̃11 Φ̃12

Φ̃T
12 Φ̃22

]
< 0. (3.8)

where
Φ̃11 = Φ11 + λ2P1∆

−1∆−T P1 + 2
λ2 U1

T U1 + P1∆
−1AAT ∆−T P1,

Φ̃12 = Φ12 + λ2P1∆
−1∆−T P2 + P1∆

−1AAT ∆−T P2,

Φ̃22 = Φ22 + λ2P2∆
−1∆−T P2 + P2∆

−1AAT ∆−T P2,

according to (3.8), Φ̃22 < 0 is a necessary condition for (3.5).
Since (3.5) is not a LMI in a strict sense, it is impossible to directly get the required parameters KP,

KI and KD, so it is necessary to convert (3.5) in Theorem 3.1 into a LMI, and we can further obtain the
following theorem:
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Theorem 3.2. If there exist two matrices PI and PD such that

sym
(
−BPI − BPDBT

)
+ λ2I + AAT < 0, (3.9)

then PI and PD can be obtained by the (3.9), and the PID controller parameter KI can be obtained by
solving

KI = PIP2, (3.10)

while KD can be obtained by solving
PIKT

D = PD, (3.11)

Proof. By pre-multiplying ∆P−T
2 and post-multiplying P−1

2 ∆T , Φ̃22 < 0 in Eq (3.8) is equivalent to

sym
(
−BKIP−1

2 ∆T
)

+ λ2I + AAT < 0, (3.12)

denote PI and PD as:
PI = KIP−1

2 , PD = KIP−1
2 KD. (3.13)

It can be verified that (3.12) holds only when (3.9) holds. Obviously, (3.9) is a LMI related to PI

and PD, so a set of P2, KI matrices can be calculated and ∆ can be guaranteed to be invertible. For any
α > 0, P2 = 1

2αI can be selected.
Next, we will continue to calculate KP.

Theorem 3.3. If there exist matrices Q1 > 0, QP and parameters δ > 0, λ > 0 such that

Ψ =



ψ11 ψ12 + δ2I Q1 ∆−1 ∆−1A Q1U1
T

ψT
12 + δ2I ψ22 0 0 0 0

QT
1 0 −α−1I 0 0 0

∆−T 0 0 −λ−1I 0 0
AT ∆−T 0 0 0 I 0
U1QT

1 0 0 0 0 I


< 0, (3.14)

where
ψ11 = sym

(
∆−1AQT

1 − ∆−1BQT
P

)
,

ψ12 = −∆−1BKI + α
(
Q1AT − QPBT

)
∆−T ,

ψ22 = sym
(
−PT

2 ∆−1BKI

)
+ λ2P2∆

−1∆−T P2 + P2∆
−1AAT ∆−T P2,

with the constraint
α

2
λmax (Q1) < δ, (3.15)

then the parameter KP of PID controller (3.1) can be calculated by KP = QT
PQ−T

1 .
Proof. Let Q1 = P−1

1 , Ω1 = diag
{
P−1

1 , I
}
, substitute the obtained P2, KI and KD into (3.8), pre-multiply

Ω1 and post-multiply Ω1
T , we have (

ψ̃11 ψ̃12

ψ̃T
12 ψ̃22

)
< 0, (3.16)

where

ψ̃11 = sym
(
∆−1AQT

1 − ∆−1BQT
P

)
+ Q1

(
P2 + PT

2

)
QT

1 + λ2∆−1∆−T + ∆−1AAT ∆−T + 2
λ2 Q1U1

T U1Q1
T ,

ψ̃12 = −∆−1BKI +
(
Q1AT − QPBT

)
∆−T P2 + Q1P3 + λ2∆−1∆−T P2 + ∆−1AAT ∆−T P2,

ψ̃22 = sym
(
−PT

2 ∆−1BKI

)
+ λ2P2∆

−1∆−T P2 + P2∆
−1AAT ∆−T P2.
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According to the Schur complement lemma [30], (3.16) is equivalent to

Ψ =



ψ11 ψ12 + Q1P3 Q1 ∆−1 ∆−1A Q1U1
T

ψT
12 + PT

3 QT
1 ψ22 0 0 0 0

QT
1 0 −α−1I 0 0 0

∆−T 0 0 −λ−1I 0 0
AT ∆−T 0 0 0 I 0
U1QT

1 0 0 0 0 I


< 0. (3.17)

Let Q3 = Q1P3 = δ2I, then when P3 = δ2Q−1
1 , Inequality (3.17) is equivalent to Inequality (3.14).

