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1. Introduction

There have been many literatures on continuous dependence and structural stability for the past few
years, including those of Aulisa et al. [1], Celebi et al. [2,3], Liu et al. [4—6], Chen et al. [7,8],Ames and
Payne [9, 10], Ames and Straughan [11],Ciarletta and Straughan [12], Franchi and Straughan [13-16],
Lin and Payne [17,18], Li et al. [19-21], Straughan et al. [22,23] and Zhou et al. [24,25]. Particularly,
most researches focus on the continuous dependence on the boundary data, domain geometry, initial
time geometry, and the model itself. Hirsch and Smale [26] pointed out the necessity of studying
the continuous dependence of solutions. They emphasized the physical significance of this type of
research. This means that changes in the coefficients of partial differential equations may be physically
reflected through changes in constitutive parameters. We trust that mathematical analysis of these
equations will help to disclose their applicability in physics. Since inevitable errors occur in both
numerical calculations and physical measurements of data, continuous correlation results are very
important. It is relevant to understand the extent to which such errors affect the solution.

Harfash [27] researched a system of equations to describe the double-diffusion convection in
Darcy flow with magnetic field effect. The author assumed the magnetic fields with only the vertical
component which was a specific magnetic field. By establishing a priori results, the author illustrates
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that the solution of the equations depends continuously on changes in the magnetic force and gravity
vector coefficients. Some authors have paid attentions to similar problems. By employing Payne’s [28]
highly innovative procedure for obtaining a priori estimates, Ames and Payne [9] have established a
similar result for the Navier-Stokes equations. But it is necessary to restrict the size of the interval or
the size of the initial data in their result. A similar result for a Brinkman porous material and for the
Darcy equations of flow in porous media has been derived by Franchi and Straughan [29] and Payne
and Straughan [30], respectively.

In this paper, we assume that the Darcy flow with magnetic field effect occupies a bounded region
Q in R* and that the boundary of the region is denoted by dQ which is sufficient smooth to use the
divergence theorem. The variables v;, T, C and p are the fluid velocity vector, the temperature, the salt
concentration and the pressure, respectively. The governing equations for Darcy flow with magnetic
field effect may be written as

vi = —p;+gT + hC + o[(vx By) x Byl;, (1.1)
T,+vT, = AT, (1.2)
C.+vC; = AC + AT, (13)
v =0, (1.4)

where g; and h; are gravity vector terms arising in the density equation of state, A is Laplacian operator,
v is the Soret coefficient, o is magnetic coeflicient, and By = (0, 0, By) is a magnetic field with only the
vertical component and v = (v, v2, v3). In (1.1), we take a particular magnetic field, as in [27,31].

On the boundary, we impose

oT oC
vin; = 0, n + kT = F(x,1), I +7C = G(x,1), on 0Q X {t > 0}, (1.5)
n

where F and G are positive functions, n; is the unit outward normal to dQ and k and 7 are
positive constants. Equation (1.5) may be thought of as expressing Newton’s law of cooling with
inhomogeneous outside temperature or inhomogeneous outside salt concentration, i.e.

oT oC
= KT -T), 5= =-k(C-Cy),
on on

where T, and C, are the ambient outside temperature and the ambient outside salt concentration,
respectively. The initial conditions are written as

T(x,0) =Ty(x); C(x,0)=Co(x); in Q, (1.6)

for prescribed functions 7y and Cj.

In our work, we still consider the same particular equations as in [27]. But our boundary conditions
is Newton’s law of cooling type with inhomogeneous outside temperature. Thus, the Sobolev
inequalities which are used in [27] are not available in our paper. Compared with [9], we no longer
need to impose special restrictions on the region . So their method fails to handle the system in this
paper. In this paper, we derive the upper bounds of j;) T*dx and j;) C*dx which are difficulty to obtain.
By using the these priori results, we derive the continuous dependence on the magnetic coefficient and
the boundary parameter. Throughout this paper, the usual summation convention is employed with
repeated Latin subscripts summed from 1 to 3. The comma is used to indicate partial differentiation,
e u;; = g—)’jj_, wi ;=X 9y
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2. A priori bounds

In this section, we want to derive bounds for various norms of v;, T and C in term of known data
which will be used in the next sections. Before we derive these bounds, we prove some lemmas firstly.

Lemma 2.1. Let functions f;, (i = 1,2, 3), defined on 0Q, be some functions such that

fini > fo >0, on 0Q, 2.1)
and

|fiil < my,  |fil < my, (2.2)

where fy > 0 is a constant and my, m, are both positive constants. Then,

fof gDZdASm3fg02dx+affgo,igo,idx, (2.3)
a0 Q Q

for a function ¢ which is defined on the closure of the domain Q. In (2.3), a > 0 is an arbitrary constant

mz
which may be very small and m3 = (m; + —2).

