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1. Introduction

In the past few decades, fractional differential equations (FDEs) have gone from being a niche area
of mathematical analysis to the forefront of mathematical modeling. Finding applications in a myriad
of areas ranging from the classical FDEs in viscoelasticity [12], to more novel physical fields [9] and
beyond to biology and medicine [13]. A review on more recent applications of fractional differential
equations in a variety of research fields is given below.

One of the foremost fields of research to feature fractional derivatives in recent years is
biomedicine. A type of fractional logistic differential equation used to model the COVID-19
pandemic is discussed in [4, 17]. Continuous glucose monitoring is analyzed via a fractional
differential equation model constructed from a noisy time series in [5]. Fractional differential
equations have been used in a scheme to detect tea moisture content that was introduced in [27]. The
memory property of fractional derivatives is exploited to study a combined drug treatment for the
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Human Immunodeficiency Virus (HIV) in [24]. The Gompertz law, used in many areas of biophysics,
is generalized using fractional derivatives in [7]. An FDE model for the interaction of nutrient
phytoplankton and its predator zooplankton is considered in [3].

Models of financial and economic processes have also recently featured fractional derivatives. A
review of fractional differential equations used in economic growth models is given in [11]. Systems
of FDEs are used in [30] to construct an indicator for the evaluation of economic development of a
given region. The evolution of fractional-order chaotic financial systems is studied using the Adams-
Bashforth-Moulton method in [28]. A financial crisis model represented by a system of fractional
differential equations is analyzed in [18].

In physics and engineering, optics is a field where fractional differential equations find many uses.
Semi-analytical solutions to the fractional Eikonal equation, a problem in optics, are constructed
in [1]. The Caudrey-Dodd-Gibbon equation, used in laser optics, is analyzed in its fractional form
in [23]. Optical soliton solutions to the conformable fractional Benjamin-Bona-Mahony equations are
constructed in [31]. A fractional order model studying light distribution from the main fiber into other
branch fibers in optical meta-materials is analyzed in [2].

Techniques for integrating FDEs can be classified into two large categories: numerical and
analytical methods. Recently, there has been a surge of interest in numerical methods due to the
increased reliance on FDE in fields of applied research. A review of classical methods is given in [6],
while more recent algorithms are discussed in [14].

Analytical or semi-analytical techniques for the construction of solutions to FDEs have also
experienced recent developments. The natural transform method was applied to contruct analytical
solutions to a fractional oscillator in a resisting medium model in [10]. The Laplace-Adomian
decomposition method is used to obtain the analytical solutions to a class of fractional-order
dispersive partial differential equations in [20]. The same approach yields the solutions of fractional
Zakharov-Kuznetsov equations in [21]. The g-homotopy analysis transform method is applied to
solve a class of fractional diffusion equations in [22].

A particular class of techniques based on fractional power series has been presented in [15, 16,26].
This approach considers the (CD(” "))n—type fractional equation:

(CD(I/n))ny =F(x,y); y=yx), (1.1)

where ©D/™ denotes the Caputo derivative of order * with respect to independent variable x; F is

n
an analytic function. Note that in the operator sense, the expression (CD(” ")) is not equivalent to the

d
integer-order derivative o while the set of solutions to (1.1) does include solutions of the ordinary

differential equation y’ = )Ig(x, y), it is a much wider set [16].

It was demonstrated in [15] that (1.1) can be mapped to an equivalent ordinary differential equation
(ODE) via the use of fractional power series. The solution to the obtained ODE can then be transformed
into a solution to the original FDE (1.1). The main objective of this paper is to extend this approach to
¢D"/"_type FDEs:

D"y = G(x,y), (1.2)

where G(x,y) is an analytic function. It is demonstrated that FDE (1.2) can be transformed into (1.1)
if specific conditions hold true, which can then be solved via the integration scheme presented in [25].
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Note that while (CD(” ”))n-type equations (1.1) do not necessarily have a physical interpretation,
they are a vital part of the scheme presented in this paper for solving ¢ D'/"-type FDEs (1.2), which
have a wide range of physical applications [9].

