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1. Introduction

Domain theory was first introduced by Dana Scott in the early 1970s, and the main purpose is
to provide a mathematical tools for the semantics of functional programming languages. The most
distinctive feature of domain theory is that it integrates order structures, topology structures and
computer science. The main objects of domain theory are directed complete posets and
domains. Directed space is defined by Hui Kou independently in [21]. It is worth noting that directed
spaces are equivalent to T0 monotone determined spaces, which is defined by Erné [5]. It was proved
in [21] that directed spaces contain the basic objects of domain theory, all directed complete posets
endowed with the Scott topology, which forms a Cartesian closed category. Thus, directed space is an
extended framework of domain theory.

In Section 3, we will describe c-spaces by means of approximating, namely, continuous spaces, and
this new definition leads us to construct a new class of spaces. Just like the category Domain in Dcpo,
a c-space is a special directed space, we will also prove in Section 4 that the category CS (the
category of all c-spaces and continuous functions) is not Cartesian closed. In domain theory, the
products of two dcpos endowed with Scott topology may not equal to the topological products of
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two dcpos endowed with Scott topology respectively. This inspires us to explore conditions such that
topological products and categorical products agree in Dtop. Since CS is not Cartesian closed, we shall
continue to explore some Cartesian closed categories of CS, and furthermore, as we want to explore
some maximal Cartesian closed full subcategories in CS, we will define a Cartesian closed category
of Dtop, namely, FS-spaces.

2. Preliminaries

Now, we introduce the concepts needed in this article. More details, on domain theory, topology,
and category theory, see [3, 7, 11]. Let P be a nonempty set. A relation ≤ on P is called a partial
order, if ≤ satisfies reflexivity (x ≤ x), transitivity (x ≤ y & y ≤ z ⇒ x ≤ z) and antisymmetry
(x ≤ y & y ≤ x ⇒ x = y). P is called a partially ordered set(poset) if P is endowed with some partial
order ≤. Given A ⊆ P, denote ↓A = {x ∈ P : ∃a ∈ A, x ≤ a}, ↑A = {x ∈ P : ∃a ∈ A, a ≤ x}. We say
A is a lower set (upper set) if A = ↓A (A = ↑A). A nonempty set D ⊆ P is called a directed set if each
finite nonempty subset of D has an upper bound in D. Particularly, a poset is called a directed complete
poset if each directed subset D has a supremum(denoted by

∨
D), abbreviated as dcpo. The subset U

of poset P is called a Scott open set if U is an upper set and for each directed set D ⊆ P, which
∨

D
exists and belongs to U, then U ∩ D , ∅. The set of all Scott open sets of poset P is a toplology on
P, which is called the Scott topology and denoted by σ(P). Suppose P, E are two posets, a function
f : P −→ E is called Scott continuous if it is continuous respect to Scott topology σ(P) and σ(E).

All topological spaces in this paper are T0.
A net of a topological space X is a map ξ : J −→ X, where J is a directed set. Thus, each directed

subset of a poset can be regarded as a net, and its index set is itself. Usually, we denote a net by (x j) j∈J

or (x j). Let x ∈ X, saying (x j) converges to x, denote by (x j) → x or x ≡ lim x j, if (x j) is eventually
in every open neighborhood of x, that is, for each given open neighborhood U of x, there exists j0 ∈ J
such that for every j ∈ J, j ≥ j0 ⇒ x j ∈ U.

Let X be a T0 topological space, its topology is denoted by O(X), the specialization order on X is
defined as follows:

∀x, y ∈ X, x v y⇔ x ∈ {y}

here, {y} means the closure of {y}. From now on, the order of a T0 topological space always indicates
the specialization order “v”. Here are some basic properties of specialization order.

Proposition 2.1. ( [3, 7]) For a T0 topological space X, the following hold:

(1) For each open set U ⊆ X,U = ↑U;
(2) For each closed set A ⊆ X, A = ↓A;
(3) Suppose Y is another T0 topological space, and f : X → Y is a continuous function from X to Y .

Then for each x, y ∈ X, x v y⇒ f (x) v f (y), i.e., every continuous function is monotone.

Suppose X is a T0 space, then every directed set D ⊆ X can be regarded as a net of X, we use D→ x
or x ≡ lim D to represent D converges to x. Define notation

D(X) = {(D, x) : x ∈ X, D is a directed subset of X and D→ x}.

It is easy to verify that, for each x, y ∈ X, x v y ⇔ {y} → x. Therefore, if x v y then ({y}, x) ∈ D(X).
Next, we give the concept of directed space.
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Definition 2.2. ( [21]) Let X be a T0 space.