According to the Schur complement lemma [30], if inequality

P3 −
1
4
α2P−1

1 > 0,

or (
δ2Q−2

1 −
1
4
α2

)
Q1 > 0,

holds and satisfies (3.15), it can be guaranteed that (3.4) holds.

4. Disturbance observer design

In practical engineering applications, there often exist various disturbances in the system. In this
paper, it is assumed that the external interference d (t) is{

ξ̇ (t) = Aωξ (t) + Fg (ξ (t)) ,
d (t) = Cωξ (t) ,

(4.1)

where ξ (t) is the state vector of the exogenous system, ξ (t) ∈ Rm×1; Aω ∈ Rm×m, Cω ∈ Rm×m, F ∈
Rm×m are known constant matrices; g (ξ (t)) is a known Lipschitz continuous nonlinear function, which
satisfies the following assumption:
Assumption 4.1. For any ξ1 (t) and ξ2 (t), the nonlinear function g (ξ (t)) satisfies

‖g (ξ1 (t)) − g (ξ2 (t))‖ ≤
∥∥∥Ū (ξ1 (t) − ξ2 (t))

∥∥∥ ,
where Ū is given Lipschitz constant and || · || stands for Euclidean norm for vectors.

Compared with those linear external disturbances in [31, 32], the external system in this paper can
not only describe linear signals such as constant load, harmonic disturbances, but also nonlinear signals
in [33, 34].

For the external disturbance System (4.1), this paper constructs the following disturbance observer:

d̂ (t) = Cωξ̂ (t) ,
ξ̂ (t) = v (t) + Lx (t) ,
v̇ (t) = (Aω − LCω) ξ̂ (t) − L (Ax (t) + Bu (t) + f (x (t))) + Fg

(
ξ̂ (t)

)
,

(4.2)

where ξ̂ (t) is the estimated value of ξ (t), v (t) is the auxiliary vector, and L is the nonlinear gain function
of the disturbance observer.
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Define the estimation error as eξ (t) = ξ (t) − ξ̂ (t), then the derivative of eξ (t) can be written as

ėξ (t) = ξ̇ (t) − ˙̂ξ (t)

= Aωξ (t) − (Aω − LCω) ξ̂ (t) − LCω + F
(
g (ξ (t)) − g

(
ξ̂ (t)

))
= (Aω − LCω)

(
ξ (t) − ξ̂ (t)

)
+ F

(
g (ξ (t)) − g

(
ξ̂ (t)

))
= (Aω − LCω) eξ (t) + F

(
g (ξ (t)) − g

(
ξ̂ (t)

))
.

(4.3)

In the case of nonlinear harmonic disturbances (4.1), if we do nothing, the tracking error ε (t) will
increase sharply compared with the tracking error in (3.2). Next, we will analyze the tracking error
ε (t) and try to minimize it in the upper layer. It is noted that neither the structure nor the parameters
of the bottom layer controllers will be changed.

In fact, if we substitute the PID controller (3.1) into (2.5), we will obtain

ε̇ (t) = ṙ∗ (t) − ẋ (t)

= ∆−1Πε (t) − ∆−1BKI s (t)

− ∆−1
(
BKPR (t) + BKI

∫ t

0
R (t) dτ + BKDṘ (t)

)
+ ∆−1ṙ∗ (t) − ∆−1Cωξ (t) − ∆−1Ar∗ (t) − ∆−1 f (x (t)) ,

(4.4)

where R (t) = r (t) − r∗ (t). Combined with (4.3) and (4.4), the following composite system can be
obtained:

ε̇ (t) = ∆−1Πε (t) − ∆−1BKI s (t) − ∆−1
(
BKPR (t) + BKI

∫ t

0
R (τ) dτ + BKDṘ (t)

)
+ ∆−1ṙ∗ (t) − ∆−1Cωξ (t) − ∆−1Ar∗ (t) − ∆−1 f (x (t)) ,

ṡ (t) = ε (t) ,

ėξ (t) = (Aω − LCω) eξ (t) + F
(
g (ξ (t)) − g

(
ξ̂ (t)

))
.

(4.5)

5. Upper layer dynamic set points adjustment

In Section 4, for those nonlinear harmonic disturbances, we have designed a disturbance observer to
estimate them. Next, to ensure the loop outputs yi (t) can still track the original target r∗ under these
disturbances, we will try to dynamically adjust the set-points in the upper layer based on the values
of the estimated disturbances so that the loop output can still track the original target value under the
action of the original controller.