The paper is organized as follows: Section 2 contains preliminary results; Section 3 contains main
definitions and derivations that demonstrate the transformation of ¢D/"-type FDEs into
(CD“/ ”))n-type FDEs via the Riccati equation; Section 4 contains numerical experiments
demonstrating the efficacy of the presented scheme.

2. Preliminaries

2.1. Fractional power series

In this paper, all functions f(x) are represented via power series consisting of fractional-order
powers of the independent variable. If a fractional derivative of order @ = f; gcd(k,n) = 1 (ged(k, n)
denotes the greatest common divisor of integers k and n) is considered, then the series parameter is set

to n:
+00

f@y=>Y cixti c;eR neN. 2.1)
Jj=0
Series (2.1) is required to converge in the neighbourhood 0 < x < R, R > 0. The series can
be rewritten for a more convenient approach with regards to the Caputo fractional derivative in the
following form:

+00

f(x) = Z viw!s neN, (2.2)

=0
where w(l."), Jj=0,1,...are the basis elements of series f(x):

J

W= 2.3)
r (1 + ﬁ)
The following equality relates coeflicients ¢; and v;:
W:cﬂ(l+l» i=01,.... (2.4)
n

As mentioned previously, the series (2.2) and all subsequent fractional power series are required to
converge in the neighbourhood 0 < x < R, R > 0.

Note that the substitution # = x+ can be used to convert (2.1) (and (2.2)) into an integer-order power
series f(1):

+0o0

Foy=r@y=> et 2.5)

=0
The set of series given by (2.1) is denoted as “FF. Multiplication between two elements f, g € °F is
defined in the Cauchy sense:

+00 +00 +00 J .
n n /n n
f-g= E Cng. - E bJWE ' = E ( E (ljc/n)Ckbj_k) WE ), (2.6)
=0 =0 =0 \ k=0
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) ) _ ((+k)/n) )
since w,"wy —( kn ) . for any j, k € Z,.

Note that the followmg property of the binomial coefficient is used in further sections:

(a+,8)_(a+,8)_ F(a+p+1)
a | \ B )] T@+Dr@E+1y

2.7)

where @, 8 > 0.
More details on the properties of fractional power series are given in [15, 16].

2.2. Caputo fractional derivative operator

The Caputo fractional derivative will be considered in this paper. Let (CD(” ”))n denote the Caputo
derivative of order i The Caputo derivative acts on the basis elements (2.3):

cpam,,m )0 =0

J (n) .
Wl J= 1,2,....

(2.8)

The Caputo derivative of order a = f, gcd(k,n) = 1 is realized via taking the kth power the operator
c pim.

2.3. The construction of analytical solutions to (CD“/ ”))n type FDEs

A summary of the scheme for the construction of analytical solutions to (CD“/ ”’)n type FDEs is
presented in this section. This scheme relies on the construction of an equivalent ODE via a
characteristic function. The proof that a solution obtained using this scheme does satisfy the original
FDE is given in [26].

Consider the following type (CD(” "))n FDE:

(“D"")'y = Fxy), 29)

where F(x,y) is bivariate analytic function. The solution to (2.9) is constructed in the form of a
fractional power series (as defined in Section 2.1):

y = va ) — Zc,xn CF. (2.10)

j=0

Series (2.10) is convergent forO < x <R, R > 0.
Inserting (2.10) into (2.9) yields the following relation:

Z(l + ’Jq)cﬁ,,xn = F(x,y). 2.11)

J=0

Setting t = xn and rearranging (2.11) results in:
+00
Z jeit ™t = nt T F (15), (2.12)
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where 7y is the integer power series that corresponds to the fractional power series (2.10):

+00
T=30) = chﬂ'. (2.13)
=0
Note that (2.12) is equivalent to the following ODE:
dy Y