(1) A subset U of X is called a directed open set if ∀(D, x) ∈ D(X), x ∈ U ⇒ D∩U , ∅. Denote all
directed open sets of X by d(X).

(2) X is called a directed space if each directed open set of X is an open set, that is, d(X) = O(X).

C-space was definded by Erné in [4]. A T0 topological space X is a c-space if for each x ∈ X and
each open neighborhood U of x, there exists some y ∈ U such that x ∈ int(↑ y) ⊆ U.

A T0 topological space X is called a locally finitary compact space if and only if, for every x ∈ X, for
every open neighborhood U of x, there is a finitary compact ↑E (i.e., with E finite) included in U such
that x is in the interior of ↑E (see [8]).

Obviously, every c-space is locally finitary compact, and the following proposition tell us that every
locally finitary compact space is derected space. Thus, c-space and locally finitary compact space are
both contained in directed space.

Proposition 2.3. Suppose X is a locally finitary compact space, then X is a directed spaces.

Proof. We only need to prove that for each U ∈ d(X), U ∈ O(X). For arbitrary x ∈ U, let

F = {F ⊆ X : x ∈ int (↑F) ⊆ ↑F ⊆ U and U is finite} .

We claim that here exists some F ∈ F such that F ⊆ U.
Suppose not, that is for each F ∈ F , F * U. Then {F\U : F ∈ F } is a directed family

and F1 ≤ F2 iff ↑F2 ⊆ ↑F1. According to Rudin’s Lemma ( [7]), there exists a directed set D ⊆⋃
F∈F (F\U), furthermore, for each F ∈ F , D ∩ (F\U) , ∅. It is obviously that D convergent

to x in X. Since U is a directed open set, we may pick some d ∈ D ∩ U. This is a contradiction. �

Remark 2.4.

(1) Each open set of a T0 space is directed open, but the contrary is not necessarily true. For example,
suppose Y is a non-discrete T1 topological space, its specialization order is diagonal, that is,
∀x, y ∈ Y , x v y ⇔ x = y. Thus, all subsets of Y are directed open. We notice that Y is non-
discrete, at least one directed open set is not an open set.

(2) The definition of directed space here is equivalent to the T0 monotone determined space defined
in [5].

Example 2.5. Important examples of directed spaces:

• Alexandroff spaces (Posets endowed with the Alexandroff topology);
• Any poset with Scott topology (Posets endowed with the Scott topology);
• c-spaces;
• locally finitary compact spaces.

Next, we introduce the directed continuous function.

Definition 2.6. ( [21]) Suppose X, Y are two T0 spaces. A function f : X −→ Y is called directed
continuous if it is monotone and preserves all limits of directed set of X; that is, (D, x) ∈ D(X) ⇒
( f (D), f (x)) ∈ D(Y).

Here are some characterizations of the directed continuous functions.
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Proposition 2.7. ( [21]) Suppose X, Y are two T0 spaces. f : X −→ Y is a function between X and Y .

(1) f is directed continuous if and only if ∀U ∈ d(Y), f −1(U) ∈ d(X).
(2) If X, Y are directed spaces, then f is continuous if and only if it is directed continuous.

Now we introduce the product and exponential object of directed spaces.
Suppose X, Y are two directed spaces. Let X × Y represents the Cartesian product of X and Y , then

we have a natural partial order on it: ∀(x1, y1), (x2, y2) ∈ X × Y ,

(x1, y1) ≤ (x2, y2) ⇐⇒ x1 v x2, y1 v y2,

which is called the pointwise order on X × Y . Now, we define a topological space X ⊗ Y as follows:

(1) The underlying set of X ⊗ Y is X × Y;
(2) The topology on X × Y is generated as follows: For each given ≤- directed set D ⊆ X × Y and

(x, y) ∈ X × Y ,
D→ (x, y) ∈ X ⊗ Y ⇐⇒ π1D→ x ∈ X, π2D→ y ∈ Y,

that is, a subset U ⊆ X × Y is open if and only if for every directed limit defined as above
D→ (x, y) ∈ U ⇒ U ∩ D , ∅.

Theorem 2.8. ( [21]) Suppose X and Y are two directed spaces.

(1) The topological space X ⊗ Y defined above is a directed space and satisfies the following
properties: The specialization order on X⊗Y equals to the pointwise order on X×Y , that is, v=≤.

(2) Suppose Z is another directed space, then f : X ⊗ Y −→ Z is continuous if and only if it is
continuous in each variable separately.

Let X,Y be two directed spaces. Denote the set of all continuous functions from X to Y by

YX = { f : X → Y | f is continuous from X to Y}

There is a pointwise order on YX: ∀ f , g ∈ YX,∀x ∈ X

f ≤ g ⇐⇒ f (x) v g(x).