If we adjust the set points as follows:  Eż = E1z + E2,

r (t) = z2 (t) + r∗,
(5.1)

where

E =


I 0 0
0 I 0
0 0 0

 , E1 =


0 I 0
0 0 I

∆−1BKI ∆−1BKP ∆−1BKD

 , z (t) =


∫ t

0
R (τ) dτ
R (t)
Ṙ (t)

 ,
AIMS Mathematics Volume 7, Issue 9, 16673–16691.
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E2 =


0
0

∆−1Ar∗ − ∆−1ṙ∗ (t) + ∆−1 f (x (t)) + ∆−1Cωξ̂ (t) + K1ε (t) + K2s (t)

 .
Then we can obtain

∆−1BKPR (t) + ∆−1BKI

∫ t

0
R (τ) dτ + ∆−1BKDṘ (t)

= −∆−1Ar∗ + ∆−1ṙ∗ (t) − ∆−1 f (x (t)) − ∆−1Cωξ̂ (t) − K1ε (t) − K2s (t) .
(5.2)

Substituting (5.2) into (4.5), the composite system composing of ε (t), s (t) and eξ (t) can be expressed
as follows: 

ε̇ (t)
ṡ (t)
ėξ (t)

 =


∆−1Π + K1 K2 − ∆−1BKI −∆−1Cω

I 0 0
0 0 Aω − LCω



ε (t)
s (t)
eξ (t)


+


0
0
F

 (g (ξ (t)) − g
(
ξ̂ (t)

))
.

(5.3)

Let G11 =

(
∆−1Π −∆−1BKI

I 0

)
,G22 =

(
−∆−1Cω

0

)
,G12 =

(
I
0

)
, F̄ =


0
0
F

, then the composite

System (5.3) can be further written as

˙̄x (t) = Gx̄ (t) + F̄
(
g (ξ (t)) − g

(
ξ̂ (t)

))
,

where x̄ (t) =
(
ε(t)T s(t)T eξ(t)T

)T
, G =

(
G11 + G12K̄ G22

0 Aω − LCω

)
, K̄=

[
K1 K2

]
.

Theorem 5.1. For a given τ > 0, if there exist Γ1 ∈ Rm×m, X ∈ Rl×m and Y ∈ Rm×m such that the
following LMI holds: 

Ξ1 Ξ2 0 0
∗ Ξ3 F ŪT

∗ ∗ −τI 0
∗ ∗ ∗ −τ−1I

 < 0, (5.4)

where
Ξ1 = sym (G11Γ1 + G12X) ,
Ξ2 = G22,

Ξ3 = sym (Aω − YCω) ,

then the gains K1, K2 in (5.1) and the disturbance observer gain L in (4.2) can be obtained by:[
K1 K2

]
= XΓ−1

1

L = Y,
(5.5)

and the composite System (4.5) is exponentially stable.

AIMS Mathematics Volume 7, Issue 9, 16673–16691.



16683

Proof. In order to prove the stability of the error composite System (5.3), we construct the following

Lyapunov function: V2 = x̄T (t) P̄x̄ (t) where P̄=

[
P̄1 0
0 I

]
> 0. Taking the derivative of V2 (t) with

respect to t yields
V̇2 = 2x̄T P̄ ˙̄x

= 2x̄T P̄
(
Gx̄ + F̄

(
g (ξ (t)) − g

(
ξ̂ (t)

)))
= 2x̄T P̄Gx̄ + 2x̄T P̄F̄

(
g (ξ (t)) − g

(
ξ̂ (t)

))
= W(t)T Λ1W (t) + τ

∥∥∥∥g (ξ (t)) − g
(
ξ̂ (t)

)∥∥∥∥2
,

where W (t) =

 x̄ (t)
g (ξ (t)) − g

(
ξ̂ (t)

) , Λ1 =

 sym
(
P̄G

)
P̄T F̄

∗ −τI

.
According to Assumption 4.1,∥∥∥∥g (ξ (t)) − g

(
ξ̂ (t)

)∥∥∥∥ ≤ ∥∥∥∥Ū
(
ξ (t) − ξ̂ (t)

)∥∥∥∥ =
∥∥∥Ūeξ (t)

∥∥∥ ≤ ∥∥∥ŪHx̄ (t)
∥∥∥ ,

then V̇2 ≤ WT (t) Λ2W (t) where Λ2 =

 sym
(
P̄G

)
+ τHT ŪT ŪH P̄T F̄
∗ −τI

, H =
(

0 0 I
)
.