= =nt"'F(5)+ ) jet™. (2.14)

dt

1
Py

~

As shown in [26], inserting ¢ = xi into the solution of the above equation yields a solution to the
following Cauchy problem on (2.9):

(D) y = F ()

x k (2.15)
y(0) = yo; (CD“/")) yo=we= F(l + ;)ck, k=1,....,n—1.
x=0
The initial condition of fractional derivatives at x = 0 is due to (2.10) and the relation:
k k
(CD(I/"))k X = F(l + —) ng) = F(l + —). (2.16)
n n

The algorithm for solving FDE (2.9) is depicted in Figure 1. Note that [25] outlines the algorithm for
numerical integration of FDE (2.9) based on the extension of fractional power series via the use of
generalized differential operators.

/Apply the scheme outlined in\ /Apply the algorithm\

[Timofejeva et al., 2021b)] [Timof(:'eesc;izte(ilin202la]
(CD(I/n)>ny — F(z,y) to transform the FDE into ODE: > o obt ‘] vth A :
J dj ) > to obtain the numerica,
pri H (y,t), solution to the initial
Kwhere t— U, —i(t) = y(m)/ FDE from the

ksolution to the ODE. j

Figure 1. A schematic diagram of the algorithm in [25] to construct numerical solutions
to (2.9).

Example: The Riccati equation
Consider the following Cauchy problem on the Riccati fractional differential equation with constant
coeflicients:
2
(DY) y =y ry-2

i (2.17)
y(0) =a; D7yl =8,

x=0
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where a, 8 € R. The solution to (2.17) is a fractional power series (2.1) with n = 2:

+00
v= 2 e(Va)
=0
The initial condition *D/?y| = Byields ¢; = % Furthermore, noting that:
2
x=0

Ly ol ) N ; -
RS —FE : I;cj+2(v:c)" S+ e

and inserting the series (2.18) into (2.17) yields:

+00 . i +00 J .
J j
Z(l+é)c1~+2(\/;) :a0+Z[a1+chcj_k](\/}) .
=0 =0 =0
Using the substitution ¢ = +/x and denoting y(¢) = y (t2) transforms the above equation into:

§(1+

J=0

N | ~.

Jesat = 26
where P () =37 + — 2. Multiplying both sides of (2.21) by 2 yields:
+00
Z (j+2)cjt! = 2P(5).
Jj=0

Rearranging the sum on the left-hand side of (2.22) and multiplying by ¢ results in:

+ijcjtf‘l = 2tP (7)
=2

B

Finally, adding ¢; = 6] to both sides results in the following ODE:
2
dy o —~ B
— =2ty +y-2)+ ;0 =a.
” (y y ) - (%) y(0) = «a

Note that the 8, which is an initial condition to FDE (2.17) is a parameter in ODE (2.24).

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The kink solitary solution to (2.24) is obtained for 8 = 0 in [29]. However, this case leads to

coeflicients ¢,j,; = 0, j =0, 1,... which in its turn results in a solution to the ODE:

dy 2
— =y +y-2.
dx y Tty

(2.25)
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While the kink solitary solution does indeed satisfy (2.17), the entire set of solutions to the FDE is
much wider. Every solution to (2.24) for some S € R also satisfies (2.17) after the transformation

t= +x.

For 8 # 0, ODE (2.24) can only be solved in series form, via expression of solutions by confluent
hypergeometric series [19]. Solutions to both (2.24) and (2.17) are depicted in parts (a) and (b) of
Figure 2 respectively. Note that the scale of the x-axis changes for the FDE and ODE respectively due
to the substitution ¢ = /x. This also shifts the singularity point from its position in Figure 2 (a) to that
in Figure 2 (b).