Next, we define a topological space [X → Y] by the following way:

(1) The underlying set of [X → Y] is YX;
(2) A subsetU ⊆ YX is open if and only if for arbitrary ≤ - directed subset { fi}i∈I ⊆ YX and f ∈ U, if

for arbitrary x ∈ X, { fi(x)}i∈I → f (x), thenU ∩ { fi}i∈I , ∅.

Denote all the open sets defined above by O(YX), let [X → Y] = (YX, O(YX)).

Lemma 2.9. ( [21]) Suppose X and Y are two arbitrary directed spaces, then [X → Y] is a directed
space and the following hold:

(1) The specialization order v of [X → Y] equals to the pointwise order ≤ of YX;
(2) For arbitrary v - directed set { fi}i∈I ⊆ YX and f ∈ YX, the following holds in [X → Y]:

{ fi}i∈I → f ⇐⇒ { fi(x)}i∈I → f (x).
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Theorem 2.10. ( [21]) The category Dtop is Cartesian closed. For arbitrary directed space X and Y , the
categorical product and the exponential object are X ⊗ Y and [X → Y] respectively.

Denote the category of all directed spaces and continuous functions by Dtop. It was proved in [21]
that, Dtop contains all posets endowed with the Scott topology and Dtop is a Cartesian closed category.

Proposition 2.11. For arbitrary directed spaces, the composition map ( f , g) 7→ f ◦ g : [X1 → Y1] ⊗
[X2 → Y2]→ [X2 → Y1] is continuous.

Proof. By Theorem 2.8 and Proposition 2.7, we only need to check that if we have a directed set
D = { fi}i∈I ⊆ [X1 → Y1] with { fi}i∈I → f , then { fi◦g}i∈I → f ◦g, that is for arbitrary x ∈ X2, ( fi◦g)(x)→
( f ◦ g)(x). �

Let P be a dcpo, and x, y ∈ P. We say x way below y, if for each given directed set D ⊆ P,
y ≤
∨

D implies that there exists some d ∈ D such that x ≤ d. We write ↓↓x = {a ∈ P : a � x},
↑↑x = {a ∈ P : x � a}.

Definition 2.12. ( [7]) A dcpo P is called a continuous domain if for each x ∈ P, ↓↓x is directed and
x =
∨
↓↓x.

Theorem 2.13. ( [7]) Suppose P is a continuous domain. The followings hold:

(1) ∀x, y ∈ P, x � y⇒ ∃z ∈ P, x � z � y.
(2) ∀x ∈ P, ↑↑x is a Scott open set. Particularly, {↑↑x : x ∈ P} is a base of (P, σ(P)).

3. Continuous spaces

In this section, we use a equivalent definition to c-space, and this new definition leads us to construct
a new class of spaces in Section 4.

Definition 3.1. ( [18]) Suppose X is a directed space, define a relation on X: for arbitrary x, y ∈ X, x �d

y if and only if for arbitrary directed set D ⊆ X with D → y, there exists some d ∈ D such that x ≤ d.
An element x is said to be compact if x �d x holds. Denote all compact elements of X by K(X).

It is easy to check the following propositions of�d.

Proposition 3.2. Suppose X is a directed space and ∀x, y, z, ω ∈ X, then

(1) x �d y⇒ x ≤ y.
(2) x ≤ y �d z ≤ w⇒ x �d w.

Similarly to the continuity of dcpo, we can define the continuity of an arbitrary T0 space, and when
the definition is restriced to the directed space,we have the following definition.

Definition 3.3. ( [18]) A directed space X is said to be continuous if for arbitrary x ∈ X, there exists a
directed subset D ⊆ ↓↓d x such that D→ x.

Proposition 3.4. Suppose X is a continuous directed space, then for arbitrary x ∈ X, ↓↓d x is a directed
set and ↓↓d x→ x. Moreover, x is the supremum of ↓↓d x.
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Proof. For an arbitrary continuous directed space X, ∀x ∈ X, for arbitrary x1, x2 ∈ ↓↓d x, by the continuity
of X, we have some directed subset D ⊆ ↓↓d x with D → x. By the definition of �d, there exist di ∈ D
such that xi ≤ di, i = 1, 2. Since D is directed, we may choose a d ∈ D with di ≤ d, i = 1, 2. Thus, ↓↓d x
is directed and ↓↓d x→ x.