Proof. We began with the identity

(o)) = fu + 2f00,. (2.4)

Integrating (2.4) over Q, using (2.1) and the divergence theorem, we have

5 f SdA < f (i) = f fugidx+2 f Fiogadx. 2.5)
oQ Q Q Q

The Holder inequality and (2.2) allow us to obtain

1 1
fof goszSmlf(pzdx+2m2(f902dx)2(f<p,igp,idx)2, (2.6)
o0 Q Q Q

from which it follows that

2
fof P’ dA s(ml +—2)fgo2dx+af<p,i<p,idx. (2.7)
o) @’ Ja Q

Lemma 2.2. Let T,v € H(Q), Ty € L**(Q) and F € L**(0Q). Then, the solution for (1.2) satisfies

sup |T| < Ty,
Qx[0,5]

where T, = max{|Ty|, |F|}.
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Proof. We began with

d
— f T*dx =2p f T?7'T dx.

Using (1.2), the divergence theorem and the Young inequality, we are leaded to

d
— | T*Pax<2p f T**~'FdA - 2pk f
o0Q

dt Jo oQ

— 1)2pr-1

Ler- D7 f FdA.
@pky*P=t Jan

T’ dA — 2p(2p — 1) f T*72T T dx
Q

An integration of this inequality allows that

v (2p=1 5
( L T dx)” < ( ’;pk fa ) FPdA + fg Ty dx)” .

Allowing p — oo, we obtain

sup |T| < T,
Qx[0,5]

where T, depends on the initial-boundary conditions of 7.

Lemma 2.3. Let T,v € H'(Q) and C be the solutions for (1.2) and (1.3) and T, Cy € C*(Q), F,G €
C*(0Q x {t > 0)). Then,

f T?dx < A1), f C?dx < A1), (2.8)
Q Q

where A(t) and A,(t) are positive functions which will be given later.
Proof. Using (1.2) and the divergence theorem, we compute

1d

—— | T?dx= | TT,dx= | T[AT -v;,T;ld
2qt ), X ‘fQ dx fQ[ v;T ;1dx

= f TFdA - k f T?dA - f T,T dx.
0Q 0Q Q

By the Holder inequality and the Young inequality, from (2.9) we have

1d 1
—— | T%d T.Tdx<— | F%dA. 2.10
2drfg “fg il idx 4kfaQ (2.10)

Integrating (2.10) from O to ¢, we have

! 1 t
f T?dx + 2 f f T,T dxdn < o f f F*dAdn + f Tadx = A (2). (2.11)
Q 0 Q 0 0Q Q

From the identity

(2.9)

f C(C, +v,C; — AC — yAT)dx = 0,
Q
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we get

1d
—— | C%d C.C.d
3 | f Cadx

= f GCdA -1 f C2dA +y f FCdA — ky f TCdA -y f TC dx.
oQ oQ 0Q 0Q Q

(2.12)

Upon employing the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we

can get

1
f GCdAs—f G2dA+ff C2dA,
90 T Jog 4 Joo
b T
)/f FCdAs—f deA+—f C%dA,
aQ T Joo 4 Joa
1
ky f TCdA < —k>y? f T2dA + © f C2dA,
a0 27 Q. 2 Jsa

1 1
YIT,iC,idx < —’)/sz’iT,idX‘l‘ —fC,,C,idx.
Q 2 Q 2 Q

We use these inequalities together with (2.12) to arrive at

—sza’x+fCCdx
kZ,yZ
f G?*dA + f F?dA + —— f T?dA + y* f T,T dx.
aQ T Jog T oQ Q

Letting ¢ = T in Lemma 2.1 and using (2.11), we have

fof TszSmngzdx+a/fT,iT,idx§m3A1(t)+afT,,-T,idx.
oQ o) Q Q

Thus, (2.13) can be rewritten as

d 2 2y K2m
d f C2dx + f C.Codx < = f GPdA + =L f Faa+ <Y 4 () 42y f T.Tdx,
dt Q Q T Joo T 0Q ﬁ) Q

with @ = f"T . An integration of (2.15) leads to

! 2 ! 2,)/2 !
f C’dx + f f C,C dxdn <= f f G*dAdn + ~— f f F2dAdn
Q 0 Jo T Jo Joo T Jo Joo

k2 2 ! !
L 1Y f Ai(pdn + 29 f f T,T dxdn + f C2dx.
Jot 0 0 Jo Q
In light of (2.11), we have

! 2 ! 2,)/2 !
f C*dx + f f C,Cdxdn <= f f G*dAdn + =~ f f F?dAdn
Q 0 Ja T Jo Joo T Jo Joo

k2 2 !
+ LY f A () +Y2A,(8) + f Cdx = A(1).
foT 0 Q

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Lemma 2.4. Let T and C be the solutions for (1.2) and (1.3), and T,v € H'(Q), Ty, Cy

F,G € CHOQ x {t > 0}). Then,

f T*dx < A;(1), f Cdx < Ay(0),
Q Q
where A;(t) and A4(t) will be given later.
Proof. We first let H be a solution of the problem
H,+vH; =AH, in Qx {t > 0},
%—Z +7H = G(x,1), ondQx{t> 0}
H(x,0) = Cyo(x), inQ.