(@ (b)

Figure 2. Solutions to (2.24) (part (a)) and (2.17) (part (b)). The initial conditions xy, y, are
set to 0 and 1 respectively, while 8 = —F(%), B = —SF(%), B = F(%) for the black solid,
dashed and dotted lines respectively. Note that the solutions are singular for 8 > 0: The grey
dash-dotted line corresponds to the singularity point.

3. Main results

The main goal of the following derivations is to provide analytical techniques for the conversion of
the type €D'/" problem into a problem of the type (CD(””))n. Without the loss of generality and for
the clarity of the presentation, the denominator of the fractional derivative order will be set to n = 2.
The presented steps can be readily generalized for different values of n.

For clarity of presentation, subsequent sections discuss the application of the described scheme on
the paradigmatic example of Riccati-type FDEs. However, the analytical and numerical computations
can be performed for a general FDE of type (1.2).
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3.1. Auxiliary lemmas

In this section, three lemmas on the series solutions of the Riccati-type FDEs are given. The results
presented here define auxiliary functions @_, @ and ¥, which are essential for the transformation of the

type €D/ problem into a type (CD(” ”))n problem and, in its turn, for the construction of analytical
solutions to (1.2).

Lemma 3.1. Letz = Y5 v ng.z

reads:

) € CFYD pe any fractional power series. The Caputo derivative of 72

Cpiing2 =9, Cptin, 4 0,(x), 3.1

where 0(x) = 37560 jwi.z), 0y = 0 and

j
— 1 2
9";r(g+1) NEE .

] VeV, J=1,2,.. (3.2)

+00 +o0
Cpi/v,2 — Cpa) Z vaw@| = ¢pa2 [

(3.3)

j
- Cpu/m Z
. r(
_|_

M
M.
=~

Jj=1 \ k=0
oo [ j+1 Ia

S )

+
=0 | k=0

Analogously, inserting z = Z;j}’) v jwi.z) and O,(x) = 2;;;’, 0 jwf) into the right hand side of (3.1) results
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in:

+00 +00
22Dz 4 6.(x) =2 ) vw? Y v + 6.(x)

J

— —
3 s s il
=2 Z ij§,2> Z vj+1w§2) +0,(x)=2 Z Z (k/z)Vij—kH] W&z) +0.(x)
J=0 =0 =0 k=0
=235 F(% + )
=2 = ; F(% + 1)[‘(% N 1)Vij—k+1 wi
S 1 F(ﬁ) F(l + 1)
= [;F (G+lr ’_;3) T (%H) S (34)
L$[g_rtx
_2]_0 [; F(§+1)F(%+1)Vkvj_k“ Wj
NIAs rig+1 J r(z+1 @
Sy S
+oo [ j+1 I—v(ﬂ 1
= £ ; F(% + 1)12'*(J_1¢T+1 )Vij—k+1 w§2).

O

Note that the function @.(x) = ¢ D"/?72-27¢ D/ quantifies the effect of fractional differentiation

. . ..d .
of 22. If ¢ D/?) is replaced by an integer order derivative —, the function @,(x) becomes equal to zero.

The two following lemmas yield results on coefﬁcientg of the fractional power series solutions of
the Riccati-type problems. Note that while the solution coefficients can be directly computed using
these results, the evaluation of the solution does not readily follow (different numerical algorithms,
such as described in [25] could be used for the evaluation).

Lemma 3.2. Consider the following Cauchy problem with respect to the Riccati fractional differential
equation:

12 2
D"y, = aryt + ary; + ap + D(x);

(3.5
y1(0) = o,
where as, ay, ag, yo € R, and ®(x) is a given fractional power series with coefficients ¢; € R:
+00
D(x) = Z pw'? e R (3.6)
=1
The solution to (3.5) reads:
+00
n=y ym? ¥ €eR, (3.7)

J=0
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where,
Y1 = ayyy + aryo + ao,
r(4+1) v (3.8)
Yi#1 = A2 Z T X +ayyj+¢;. j=12,....
ki Ja=0,1,... F(; + 1)F(7 + 1)
ki+ka=j
Proof. Coefficients (3.8) are obtained by inserting the fractional power series (3.7) into (3.5). O