By Proposition 3.2, binary relation�d =⇒ ≤, then x is an upper bound of ↓↓d x. Suppose y is another
upper bound of ↓↓d x and x � y, that is x ∈ X \ ↓y, will X \ ↓y be an open neighborhood of x. which leads
a contradiciton. �

Lemma 3.5. Suppose X is a continuous directed space, then for arbitrary x, y ∈ X with x �d y, there
exists some z ∈ X such that x �d z �d y.

Proof. Let D = {ω ∈ X : ∃z ∈ X, ω �d z �d y}. It is obviously that D is not an empty set since X is
continuous, then ↓↓dy , ∅, we can pick some a ∈ ↓↓dy, and again by the continuity of X, ↓↓da , ∅. Thus
D , ∅. We claim that D is directed, for arbitrary ω1, ω2 ∈ D, by the definition of D, there exist zi ∈ X
with ωi �d zi �d y, i = 1, 2. According to 3.4, ↓↓dy is directed, thus we may have some z ∈ ↓↓dy such
that zi ≤ z. Since X is continuous, ↓↓dz is directed, and ωi ∈ ↓↓dz, we may pick some ω ∈ ↓↓dz with
ωi ≤ ω, i = 1, 2. Now we have ω �d z �d y, and D is directed.

For arbitrary open neighborhood U of x, and ↓↓d → x implies that there exists some z ∈ ↓↓d ∩

U, and ↓↓dz → z implies there exists some ω ∈ ↓↓dz ∩ U, thus ω ∈ D ∩ U, that is, D → x. By the
definition of x �d y. Thus exists some ω ∈ D such that x ≤ ω �d z �d y, by Proposition 3.2, we have
x �d z �d y. �

Lemma 3.6. Suppose X is a directed continuous space, then for each x ∈ X, ↑↑d x is an open set.

Proof. Suppose X is a continuous directed space, and each x ∈ X, we only need to check that ↑↑d x is a
directed open set. Let D be a directed subset of X with D→ z ∈ ↑↑d x, by Lemma 3.5, there exists some
y ∈ X such that x �d y �d z. By the definition of�d, we may pick some d ∈ D such that y ≤ d. Now
we have x �d y ≤ d. According to Proposition 3.2, x �d d, that is D ∩ ↑↑d x , ∅, ↑↑d x is open.

The following theorem is the main result of this section.

Theorem 3.7. Suppose X is a directed space, then X is continuous if and only if X is a c-space.

Proof. If X is a continuous directed space, ∀x ∈ X and U is an arbitrary open neighbourhood of x. Thus
↓↓d x→ x implies that there exists some z ∈ ↓↓d x ∩U, then x ∈ ↑↑dz ⊆ U, and by Lemma 3.6, ↑↑dz is open,
so x ∈ int(↑z) ⊆ U, and X is a c-space.

In the other direction, Suppose X is a c-space, and hence a directed space. It is direct to check that
x ∈ int(↑d) implies d �d x,∀x, d ∈ X. Then D = {d ∈ X : x ∈ int(↑d)} ⊆ ↓↓d x is a directed set and
D→ x, that is, X is a continuous directed space. �

Definition 3.8. A T0 topological space X is an algebraic space if for each x ∈ X, there exists some net
{xi}i∈I ⊆ K(X) ∩ ↓x such that {xi}i∈I → x.

Note that the notion of algebraic space is equivalent to f initary space (or ϕ-space) defined by
Ershov [6].

It is worth noting that X × Y = X ⊗ Y when X and Y are c-spaces (see [18]). In next section, we are
going to explore more conditions such that X × Y = X ⊗ Y .
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4. The failure of Cartesian closedness of the category of c-spaces

As mentioned in Section 1, directed space can be regarded as an extended model of domain
theory. In this section, we will explore other conditions such that the categorical products coincides
with topological products. Moreover, we will also explore the Cartesian closedness of CS.

Theorem 4.1. ( [7]) Let X be a topological space. Then X is core-compact iff the relation (∈) =

{(x,U) ∈ X × O(X) : x ∈ U} is open in X × Σ(O(X)).

Theorem 4.2. Let X be a directed space. The following statements are equivalent:

(1) X is core-compact;
(2) For any directed space Y, X ⊗ Y = X × Y.

Proof. (1) =⇒ (2). We only need to show that every open set U in X ⊗ Y is open in X × Y . For any
(x0, y0) ∈ U, consider a new set Vy0 = {x ∈ X : (x, y0) ∈ U}, it is easy to see that Vy0 ∈ O(X), since
if we have directed set D ⊆ X and x ∈ Vy0 with D → x, then {(d, y0) : d ∈ D} is a directed set
in X × Y and {(d, y0) : d ∈ D} → (x, y0). Thus we may pick some d0 ∈ D such that (d0, y0) ∈ U, that
is, d0 ∈ Vy0 , Vy0 is an open set. Since X is core-compact, there exists a family of open sets {Vn : n ∈ N}
such that

x ∈ V0 � · · · � Vn+1 � Vn � · · · � V1 � V.