Using (2.19) and the divergence theorem, we find

1d
——fH“dx:fH3H,dx:fH3[AH—v,-H,-]dx
4dt Q Q ’ Q ’

3
= HGdA -t | H*JA-= f (H?) (H?) dx.
40 Q. 4 Ja

By the Holder inequality, we have

! 27
f H'dx +3 f f (H)(H?)dxdn < —— | G*dA+ f Cydx.
Q 0 Jo 647° Jsa Q

From (2.21), it is clear that fQ H*dx can be bounded by known data. Now, we set
Y(x,t) =C - H.
Then, ¢ satisfies the initial-boundary condition problem
Yo+ viy, = Ay +yAT, inQx{t> 0},
oy

—+1Y =0, ondQx{t> 0},
on

U(x,0)=0, inQ.

Next, we also define a new function

O(t) = 5, f T*dx + 6, f T ) dx + f Wldx,
Q Q Q

where ¢; and 9, are positive constants to be determined later. Now, it is easy to see that
D' (1) =46, f T*(AT — v,T )dx + 26, f Ty*(AT — v,T ;)dx
Q Q

+ 26, f TY(AY + yAT — v )dx + 4 f WP (AY + yAT — vy )dx,
Q Q

e CHQ),

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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from which we may get that
@’(1) = - 36, f(Tz),i(Tz),idx -3 f('ﬁz),i(lﬂz),idx - 26, f('ﬁT,i +y, TWYT; + ¢, T)dx
Q Q Q

—462 f Tl,bl//,,'T’,‘dx— 4627[ Tl//T’,‘TJdX— 2527[
Q Q

Q

Tzlﬂ,iT,idx— lzyflﬂzl//,iT’,‘dx
Q

— 46,k f T*dA — 4t f YrdA + 46, f T°FdA +26, | *TFdA
0Q 0Q 0Q 0Q

(2.25)
+26y | YT FdA =26,k +7) | Y*T?dA —26:ky | YT dA
0Q oQ oQ
+4y | Y’FdA-4ky | ’TdA
0Q 00
16
= Z Ji-
1
Now using the arithmetic-geometric mean and the Schwarz inequalities, we find that
1 2\ (2 ) 2y (12
Jo < she | (T)(T)idx+ s— | ()(7).dx, (2.26)
2 Q 2e1 Ja
and
Js + Jg = — 46,y f TT [Ty, + Tapldx + 25>y f Ty ;T dx
Q Q
<628 f (T*) (T?) dx N f [Ty, + TllTy, + T yldx (2.27)
1
+ 252T3;y f \Vydx f IVTIde 2
Q Q
where T, is defined in Lemma 2.2. Furthermore,
Jr=- 127f¢¢,i[tﬁT,i + ¢, Tldx + 12)’fT¢|V¢|2dx
Q Q
3 2
<3e; f W) 0P dx + = f [T + TANTY,; + T ldx (2.28)
Q € Jao

+3y’elT? f VyPdx+ > f W) (W) dx,
Q &1 Ja

Inserting (2.26)—(2.28) into (2.25), and using the Holder and the Young inequalities to the integrals on
the boundary, we have
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1 ) 3
dﬂﬂs—@&—5@&—6w»j]ﬂna%ﬂx—6—5§—3a—;?jlwhw%ﬂx
Q

1)
@&—él——ﬂfwT+wDWT+me
+ 28, T2y( f V> dx f IVTPdx)? + 3y%e,T2 f |V dx
Q Q
(2.29)
1) 0(k + 3
(451’)/ 35185 - 2—87 — (52 Eg — M - —52](’)/811 — ’)/81_33) T4dA
2g6 €10 2 00
02E 1
(4K (5286 - —9 - 52(K + T)S]Q (52](81_13 - 3’)/812 - 3’)/813) l//4dA
2eg 2 0Q
_ 02
+ (6,63 + + F*dA,
( 185 28687 28889 7812)§
where g; (i = 1,2,---,13) are positive constants to be determined. To ensure that the coefficients of

the first three terms and the sixth and seventh terms to be non-positive, we choose that

3 2
61 = max(sy, TLEED L Oyt 120 5, -6
) D) 1 Y k k51 51
8123)’,8227,8325,8426,8525,8629—72,87254—73,88=E,
ko, k 39 2k
89:r8y3’ 810:9(K+—T))/2’ €n = E% 812=813=g-

We drop the non-positive terms in (2.29) to have

D' (1) <26, T2y( f \Viyl*dx f IVT]Pdx)? + 6y%es T2 f \Vy*dx
Q Q

92

+ (0,85 + + ’)/812) F4dA.