Lemma 3.3. Consider the following Cauchy problem:

2
(cD<1/2>) V2 = byy; + byy; + by, + P(x);

(3.9
»0) =9; DYy =a,
x=0
where b3, by, by, Ay, A1 € R and ¥(x) is a given fractional power series with coefficients j € R:
+0o0
P(x) = Z yw? e CFU. (3.10)
=0
The solution to (3.9) reads:
+00
=) Awd, A ER, (3.11)
=0
where,
N r(4+1) 4, 2,
j+2 = 03
bdadibu.. F(% + I)F(% + 1)F(% + 1)
1+Hk2tk3=] (312)

r(4+1) A, A,

+hs Zr(— G

2
ki+ky=j

+b1/lj+lﬁj, j:(),l,....

Proof. Coefficients (3.12) are obtained by inserting the fractional power series (3.11) into (3.9). O

3.2. The construction of solutions to the fractional Riccati equation
The results obtained in section 3.1 are now applied to derive the relationship between problems (3.5)
and (3.9) as well as their respective solutions.
Consider the fractional Riccati equation (3.5). Differentiating (3.5) via the operator € DU/? yields:
2
(CDYPY yi = a DYy} + 4, “ Dy, + DV (x). (3.13)
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Applying Lemma 3.1 to the first term of the right hand side of (3.13) yields:

2
(CD(UZ)) yi = 2ayy, DYy + a,0,,(x) + a; “ DYy, + DV d(x)

= (2ayy; + a1) Dy + CDVPD(x) + a,0,, (). G
Inserting “DY2y; = ayy? + ajy; + ap + ®(x) transforms (3.14) into:
(CD<1/2))2 y1 =2a3y; + 3ajanyt + (a% + 2a0a2) Vi (3.15)
+ DY P(x) + a,0,,(x) + 2ay,P(x) + a (ag + D(x)) .
Let us consider the following notation:
P(x) = ‘DY D(x) + 420y, (x) + 2a,y,D(x) + a; (ag + D(x)). (3.16)

The function ¥(x) is utilized in constructing solutions to FDE (3.5), while functions @(x) and 6, (x)
are given in (3.5) and obtained from (3.1) respectively. Note that ¥(x) simplifies to a linear function
of 6y, (x) if d(x) = 0.
Comparing (3.15) and (3.9) yields the following relationship between coefficients ay, a;,a, and
bo, ey b31
bsy = 2a;
b2 = 3611612; (317)

b, = Cl% + 2610612.

Applying (3.16) and (3.17) transforms (3.15) into:
(SDY2) 31 = bsy} + by} + buyy + W), (3.18)

Note, that (3.18) has the same form as (3.9).
Moreover, (3.16) induces the following relations between the coeflicients ¢, ¢;,0; and y;, j =
0,1,...:

Yo = ¢1 + aoa;
J o
j/2 _ (3.19)
lﬂj = ¢j+l + 6129]' + Cl]¢j + 2612 ; (k/2))/k¢j_k; J= 1, 2, e
The above derivations result in the following theorem.

Theorem 3.1. Cauchy problems (3.5) and (3.9) have the same solution y, = y, =y = Z}’;’B ij?) if
relations (3.16), (3.17) and the following equalities:

Ao =%, A1 =ay;+ary+ao (3.20)
do hold true.
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Having derived the relationship between these problems, existing algorithms can be applied to
solve (3.9), as detailed in Figure 3.