Claim: W =
⋃

n≥1{y ∈ Y : Vn × {y} ⊆ U} is an open set of Y .
Given any direted net (yi) → y ∈ W, there is some n such that Vn × {y} ⊆ U. For any x ∈ Vn,

{(x, yi)}i → (x, y) ∈ U. So there is some i with (x, yi) ∈ U. Hence there exists an open neighborhood
Vx of x with Vx × {yi} ⊆ U. Notice that Vn+1 � Vn ⊆

⋃
x∈Vn

Vx, it follows that Vn+1 ⊆
⋃n

i=1 Vxi for some
finite set of Vn. It is easy to find some yk such that Vn+1 × {yk} ⊆ U. It means that yk ∈ W. The claim is
proved. Now we can see that (x0, y0) ∈ V0 ×W ⊆ U. Therefore, U is an open set of X × Y .
(2) =⇒ (1). Take Y = Σ(O(X)), which is a directed space. Then we have X ⊗Σ(O(X)) = X ×Σ(O(X)).
Hence we only need to show that the relation (∈) = {(x,U) ∈ X × O(X) : x ∈ U} is an open set of
X ⊗ Σ(O(X)). For any directed net (of X ⊗ Σ(O(X))) {(xi,Ui)}i → (x,U) ∈ (∈). This is equivalent to say
that (xi)i → x in X, (Ui)i → U in Σ(O(X)). It follows that x ∈ U ⊆

⋃
i Ui. It is easy to find some i0 such

that xi0 ∈ Ui0 . �

Theorem 4.3. Let X,Y be directed spaces. If both X and Y are first countable, then X ⊗ Y = X × Y.

Proof. We only to show that every open set U of X⊗Y is open in X×Y . For any (x0, y0) ∈ U, assume the
countable basis (Vn)n of x0, and (Wn)n of y0. We want to show that there is some n such that Vn×Wn ⊆ U.
By contradiction, assume Vn ×Wn * U for any n ∈ N. Then there exists (xn, yn) ∈ (Vn ×Wn)\U for any
n ≥ 1. Let K = {xi ∈ X : i ≥ 1} ∪ {x0}. Obviously K is a compact subset.
Claim: W = {y ∈ Y : K × {y} ⊆ U} is an open neighborhood of y0.

Given any directed net (yi)i → y ∈ W. For any x ∈ K, (x, yi) → (x, y) ∈ U. It is obtained that
(x, yix) ∈ U for some ix. It is easy to check that Vx = {x̂ ∈ X : (x̂, yix) ∈ U} is an open set. It follows
that K ⊆

⋃
x∈K Vx. Then there is a finite set {xi : 1 ≤ i ≤ n} such that K ⊆

⋃n
i=1 Vxi . Hence we can

find some yk which belongs to W. The claim is proved. Since W is an open neighborhood of y0, there
exists some Wn such Wm ⊆ W. It implies that (xm, ym) ∈ K ×Wm ⊆ U. Which is a contradiction. �

The following example shows that a first countable directed space need not to be core-compact.
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Example 4.4. There exists a first countable but not core-compact directed space.
For an arbitrary topological space X, let Q(X) be the set of all compact saturated sets of X. Let

σ(Q(X)) be the Scott topology, andV(Q(X)) be the topology generated by {�U : U ∈ O(X)}, here
�U = {K ∈ Q(X) : K ⊆ U}. According to [10], we know that

(Q(X),V(Q(X))) is core-compact ⇐⇒ X is locally compact.

Let X = Q (the set of all rational numbers endowed with the relative topology of all real
numbers R, endowed with the usual topology). Then we claim that (Q(X), σ(Q(X)) is first countable
but not core-compact. Since X is sober and countable based, Q(X) is a dcpo. According to [17], we
have (Q(X), σ(Q(X)) = (Q(X),V(Q(X)). Since X is not locally compact, then the directed
space (Q(X), σ(Q(X)) is first countable but not core-compact.

Actually, this example can be easily verified, Clearly Q is firstly countable, T2, non-locally
compact, and hence non-core compact. (In fact, in the lattice O(Q), the set of elements way-below Q is
empty.)

To prove the main result of this section, we need to first have some preparations.

Definition 4.5. ( [8]) (Application map) For each pair of topological spaces X,Y , the application map
App maps pairs ( f , x) of a continuous map f : X → Y and of an element x ∈ X to f (x).