+
28687 28889

Using the arithmetic-geometric mean inequality and integrating the above formula from O to ¢, we

obtain
t ! !
O(t) < m f f \Vy > dxdn + m, f f VT Pdxdn + m; f 95 F*dAdn, (2.30)
0 Q 0 Q 0 0Q

where m; = 6, Ty + 6y*esTy, iy = 6,T 1y and i3 = (6165 + 5= 286.97 + 28889 +yE73).
Next, we multiply (2.22); with ¢, integrate in Q and use Cauchy-Schwarz’s inequality to obtain

din;//nz =-2 f W dx - 21 f WrdA — 2y f T iy idx — 2y f FydA — 2ky f TydA
t Q 4Q 40

k2 2
f{//z//dx+y fTde+—f F?dA + —— szdA.
0Q
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(2.31)



16374

In light of (2.14), (2.31) yields that

d k2 2 2 k2 2
= f WRdx < — f v+ (2 4 ) f T Tdx+ = | Fraa+ 228 A0
dr Jo Q Jot Q fi

T Jon 0T

Integrating (2.32) from O to ¢, we have

fwzdx+f fw’iw,,-dxdn
Q 0 Jo

k2?2 / 2t k2 2
S( ra + 'yz)f fT’,-T,idxdn + )’_f f F?dAdn + sy
Jot 0o Jo T Jo Joo Jot

With the aid of (2.11), inequality (2.33) can be rewritten as

fwzdx+f ft//’,-w,,-dxdn
0 0 Jo

1 k2,)/2a, ) ')’2 t k2m372
<= +9%)A (t)+—ff F?*dAdn +
2( fot 7) ] T Jo Joa 1 fot

f Ay()dn.
0

f Ai(n)dn.
0

Inserting (2.34) into (2.30) and using (2.11) again, we have
(1) < m(1),

where

1~ k2 2 — 2 t
m(t) =i (—— + YA () + f f F2dAdn
2 T T 0 50

Jfo
—~12 2 t t
ik msy” f Aipdn + Z2A, () + 7ty f f F*dAdy.
Jot 0 2 0 Joo

Recalling the definition of ®(¢) in (2.23), we may get

1
f ITI*dx < —m(t) = As(2), f ll*dx < m().
Q 1 Q

By the triangle inequality, we have

1 1 1

Ctdx)' < ftfdx f fH“dx .
([ ctan)'<( [ wa) +( [ #ay

Combining (2.21) and (2.36), we have

f C*dx < A4(0),
Q

where

A4(r):{mi(t)+[% fa QG4dA+ fg cgdx]%}“.

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Next, we pay our attention to seek the bound for L, norm of v; as well as Vv. We obtain the following

lemma which will be used in the continuous dependence proof.
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Lemma 2.5. Let v, T and C are the solutions of (1.1)—(1.3) with the initial-boundary conditions (1.5)
and (1.6), and Ty, Cy € CHQ), F,G € C*0Q x {t > 0}). Then,

!
fV,'VidX < A5(I), f fv,-,jv,-,jdxdn < A6(l), (238)
Q 0 Q

where As(t) and Ag(t) are positive functions which will be derived later.

Proof. We start with the identity
f vividx = f V,‘{ —-pit ng + h,C + 0'[(V X BQ) X Bo]i}dx.
Q Q

Since By = (0,0, By), it is clear that [(v x Bo) x Bol; = B2(k;v3 — v,), where k = (ky, k2, k3) = (0,0, 1).
Obviously,

[(v x Bg) x Bolv = B3 (kivs — vi)v; = —Ba[v + 3] < 0, (2.39)

so by the Holder inequality and the arithmetic-geometric mean inequality, we have

fviv,-dx§2g2fTzdx+2h2fC2dx.
Q Q Q

Combining (2.8) and Lemma 2.3, we obtain
f vvidx < 2g°A.(t) + 2h*As(1) = As(2). (2.40)
Q

We commence bounding the L, norm for the velocity gradient. To do this, we split the velocity into
symmetric and skew parts. We write

f vi,jv,-,jdx = f V,"J'(Vl',j - Vj’,')d.x + f Vi’jVj’l'dX. (241)
Q o) Q
To bound the first term of (2.41), we use the Eq (1.1) to have

fvi,j(v,»,j - vj,i)dx = f{_p’ij + giT,j + I’l,‘C,j + O'BS(EI'\@ — vi),j}vi,jdx
Q

Q
- f{_p’ij + ng,i + hjC,,- + O'B%(%j\/‘?, - vj),,-}v,-,jdx
Q

(2.42)
= f(g,'T’/' — g/T’[)V[’jdX + f(h,-C’, - h,’C’,')V,",'dX
o : . o : : :
+ O'B% f(%,-vw - %jvii)vi’jdx - O'Bg f(v,-,j — vj,i)vi,jdx.
Q Q
Using Holder inequality and arithmetic-geometric inequality again in (2.42), we arrive at
1
f(giT,j —&;T)vijdx < f(giT,j -8 T)&T;—gT)dx+ 1 f Vi Vi jdx
Q Q Q
1
=2 f(gZT’iT’i - g,-T,ing,j)dx + Z f v,-,jv,-,jdx

o Q (2.43)