Let P̄1 = Γ−1
1 . By using (5.5) and then pre- and post-multiplying (5.4) with diag

{
P̄1, I, I, I

}
, we have

Ψ1 Ψ2 0 0
∗ Ψ3 F ŪT

∗ ∗ −τI 0
∗ ∗ ∗ −τ−1I

 < 0, (5.6)

where
Ψ1 = sym

[
P̄1

(
G11 + G12K̄

)]
,

Ψ2 = P̄1G22,

Ψ3 = sym (Aω − LCω) .

Substitute ˙̄x (t) = Gx̄ (t) + F̄
(
g (ξ (t)) − g

(
ξ̂ (t)

))
into (5.6), we get

sym
(
P̄G

)
P̄T F̄ HT ŪT

F̄T P̄ −τI 0
ŪH 0 −τ−1I

 < 0.

According to the Schur complement lemma [30], it is easy to obtain

Λ2 < 0,

denote χ1
∆
= |λmax (Λ2)| > 0, χ2

∆
= λmax

(
P̄
)

and get Λ2 ≤ −χ1I, then

V̇2 ≤ W(t)T Λ2W (t) ≤ −χ1‖x̄ (t)‖2 ≤ −χ1χ
−1
2 V, (5.7)

from (5.7), we get
V2 (x̄ (t)) ≤ V2 (x̄ (0)) e−χ1χ2

−1t,
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which means that System (5.3) is exponentially stable, i.e., the composite System (4.5) is exponentially
stable in the presence of disturbances (4.1).

In summary, the algorithm in this paper can be listed as follows:

Step 1. Solve the LMI in (3.9) to get PI and PD;

Step 2. Let P2 = (1/2)αI, get KI by KI = PIP2, and get KD through PIKT
D = PD;

Step 3. Solve LMIs (3.14) and (3.15) to obtain Q1 and QP;

Step 4. Obtain KP from KP = QT
PQ−T

1 and construct controller (3.1);

Step 5. Solve Eq (5.4) to obtain X, Γ1 and Y , and get L and K̄ from L = Y and K̄ = XΓ−1
1 . Construct a

disturbance observer (4.2) and adjust the set point value according to (5.1).

6. Simulations

Most zinc smelting enterprises use goethite method to precipitate iron from zinc sulfate solution.
After the introduced indium post deposition liquid is passed into the reactor for chemical reaction, the
post deposition liquid with ferrous iron will be obtained. The goethite method for ion concentration
control is shown in Figure 2. In [14], the process of iron deposition consists of four ferric precipitation
reactors. Different concentrations of oxygen need to be fed to each branch tube because the low ferric
ion concentration declines during the reaction. However, those small part of oxygen retention existing
in the pipe reacting with heat might affect the actual oxygen concentration. In addition, the air pressure
and temperature of the intake pipe generate periodic fluctuations, and mutual friction and thermal
fluctuation are also generated between the components of the pipe. According to the three chemical
reaction processes in the iron precipitation process of goethite method, the concentration of oxygen
which is fed into each pipe can be regarded as the system state, the input current as the control input,
the concentration of ferrous iron after the reaction as the system output, and the factors such as thermal
fluctuation, mutual friction between pipeline components and periodic fluctuation of air pressure and
temperature can be regarded as uncertain perturbation. Then the chemical reaction rate of ferrous iron
can be obtained in combination with the chemical reaction kinetics, the corresponding mass balance
equation can be established through the principle of material conservation, and the mechanism model
of the reactor in the iron precipitation process can be finally determined as [35]:{

ẋ (t) = Ax (t) + Bu (t) + f (x (t) , t) + d (t) ,
y (t) = Cx (t) ,

where A=


−1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −2 −1

, B=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, f =


−0.3 sin (x1)

0
0.3 cos (x3)

0

, d (t) =


d1

d2

d3

d4

; x is the

oxygen concentration of each branch pipe; u is the control input current under the action of external
disturbance d (t); f is the concentration of residual oxygen in the pipeline after chemical reaction,
system output y is the concentration of ferrous iron after the reaction.
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The schematic diagram of ion concentration control for goethite process can be illustrated as follows:

Figure 2. Schematic diagram of ion concentration control of goethite process.

The initial state of the state vector is set to be
[

x1 (0) x2 (0) x3 (0) x4 (0)
]

=
[

0 0 0 0
]
.

Also we set the target value as
[

r∗1 (t) r∗2 (t) r∗3 (t) r∗4 (t)
]

=
[

107.4 53.7 17.9 3.6
]

[14].
Define the system performance index as

J=
(
y1 (t) − r∗1 (t)

)2
+

(
y2 (t) − r∗2 (t)

)2
+

(
y3 (t) − r∗3 (t)

)2
+

(
y4 (t) − r∗4 (t)

)2,

where r∗ (t) is the set target value, y (t) is the system output ion concentration, and J is the sum of
squares of tracking error.