Theorem 4.6. ( [8]) Let C be any full subcategory of Top with finite products, and assume that 1 =

{?} is an object of C. Let X,Y be two objects of C that have an exponential object YX in C. Then
there is a unique homeomorphism θ : YX → [X → Y], for some unique topology on [X → Y], such
that App(h, x) = θ(h)(x) for all h ∈ YX, x ∈ X.

Proposition 4.7. If a d-space is also a directed space, then it is a Scott space.

Proof. Suppose X is a d-space, then X is a dcpo endowed with a topology coarser than the Scott
topology. We need only to check that for each U ∈ σ(X), U ∈ d(X). Suppose we have a directed
set D ⊆ X and x ∈ U with D → x ∈ U, we need to prove that D ∩ U , ∅. We only need to
show that ∨D ∈ U. By contradiction, if we have ∨D < U, then x ∈ X \ ↓∨D. Since D → x ∈
U, then D ∩ X \ ↓∨D , ∅. Thus, we have some d ∈ D such that d < ↓∨D, which is a contradiction.

�

The following theorem is a main result of this paper.

Theorem 4.8. The category of c-spaces and continuous maps (CS for short) is not Cartesian closed.

Proof. Let Z− be the set of non-positive integers with Scott topology. Assume CS is a ccc. It is easy to
see that the topological product X×Y is the categorical product because X×Y is a c-space. Since CS is
Cartesian closed, according to Theorem 4.6, there exists exponential topology τ on [Z− → Z−], which
we denote by [Z− → Z−]τ. Then for any c-space Y and any map f : Y × Z− → Z−, f is continuous
iff f̄ : Y → [Z− → Z−]τ is continuous.
Claim 1: The specialization order on [Z− → Z−]τ is equal to the pointwise order. For any g1, g2 ∈

[Z− → Z−]τ with g1 ≤τ g2 (g1 , g2), take Y = S with Scott topology. A map θ : S → [Z− → Z−]τ
is defined as θ(1) = g2, θ(0) = g1. It is easy to see that θ is continuous. Hence θ̂ : S × Z− → Z− is
continuous. It follows that g1(x) = θ̂(0, x) ≤ θ̂(1, x) = g2(x) for any x ∈ X.
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For any g1, g2 ∈ [Z− → Z−]τ with g1 ≤ g2, consider a continuous map f : S × Z− → Z− which is
defined as f (0, x) = g1(x), f (1, x) = g2(x) ∀x ∈ X. It follows that the transpose map f̄ is continuous
hence monotone. It implies that g1 = f̄ (0) ≤τ f̄ (1) = g2.
Claim 2: [Z− → Z−]τ is a d-space.

We only need to show that for any directed family (gi)i∈I of [Z− → Z−]τ, (gi)i∈I converges to its
supremum g =

∨↑
i∈I gi. Let Y be a set I ∪ {∞} with a topology generated by {↑i ∪ {∞} : i ∈ I}, and

obviously Y is a c-space. Consider a map f : Y ×Z− → Z− which is defined as f (∞, x) = g(x), f (i, x) =

gi(x). It is direct to verify that f is continuous (Actually, according to Theorem 2.8, f is continuous iff it
is separately continuous). It follows that f̄ : Y → [Z− → Z−]τ is continuous. It implies that (gi = f̄ (i))i

converges to f̄ (∞) = g.
Therefore, according to Proposition 4.7, τ is just the Scott topology on [Z− → Z−]. But [Z− → Z−]

is not a continuous domain [1], it is not a c-space, which is a contradiction. �
Since [Z− → Z−] is meet continous but not continuous, according to Proposition III-3.10 in [7],

a meet continuous quasicontinuous domain is a domain, we claim that [Z− → Z−] is not a quasi
continuous space. Therefore, according to the proof of Theorem 4.8, we have the following corollary.

Corollary 4.9. The category of all locally finitary compact spaces and continuous functions is not
Cartesian closed.

5. FS-spaces

As mentioned in Section 4, CS is not a Cartesian closed category of Dtop. This inspires us to find
some other Cartesian closed subcartegory of Dtop. In this section, we define a new class of spaces,
namely, FS-spaces, which forms a Cartesian closed subcategory of CS.

Definition 5.1. An approximate identity for a directed space X is a directed setD ⊆ [X → X] satisfing
D → 1X (pointwise convergence), the identity on X.

Lemma 5.2. Approximate identities are preserved under the following constructions.

(1) If D ⊆ [X → X] is an approximate identity for X, then D′ = {δ2 = δ ◦ δ : δ ∈ D} is also an
approximate identity.