1 1 1
< 2f(g2TiTi + =gigl,T;+ =g;g;T T )dx + —f"i Vi, jdx
Q 2 2 A 4 Jo 77

1
§4g2fT,iT,,-dx+Zfvi,jvi,jdx.
Q Q
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Similarly, we also have
1
f(h,-C,j - hjC,,')V,",'dX < 4h2 f C’iC’idX + — f vi,jvl-,jdx. (244)
Q ' Q 4 Ja
In view of k = (0,0, 1), the third term of (2.42) yields
_ _ 1 _ _
O'B(Z) f(kiV3’j - ij3’,')V,"jd.x :EO'B% f(k,-m,j — kjv3,i)(vi,j - v.,-,i)a’x
Q Q
ZO'Bg f %ivlj(\/,’,]’ — vj,l-)dx (245)
Q

2 2
:O'BO f V3’j(V3,j - vj,3)dx < O-BO f(v,‘,j - vj,i)vi,jdx.
Q Q

Inserting (2.43)—(2.45) into (2.42), we have

1
fvi,j(v,-,j - vj,,')dx < 4g2 f T,,'T,,-dx + 4/’12 f C’,'C’,'dx + — f v,',jv,',jdx. (246)
Q Q Q 2 Q

To handle the second term of (2.41), we use the divergence theorem and integrate by parts to obtain

fv,-,jv,;,-dx:f V[’/le’l,'dA:f(Vil’li)’/deA—f viv,n,-,jdA. (247)
Q ‘ o Flo) ‘ i

The first term of (2.47) is zero, since v;n; = 0 on Q. If the region  is convex, Lin and Payne [18]
state faQ viv;n; jdA > 0 which leads to
fvi,jvj,idx <0.
Q

f vi’jvj,,-dx < k()f Vl'V,‘dA.
Q 0Q

Using Lemma 2.1 with ¢ = v;, we conclude that

k k
fvi,jvj,,-dx < 0 fvl-v,-a’x+ —Oa/fvi,jv,-,jdx. (248)
Q fO Q fO Q

Choosing a = 4% and then inserting (2.46) and (2.48) into (2.41), we have

k 3
fvi,,vi’,dx < 4g2 f T’iT’,‘d)C + 4h2 f C’[C’,'dx + U fv,-vidx + = f v,-,jv,-,jdx,
Q Q Q fo Ja 4 Jo

from which it follows that

4k
fv,-,jv,-,jdxg l6g2fT,,~T,,~dx+16h2fC,,'C,,~dx+ 0t fvividx.
Q Q Q fO Q

By (2.11), (2.19) and (2.48), we have

For non-convex Q,

!
Heorms f As()dn = Aq(0),

!
f f vijvidxdn < 88°A (1) + 16h*Ax(1) +
0 Q 0 0

where we have used (2.11), (2.17) and (2.40).
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3. Continuous dependence on the coefficient o

Let (v;, p, T,C) and (v}, p*, T*, C*) be the solutions to the problem (1.1)—(1.6) for the same initial-
boundary data, but for different magnetic coefficients o-; and o, respectively. Differential variables w;,
m, 0, £ and o are defined by

wi=v,—vi, =T-T°, 2=C-C', n=p-p', o=0—-0,.

Then,
w;=-—m;+ glg + h,Z + 0'[(\/'* X Bo) X B()],' + 0 [(W X Bo) X BO]i’ (31)
0,[ + V?Q’[ + W,‘T’i = A6, (32)
Z,I + V?Z’l’ + W,‘C’i =AY + ’)/AQ, (33)
Wl‘J' = O, (34)

with the initial-boundary conditions

00 oz

wn =0, —=-k0, — =-1%, on QX {t> 0}, 3.5
on on

0(x,0) =2(x,0) =0, x € Q. (3.6)

We have the following theorem.

Theorem 3.1. If T),Cy € L¥(Q), F,G € C*0Q x {t > 0}), then the solutions of (1.1)—(1.6) depend
continuously on the magnetic coefficient o, as shown explicit in inequalities (3.26) and (3.27) which

derives a relation of the form
ﬁf&ﬂ+f§ﬁsu&,
Q Q

fwiw,-dx < LQO'Z,
Q

where Ly and L, are priori constants and 8 > 0 is a computable constant.

and

Proof. Multiplying (3.16) with w; and integrating over €, then using Cauchy-Schwarz’s inequality and
the arithmetic-geometric mean inequality, we obtain

" an) ([« o [ 2 ( [[wms)
fgw,w,dx Sg(LG dx)( Qw,wld)c) +h( QZ dx)( QW,w,dx)

3.7
+ O'B% f (kivy —vi)widx + O'lB% f (kiwz — wpwidx,
Q Q
where g = max{ /gig:}, # = max{ VA;}. Since k = (0,0, 1), it is easy to find
0'18(2) f(%mg —wiwidx <0 (3.8)
Q

AIMS Mathematics Volume 7, Issue 9, 16366—16386.