[ “DYMy = F(z,y) ]

Y

Apply Theorem 3.1. to transform (Approximate ¥(z) by taking N
the initial FDE into: the first N + 1 terms:

(CD(I/”))ny = G(z,y) + ¥(x), > (CD(I/R))ny = G(z,y) + ¥(),

+o00 _ N
where ¥(z) = Z¢jw§"). where ¥(z) = Z ijgn).
=0 Jj=0
Y Y
Apply the technique outlined ) Apply the technique outlined
in the Section 2.3 to transform in the Section 2.3 to transform
the obtained FDE into ODE: the obtained FDE into ODE:
dg dy =
— =H(y,t — = H (g,t),
- H@,Y, 2T @)

\where t= 1z, y=9(t) = y(:r)/ \Where t= 1z, 5 =9()~ y(m)/

Y
( Apply the algorithm\
described in
[Timofejeva et al., 2021a]
to obtain the numerical
solution to the initial
FDE from the
\_solution to the ODE. /

Figure 3. The schematic diagram of the algorithm for transforming ¢ D!/"-type FDEs into
(CD(””)) -type FDEs. The red line depicts an algorithm step that cannot be practically
implemented, as ¥ (x) is an infinite series, prompting the requirement to truncate ¥'(x).

4. Computational experiments

Consider the following Cauchy problem with respect to the Riccati fractional differential equation:

1 1 1
Dy =2y sy
4.1)

1
y(0) = E

Note that in this case, the function @(x) = 0, thus, ¢; =0;j=0,1,....
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Using the Theorem 3.1, the values of the parameters by, b,, bs and the initial conditions Ay, 4; can
be computed as follows:

1 1 3
b, = P — e = = =
22347 %
1\’ 1\ 1 1
b =|— . l—=). 2 = —. 4.2
1(2)+(3)412’ (*2)
Jo =
0 — 10’
L] 12 11 1 337
1=3\10) T271073 7 1200
Thus, (4.1) can be transformed into the following Cauchy problem:
cpaoV., _ 13, 3 1
( D ) y=3y +8y + oY+ P
4.3)
I 337 (
0)= —: Cpum _
YO =15 |7 1200

where the coefficients of the function ¥ (x) = Z;"’B yiw ) are obtained using relations (3.19).
Following the technique outlined in Section 2.3, (4. 3) can be converted into the following ODE:

dy 1 5 3, 1_ 337 1
— =2t= i+ —y+ ¥ - ——; W0) = —, 44
dr (sy R TR )) oorg’ V7 10 4
where 1 = yx andy = y(rf) = y(x). Note that the function ¥(x) is changed into l[’(tz) due to the

independent variable substitution. The function ¥(#*) can only be represented by an infinite power
series (a known closed form of ¥ (tz) does not exist). Thus, the above ODE cannot be solved directly.

To integrate (4.4), ¥(#*) is approximated taking the first N + 1 terms:

dy
=2t
dr

8 12007°(3) 10

1_ 337 — 1
o+ y +—y+ZwJ . ] L 30) = — (4.5)

where y tends to y as N tends to infinity.
It is clear that the approximation of the series ¥ via the polynomial 3 =0 ¥ j—7— introduces errors
r(1+ s

into the solution.  Exact expressions and approximate numerical values of the coeflicients
Y;(j=0,1,...,8) are given in the Appendix A.

The solution to FDE (4.1) can now be obtained from the solution to the ODE (4.5) via the algorithm
described in [25]. Figure 4 (a,b) depicts the solutions to (4.5) and (4.1) respectively for different
values of N. These solutions are compared with a direct numerical solution computed via Garrappa’s
method [8] to (4.1) in Figure 4 (b). It can be seen from Figure 4 that increasing N does cause the
solution to converge, although that convergence is not monotonous.
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In general, any numerical method can be used to construct solutions to (4.5). However, using the
semi-analytical scheme presented in [25] makes it easier to perform the transformation of the time-axis,
since the solution to (4.5) is given as a piecewise-polynomial function. If a purely numerical method is
used (such as the classical Euler method, or any Runge-Kutta class technique), the nonlinear time axis
transformation needs to be taken into consideration when selecting the numerical integration step-size.