(2) If D ⊆ [X → X] is an approximate identity for X and E ⊆ [Y → Y] is an approximate identity
for Y, then [D → E] is an approximate identity for [X → Y], where members of [D → E] are
denoted by [δ→ ε] for δ ∈ D and ε ∈ E and definded by [δ→ ε](g) = εgδ for g ∈ [X → Y].

(3) If a directed space X has an approximate identityD such that δ(x) �d x for all δ ∈ D and for all
x ∈ X, then X is a c-space.

Proof.

(1) According to Proposition 2.11, the map (δ, δ) 7→ δ2 : [X → X] ⊗ [X → X] → [X → X] is
continuous, andD → idX implies {δ2 : δ ∈ D} → idX.

(2) Firstly, for each δ ∈ D, ε ∈ E, the map g 7→ εgδ : [X → Y]→ [X → Y] is continuous. If we have
a directed subset {gi}i∈I ⊆ [X → Y] with {gi}i∈I → g, then for each x ∈ X, {gi(ε(x))} → g(ε(x)), and
hence δ(g(ε(x)))→ δ(g(ε(x))). That is, {εgiδ}i∈I → εgδ, the map is continuous.
Secondly, the directed set [D → E] → id[X→Y], equivalently, for each g ∈ [X → Y], {εgδ : ε ∈
E, δ ∈ D} → g, equivalently, ∀x ∈ X, ∀g ∈ [X → Y], {(εgδ)(x) : ε ∈ E, δ ∈ D} → g(x). By
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hypothesis, D is an approximate identity for X, then {δ(x) : δ ∈ D} → x, hence {g(δ(x)) : δ ∈
D} → g(x). Again, by the hypothesis that E is an approximate identity of Y , we have {(εgδ)(x) :
ε ∈ E, δ ∈ D} → g(x).

(3) If the supposed conditions are satisfied, then for each x ∈ X, {δ(x) : δ ∈ D} ⊆ ↓↓d x is directed and
{δ(x) : δ ∈ D} → x, X is a continuous space, by Theorem 3.7, X is a c-space.

Definition 5.3. A continuous function δ : X → X on a directed space X is f initely seperating if there
exists a finite set Fδ such that for each x ∈ X, there exists y ∈ Fδ such that δ(x) ≤ y ≤ x. A directed
space is f initely seperated if there is an approximate identity for X consisting of finitely seperating
functions. A finitely seperated directed space that is also a c-space will be called an FS -space.

Lemma 5.4. Let X be a directed space, if δ ∈ [X → X] is finitely seperating, then δ(x) �d x for all
x ∈ X. Thus a finitely seperated directed space is an FS-space.

Proof. Let D be a directed set such that D→ x. Since δ is a finitely seperating function, for each d ∈ D
there exists some yd ∈ Fδ such that δ(d) ≤ yd ≤ d. But Fδ is finite, denoted by {y1, · · · , yn}, we may
pick finite elements d1, . . . , dn ∈ D such that δ(di) ≤ yi ≤ di, i = 1, . . . , n. Since D is directed, we have
an upper bound d for d1, . . . , dn. We claim that δ(x) ≤ d, since δ(x) ≤ yi ≤ di for some i ∈ {1, . . . , n},
then δ(x) ≤ d.

By (iii) of Lemma 5.2, a finitely seperated directed space is an FS-space. �

Denoting the category of all FS-spaces and continuous functions by FS, the following theorem
indicates that FS is Cartesian closed.

Theorem 5.5.

(1) A finite product of FS-space is again an FS-space.
(2) Let X and Y be FS-space, then [X → Y] is an FS-space.
(3) The category FS is is a full Cartesian closed subcategory of Dtop.

Proof.

(1) We only need to prove (2). Suppose X and Y are two FS-spaces andD,E are approximate identity
of X and Y respectively which consist of finitely seperating functions. Then we claim that the
directed familyD×E is an approximate identity for X ×Y such that X ×Y is an FS-space. Firstly,
∀(x, y) ∈ X × Y, D × E(x, y) = {(δ(x), ε(y)) : δ ∈ D, ε ∈ E} → (x, y), that is, D × E → idX × idY .
For finitely seperating property, we only need to take Fδ × Fε for each δ ∈ D, ε ∈ E.

(2) W define a directed family D ⊗ E on [X → Y] by g 7→ ε2gδ2 for ε ∈ E and δ ∈ D. By (i) and
(ii) of Lemma 5.2, D ⊗ E is an approximate identity for [X → Y]. Next, we show that each such
function is finitely separating.
Let Fδ and Fε be the finite sets guaranteed for δ and ε respectively. Define a relation ∼ on [X → Y]:
∀x ∈ Fδ, y ∈ Fε, f ∼ g if

ε f (x) ≤ y ≤ f (x) ⇐⇒ εg(x) ≤ y ≤ g(x).