16378

as in (2.39). By the Cauchy-Schwarz inequality, we have

O'B% L(Evg—v;ﬁ)widXSO'Bg( jg;(v;‘)zalx);(‘Lw,~w,-dx)i +O'B(z)(j;v:fv;kabc);(js;wiwidx)i

1

SZUBg(Lv;vfdx)é(Lwiwidx)z. (3.9

Inserting (3.8) and (3.9) into (3.7) and applying the arithmetic-geometric mean inequality, we have

f wiwidx < 4g° f 6dx + 4h* f >’dx + 807 B, f Vivida. (3.10)
Q Q Q Q

In view of (2.38) in Lemma 2.5, from (3.10) we have

f wiwidx < 4g* f 6°dx + 4h? f 2dx + 802 BiAs(2). (3.11)
Q Q Q

Next, we compute

d 2 2
dt(ﬁfedx+f92dx
Q Q
:Zﬁf O[AO — V?Q,‘ - wiT7,~]dx +2 f Y[AY + yAH - V?Z,i - W,‘C,,‘]dx (312)
Q Q
=-28 f 6,6,dx — 2 f XX dx — 2pk f 6*dA - 21 f T2dA
Q Q o) o)
+2,8f9,iwdex+2fZ,iwiCdx—2yf9,i2,idx—2kyf 6ZdA.
Q Q Q 00
Using Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality and Lemma 2.4,
we have
1 1 1
28 f 0,wiTdx < 2( f 0,0.dx)’ f (wiw;)'dx)( f T*dx)’
Q Q Q Q 3 13
ot (3.13)
<B f 0,0dx + B f (wiw;)'dx)" A% (D),
Q Q
and

1
2 f S wiCdx < f 5 dx+ f (wiwiYdx) AL (). (3.14)
Q Q Q

Inserting these two inequalities into (3.12) and using the Cauchy-Schwarz inequality in the last two
terms on the right of (3.12), we have

dtﬁfezdx+f22dx ,B—E)feé)dx (l—yﬁl)fZde

- k(2B - /3_) 6°dA — (27 —kyBy) | T*dA (3.15)
2

0Q

f (wiwdx)’| % ,BAz(t) +A2 (t)]
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for some arbitrary positive constants 8, and £3,.
Now, we use the bound for Ls; norm of w; which has been derived in [18] (see (B.17)). We write
here as the form

1
( f (wiw;Y’dx)’ < M{(1 + %) f wiwidx + 264 f wi Wi jdx), (3.16)
Q 4 Q 4 Q

where M is a positive computable constant and 6 > 0 is an arbitrary constant. To get the bound for
fQ w; jw; jdx, we use a similar methods which were used in (2.41) and (2.48) with a = 2% to have

2k,
f W,',jW,"jd.X < 2f Wi,j(W,‘J' - ij-)dx + oftt3 f W,‘Wl'dx. (317)
Q Q f Q

0

To handle the first term of (3.17), we compute
f(wi,j —w;)(wij—wj)dx
Q
:2 f W,"j(W,',j - Wj’,')dx
Q
=2 f Wi,j[_ﬂ,ij + gin + hiZ,j + O'B(z)(%,‘\};j - sz) + U]B%(%,‘W&j — W,‘,j)]dx
Q
-2 f wi =7+ 80+ hiZ; + oBy(kvs,; — vi)) + o By(kjws ; — w;)ldx (3.18)
Q
:2 f[gie’j - g.,-H,,-]w,-’.,-dx + 2 f[ng,i - giZ,j]wl-,jdx
Q Q
+ 20'33 f[%,-v;j - %jvz,i]w,-,jdx - 20'B3 f[vzj - v’;’i]w,-,jdx
Q Q

+ 2O'1B(2) f[Einj - %lei]W,"jd.X — 20 B(Z) f[Wi’j - Wj,i]Wi,jdX.
Q Q

Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we have
2 f[gie,j — g;0ilwi jdx = f[gie,j —gi0illwij —wjildx =2 f 80 jlwij—wjldx
Q Q Q

1
< 8g2 f Q,je,jdx + g f(Wi’j - Wj,i)(wi,j - wj,i)dx (319)
Q Q

1
< 8g2 f G,jﬁ,jdx + Z f(Wi’j - Wj,,')Wl‘,jd)C,
Q Q

and
1
2 f[hlZ,] - hjZ’l-]w,-,jdx < 8]’l2 f Z,jz,jdx + Z f(Wi’j - Wj’i)W,',jdx. (320)
Q Q Q

Using the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality, we have
20°B; f[%,-v;j - %jv;i]w,-,jdx - 20B; f[vzj —vilwi dx
Q Q
:20'8(2) f%,-v;j[w[’j - wjldx — 20'B(2) f vf’j[w,-,.,- - wj;ldx (3.21)
Q Q