According to Theorems 3.2 and 3.3, the controller parameters can be obtained by

KI =


1.0105 0 0 0

0 1.0105 0 0
0 0 1.0105 0
0 0 0 1.0105

, KD =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

KP =


7.7968 0.9893 0 0
1.0106 7.9729 0 0

0 0 8.8254 −1.9984
0 0 −3.5634 17.0733

.
For the harmonic disturbances d (t) as in (4.1), the parameters are selected as

Aω =


0 6 0 0
−6 0 0 0
0 0 0 6
0 0 −6 0

, Cω =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

, F =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, g =


0.5 sin (ξ1)
−0.5 cos (ξ2)
0.5 sin (ξ3)
−0.5 cos (ξ4)

.
In the presence of exogenous disturbances, the comparison results of the system output ion

concentration, the error between the tracking target and the actual ion concentration and the system
performance indices are shown in Figures 3–5, respectively.
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Figure 3. Comparison of ion concentration output.

Figure 4. Comparison of tracking error.

AIMS Mathematics Volume 7, Issue 9, 16673–16691.



16687

Figure 5. Comparison of the performance indexes.

In the ideal conditions, the tracking error ε finally tends to zero. However, when there exist
exogenous disturbances (4.1) in the system, if the set value is not adjusted, the ion concentration y
output from the four reactors will fluctuate near the ideal value. As shown by the blue line in Figure 3,
the fluctuation ranges of the four reactors are as follows: −12.9 ∼ 12.9 (mmol/L),
−15.0 ∼ 15.0 (mmol/L), −15.05 ∼ 15.05 (mmol/L), −11.95 ∼ 11.95 (mmol/L). At the same time, the
system tracking error ε of the four reactors fluctuates near zero. As shown by the blue line in
Figure 4, the fluctuation ranges of tracking error ε are as follows: −12.8 ∼ 12.8 (mmol/L),
−15.1 ∼ 15.1 (mmol/L), −15.7 ∼ 15.7 (mmol/L), −11.38 ∼ 11.38 (mmol/L). The blue line in Figure 5
is the performance index J of the system in the presence of exogenous disturbances (4.1). When there
exist exogenous disturbances and the set value is not adjusted, the curve fluctuates frequently up and
down.

It can be seen that in the presence of exogenous disturbances (4.1), if the controller is not changed
and no adjustment is made in the upper layer, the system performance will deteriorate seriously.

According to Theorem 5.1, we can get

L=


15.1182 0 0 0

0 15.1182 0 0
0 0 15.1182 0
0 0 0 15.1182

,

K1=


−1.238 × 103 0.178 × 103 0 0
0.178 × 103 −1.238 × 103 0 0

0 0 −3.182 × 103 0.128 × 103

0 0 −0.405 × 103 −7.316 × 103

,

K2=


−3.201 × 105 1.077 × 103 0 0
1.077 × 103 −3.201 × 105 0 0

0 0 −9.679 × 105 0.679 × 103

0 0 0.679 × 103 −9.679 × 105

.
Figure 6 is the set point value adjustment. After the set value is readjusted, the ion concentration

output y of the system quickly reaches the set point. At the same time, the tracking error ε of the system
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can not only tend to zero, but also respond quickly. The performance index J of the system gradually
improves and the system reaches a stable state, as shown by the red line in Figures 3–5.

Figure 6. Setpoint adjustment process.

7. Conclusions

This paper mainly studies a two-level optimal setting control for nonlinear systems with exogenous
disturbances. In order to make the disturbance model more suitable for engineering practice, the
additional disturbances caused by external system nonlinearity is considered. Firstly, the PID
controller is used in the bottom loop, and the PID controller parameters are obtained according to the
Lyapunov theory and the LMI method. Secondly, for nonlinear harmonic disturbances, a disturbance
observer is designed in the upper layer to estimate these nonlinear disturbances. Finally, the set point
value is dynamically adjusted to minimize the impact caused by disturbances or noises. This method
can track the target value well without changing the structure or parameters of those bottom layer
controllers of the whole system.

8. Future work

In this paper, we only consider nonlinear loop systems satisfying Lipschitz conditions, and the
external disturbances are of harmonic type. In fact, the system might be complex, there probably exist
composite disturbances, and the practical systems will generally have requirements on inputs and
outputs. So, we believe the work includes data-based modeling, multi-objectives, composite
disturbances or input/output constraints will be quite promising.
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