Since Fδ and Fε are finite, we conclude that there are only finitely many equivalence classes
for ∼. Pick one representative from each class, say { f1, . . . , fn}. We claim that the finite family
{ε f1δ, . . . , ε fnδ} is the one neeed to establish finite separation.
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Let g ∈ [X → Y]. Pick fi ∼ g. Given x ∈ X, there exists m ∈ Fδ such that δ(x) ≤ m ≤ x, then
gδ(x) ≤ g(m). There exists n ∈ Fε such that εg(m) ≤ n ≤ g(m). Then ε fi(m) ≤ n ≤ fi(m). δ(x) ≤ m
implies ε fiδ(x) ≤ ε fi(m), m ≤ x implies g(m) ≤ g(x). Combining these two inequalities, we have

ε fiδ(x) ≤ ε fi(m) ≤ n ≤ g(m) ≤ g(x),

that is ε fiδ ≤ g. A symmetric argument yields that εgδ ≤ fi, and hence ε2gδ2 ≤ ε fiδ ≤ g.
(3) Immediately from (1) and (2).

FS-domain is an important object in Domain theory. It is obviously that every FS-domain is FS-
space, however, the following example tell us that FS-spaces are not exactly FS-domains (for the
concept of FS-domain, refer to [7]).

Example 5.6. Let N denote all natural numbers with usual order endowed with the Alexandroff

topology, which can be shown to be an FS-space. For each n ∈ N, we can define fn : N→ N,

fn(x) =

x, x ≤ n;
n, x > n.

Since for each n ∈ N, fn has finite range {1, 2, . . . , n.}, and so it is finitely
seperating. Furthermore, { fn}n∈N → id. According to Definition 5.3, N is a FS-space but not
FS-domain.

Similar to algebraic FS-domain, we consider the algebraic FS-space, which is a direct generalization
of BF-domain, and so we omit the detailed proofs.

Proposition 5.7. For a directed space X, the following properties are equivalent:

(1) X is an algebraic FS-space;
(2) X is an algebraic space and has an approximate identity consisiting of maps with finite range;
(3) X has an approximate identity consisiting of kernel operators with finite range, a kernel operator

δ means idempotent and for each x ∈ X, δ(x) ≤ x.

Definition 5.8. A c-space satisfying any of the equivalent conditions of Proposition 5.7 is called a
bifinite space. We denote by BF the category of all bifinite spaces and continuous functions between
them.

Theorem 5.9. If X and Y are both bifinite c-spaces, then

(1) X × Y is an bifinite c-space;
(2) [X → Y] is an bifinite c-space.

Corollary 5.10. The category BF of bifinite space is a full Cartesian closed subcategory of Dtop.

Remark 5.11. In Domain theory, we have two maximal full Cartesian closed subcategory of Domain⊥
(domains with least element), namely, L-domain and FS-domain. This leads us to find some maximal
full Cartesian closed subcategory of CS. In [2], Kou definded a full Cartesian closed category of CS by
adding each c-space a continuous join operation, denoted by SCTop. Here we study the maximality
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of FS. However, there exists many differences. Let Poset be the category of all posets and monotone
maps, and Alex be the category of all Alexandroff spaces and continuous functions, then Poset �
Alex. Since Poset is a Cartesian slosed category, then Alex is a Cartesian closed subcategory of CS. It
is not difficult to prove that Alex is not contained in neither FS nor SCTop.

The main reason for this phenomenon is that the exponential topology of Dtop on some objects
may be different from that of Alex. For example, the exponential topology on NN in Alex is the
poset NN (pointwise order) endowed with the topology such that each h ∈ NN, ↑h is open, denoted
by A(NN). The exponential topology in Dtop is definded as in Theorem 2.10, [N → N]. We claim
that ↑id ∈ A(NN) is not open in [N→ N]. Define fn : N→ N,

fn(x) =

x, x ≤ n;
n, x > n.

It is straightforward to check that { fn} is a directed set and fn → id.However, there is no n ∈ N such
that fn ∈ ↑id. Then ↑id is not open in [N→ N], thus [N→ N] , (NN,A(NN)).

Finally, we leave a conjecture: Alex is a maximal full Cartesian closed subcategory of CS.

6. Conclusions

The category of c-spaces and locally finitary compact spaces are both not Cartesian closed
in Dtop. FS-spaces and BF-spaces are definded by approximation relation �d, and they both form
Cartesian closed category of c-spaces. We also geive two conditions that the finitary categorical
products and topological products coincide. These works extended the Domain theory and provide
strong support for directed space to become an extended mathematical model of Domain theory.
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