0.1 0.1
—R.Garrappa
0- 0r —N =1
N =2
0.1¢ 01l —N=3
' ' —N =4
N=5
0.2+ -0.2 1 _ N=¢
--N=7
=03 g 03 N=8
D N—
(> SN
0.4+ 04}
0.5+ 0.5+
-0.6 - -0.6 +
-0.7+ -0.7 -
0 0.5 1 1.5 2

(b)

Figure 4. Convergence of the numerical solution to (4.1). Part (a) depicts the approximate
solutions to the ODE (4.4) for various values of N = 1,2,...,8, while part (b) depicts the
approximate solutions to the FDE (4.1) for N = 1,2,...,8. The obtained solutions are
compared to a direct numerical integrator result [8] (black solid line).

Consider the following Cauchy problem with initial condition being equal to yy:

1, 1 1
Cpamy = Zy2 g Sy 2
YR T3 (4.6)

y(0) = yo.

The root mean square error (RMSE) between solutions computed via the presented algorithm
(denoted y(x)) and Garrappa’s method (denoted ys(x)) is defined as:

1 M
7 2, 0GR = y6(i)’, @.7)
J=0

RMSE (y, y6) = i

where & denotes the integration step size; M is the number of integration steps.
It can be seen in Figure 5 that for the initial condition vy, € [0.1,0.3], RMSE between Garrappa’s

solution and solutions obtained by truncating ¥ (x) at N = 1,..., 8 significantly decreases up to N = 4.
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Using a higher-order approximation for ¥(x) than N = 4 does not yield a significant improvement
RMSE-wise.

X 1073

0 |
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Y0

Figure 5. The root mean square error between Garrappa’s solution to (4.1) and solution
obtained by truncating ¥(x) at N = 1,...,8.

5. Conclusions

This paper proposes a new approach for solving € D'/?-type FDEs. The construction of analytical
solutions to a general form FDE without a direct evaluation of Caputo type integrals is a demanding
mathematical problem. It has been demonstrated that some (CD“/ ”))n—type FDEs can be solved by
transforming them into ODEs and applying a numerical algorithm [26].

The main contribution of this paper is the extension of the class of FDEs where similar fractional
power series can be applied: The scheme is no longer limited to (CD(I/"))n-type FDEs, but can be
applied to € DU/"_type FDEs. It opens new possibilities for the generation of solutions to such FDEs
which previously could be analyzed using only approximate numerical techniques. Difficulties related
to the application of the proposed technique are discussed in the paper and the presented numerical
examples demonstrate the efficacy of the proposed technique.
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Appendix A
Exact expressions of the coefficients y; (j = 0,1, ..., 8) in (4.5) are as follows:
— 1 .
Yo =— 5
1135697 - 227138
LT 2880000
1249259 7 — 9994072
2T 115200000
742059846 7° — 1893308799 7 + 1224728096
T 20736000000 72 :
33336476415 7% — 358272490092 x + 431104289792
T 6635520000000 72 ’
4410927401265 7° — 35936061966618 7% + 72641225920964 1
1T 497664000000000 73
,_34669602941568
497664000000000 73’
_1302276783665715 7° — 2329090441231004 7% — 41702172928558208 7
6= 424673280000000000 73
32543200627818496
~ 424673280000000000 73’

_ 44739727108593380325 n* + 81636161754007129500 7° — 762603888431624570496 >

4013162496000000000000 7+
N 1151771271228481928448 r — 446658387089593204736

4013162496000000000000 7 ’
154447877359721415687525 n* — 1378551111214833609544260 r°

41094783959040000000000000 7#
N 429448090859153644654464 > — 8580504348725618463424512 1

41094783959040000000000000 7#
5031160072177177858146304

" 41094783959040000000000000 7+

7

g =
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Table A. Values of coefficients y; approximated to a precision of 107 obtained via (3.19).
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-0.166667
—-0.014329
-0.016770
-0.012707
—-0.005580
0.001579
0.006157
0.006483
0.002501
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