1
2 pd £k 2 p4 ® K
<8o Bofv3’jv3’jdx+80' Bofvl-’jvl-’jdx+§ (Wi j —wjw; dx.
Q Q Q
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Since k = (0,0, 1), we have
207 B} f[%iWS,j —%jW&i]Wi,jdx
Q
= 20'13(2, f EW&j(Wi,j - wji)dx
Q (3.22)
=20 B} f w3 (w3 j — w;3)dx
Q
< 20‘133 f Wi,j(wi,j - Wj,i)dx-
Q
Inserting (3.19)—(3.21) and (3.22) into (3.18), we obtain
f wi (Wi j—w;dx < 8g2 f 6,6 jdx + 8h? f XX dx + 80'233 f v;jv;,jdx + 80'23(4) f vzjvzjdx.
Q Q Q Q Q

It follows from (3.17) that

f wi jwi dx <16g° f 0,60 dx + 16h* f T ,% dx
Q Q Q (3.23)

2](017’13
+160'2Bgfv§’jv;"jdx+160'233fvijvzjdx+ 7 wiw;dx.
Q Q 0o Ja

Combining (3.15), (3.16) and (3.23), we conclude

d
—~(s f Odx + f 22dx) < - M, f 0,0.dx — M, f 5. Zdx — M f 02dA
dr¥ Jo Q Q Q o0

- M, f S2dA + M f wawidx{BAZ (1) + AL (1)) (3.24)
0Q Q

1 1
+ M(,O'z[fv; V3 dx + j\vfl-v;‘,a’x][,8A32 () +A; (t)],
Q o v
where

M, =p- ﬁll — 128* M6 5 [BAL(t) + A ()],

My =1 — B, — 120° M5 [BAZ(1) + A2 (1)),
My = k(2B - ﬁ—yzx My = 27 - ks,

1.3
Ms = M(1+ 6+ Za-%), M = 12M5 3B,

Choosing B; = %,,82 = i—; and B = max{%,Z)ﬂ}, we note that M3 > 0, My = 0, B8 — /311 > 0 and
1 —yB; > 0. Since the constant ¢ is at our disposal then provided A;(f) and A4(¢) are bounded, we
may choose ¢ so large that M; > 0 and M, > 0. Dropping the non-positive terms in (3.24) and using

Lemma 2.5 and (3.11), we have
i(ﬁ f 0*dx + f Zde) sﬁ(r)(ﬁ f 0*dx + f szx)+0'2?'2(t), (3.25)
dt e Q Q Q
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where

1 1 2
F1(t) = 4Ms(BA; (1) + A (1)) max{%,hz},

Folt) = SMs(BAL (1) + AL (1) BLAs(r) + 2Ms(BAL (1) + A2 (1) B Ao D).

From (3.25), we have

%{(ﬁ L Gdx + L 2dx) exp - fo Fi(mdn)} < P Fat)exp ~ fo Fi(mdn),

which follows that

B f 02dx + f Y2dx < o2 f Fa(t)exp (- f F1()d)dn. (3.26)
Q Q 0 n

This is the continuous dependence result we want to prove. By (3.11), we may obtain the continuous
dependence for v,

f wiwidx < 0| f Fa(t)exp ( - f F1({)d¢ )dn + 8BiAs(D)]. (3.27)
Q 0

n

4. Continuous dependence on the cooling coefficients

In this section, we derive the continuous dependence on the cooling coefficients and we let
(u;, p, T,C) and (u;, p*, T*, C*) be the solutions to the problem (1.1)—(1.3) for the same initial-boundary
data and the same F and G, but for different the cooling coefficients ki, k,, 71 and 7,, respectively. As
in Section 3, we still set

wi=v,—vi, 0=T-T", 2=C-C', n=p-p', k=ki—k, 17=7—-12

Then (w;, 0, Z, mr) satisfy

w; = -7, + g0 + hZ + o[(w X Bg) X By, 4.1)
0, +vi0; +wT,;, = A0, (4.2)
T, +ViZ; +wiC; = AT + yAb, 4.3)
wi; =0, “4.4)

with the initial-boundary conditions

00 oz .
wn =0, —+kb=-kT", —+1,2=-7C", on 0Qx{t>0}, 4.5
on on
0(x,0) =2(x,0) =0, x € Q. (4.6)

We now prove the following theorem.
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Theorem 4.1. If Ty,Cy € L*(Q), F,G € C*OQ x {t > 0}), then the solution of Eq (1.1)—(1.3) with
initial-boundary conditions (1.5) and (1.6) depends continuously on the boundary parameters k and T
in the sense that

B f 6*dx + f Y2dx < Lzk* + Lyt
Q Q
Further, v depends continuously on k and T in the manner
fwiwidx < Lsk? + Let?,
Q

where Ls—L¢ are a priori constants.

Proof. Employing a similar methods of the last section, we have

fw,-w,-dxsélgzf92dx+4h2f22dx, 4.7)
Q o Q

8k
f w; jwi dx < 168> f 0,0 dx + 16h° f 2 dx + 0””3(g2 f dx + I f Tdx).  (4.8)
Q Q f Q Q

0

and

By using (4.2), (4.3) and the divergence theorem, as the calculation in (3.12), we get

d 2 2
d—t(ﬁfgedx+f92dx)
=-28 f 0,0 dx — 2 f > X dx — 2Bk f 6*dA
Q Q 0Q
— 2Bk f 0T*dA - 27, f Y2dA -2t f TC*dA + 28 f 0,w;Tdx
oQ oQ 0Q Q

+2fZ,iw,-Cdx—Zyfe,l-Z,,-dx—Zklyf HZdA—Zkyf T*XdA.
Q Q aQ 00

We note that (3.13) and (3.14) are still valid in this section. We inserting them into (4.9) and use
Cauchy-Schwarz inequality in the other terms on the right of (4.9) to have

iwf¢M+fﬁw)
dt” Jo Q

~B- 1) f 6,6,dx — (1 —yB1) f T2 dx
B Ja

4.9)

kiy (4.10)
— (2Bk1 — B3 - ,31_2) G?dA — (21, = Ba = kiyBa = VBs) f T2dA

0Q

+( f (w;w; )de) [,BA (t)+A )] +k2(— + —) f (T* )ZdA+— (c )YdA.

We use the inequality (3.16) again and use (4.8) to have

f(w,-wi)zdxsM{fw,-widx+5_§[f6,,-6{,~dx+fE,iZ,idx]}, “4.11)
Q Q Q Q
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where M 1is a positive computable constant. Inserting (4.11) into (4.10) and letting

.
,81:_’ﬁzz_,ﬁ3:kl’ﬁ4:7—l,ﬂ5:_l,
Y Y 2y

and then choosing 8 and ¢ large enough such that the coeflicients of the first four terms of (4.10) are
non-positive, we have

d
d—t(,B fg 6 dx + fg 32dx)

1 1 (4.12)
<M f w,-widx[ﬁA;(t) + Aj(t)] + k2 f (T*)*dA + — (c YAdA,
Q

where we have dropped the non-positive terms. Now, we derive bounds for the integrals on 0Q2. Using
Lemma 2.1, we find

f (T*7dA < 2 f (T*dx + f T"T dx, (4.13)
0 Jo Ja o 7
and
f (€A < 22 f (C*)dx + f C'C’dx, (4.14)
Q

where we have chosen @ = 1. Inserting (4.13) and (4.14) into (4.12) and recalling (2.8) and (4.7),
we have

d B v
dt(ﬁ f 6*dx + fQ szx) <7—'1(t),8 f 6 dx + fg szx]+k2(ﬁ E—)EAl(t)

+k2(ﬁ+l)fT"‘T*dx+T2 A (1)+—2fC*C*dX
Bs PBs'Ja foBs Bada T

(4.15)

where

2

Fi(t) = 4Mmax{ﬁ }[,BA (1) + A? (z)]

It is obvious that (4.15) yields that

i ﬁf@zdx+szdx)-eXp(—ft%l(ﬂ)dn)]
0
RALL] (B lf T
{ (ﬁ3 +,35)foA](t)+k (,3% +55) Tl

Tm3A(t)+—2fCCdx - ex f?’()d
e T By P o

2 B Y 2 B Y S *
<k (ﬂ—3+18—5)%A1(t)+k(ﬁ3 ﬁS)fQT Tidx + ﬁ)ﬁ4Az(t)+EfC,;C,idx,

where we have used the fact exp( - fot Fi (n)dn) < 1fort>0.

(4.16)
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Integrating (4.16) from O to ¢ leads to

(ﬁLdex+L22dx - exp —fﬁ(ﬂ)dﬂ
kz(/i gs)%f 1(17)d17+k2 ffTdedn 4.17)
0

2ms ([ 2
+ Ax(nd +—f fC*,-C*,-dxd .
JoBa jo\ i Bado Ja 7 1

Using (2.11) and (2.17) in (4.17) and setting

ﬁ y m ! 1 !
7= (5 + D72 [ e+ 3a0]. Fo= Lo [ monan) @s)
we obtain
B f 6 dx + f S2dx < K*Fa(r) - exp ( f Fr(mdn) + T F3(1) - exp ( f F1(m)dn). (4.19)
Q Q 0 0

This is the continuous dependence result for 7 and C. The continuous dependence for v; follows
directly from (4.7).

5. Conclusions

In this paper, the continuous dependence of the solution is obtained by using the methods of
energy estimate and a priori estimates. The main innovation is to deal with the influence of boundary
conditions and magnetic field. The structural stability of boundary parameters and magnetic field
coeflicients is proved.
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