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Abstract: In this work, we propose and investigate a new predator-prey model with strong Allee effect
in prey and Holling type II functional response in predator. By performing a comprehensive dynamical
analysis, we first derive the existence and stability of all the possible equilibria of the system and the
system undergoes two transcritical bifurcations and one Hopf-bifurcation. Next, we have calculated the
first Lyapunov coefficient and find the Hopf-bifurcation in this model is supercritical and a stable limit
cycle is born. Then, by comparing the properties of the system with and without Allee effect, we show
that the strong Allee effect is of great importance to the dynamics. It can drive the system to instability.
Specifically, Allee effect can increase the extinction risk of populations and has the ability to switch
the system’s stability to limit cycle oscillation from stable node. Moreover, numerical simulations are
presented to prove the validity of our findings.
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1. Introduction

In the field of mathematical ecology, mathematical models are extensively used to explore and
describe the complex interactions among individuals and between individuals and their surroundings
by many scholars [1–5]. Especially, the predator-prey models have received great attention over the
last one hundred years. Since the classical two species Lotka-Volterra model was put forward [1], there
are a great many of experiments and papers investigating the interactions between predators and prey
from each aspect [6–10]. Such as, in [7] the authors studied the complex dynamics of a predator-prey
model with the nonlinear Michaelis-Menten type predator harvesting. Li et al. [8] proposed a Leslie-
Gower predator-prey model with simplified Holling-type IV functional response. In [10] S. Djilali and
S. Bentout proposed a delayed diffusive predator-prey model with prey social behavior and predator
harvesting, and analyzed the dynamics of the deterministic model and diffusive model.
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In recent years, it is widely recognized the Allee effect has important significance on the population
dynamical relation and may make the dynamics more richer. Specifically, Allee effect refers to a
positive correlation between population density and individual average fitness when the population
is small [11, 12]. From the view point of ecology, Allee effect on species can occur under some
mechanisms, such as the change of habitat, inbreeding depression, difficulties in finding a spouse,
avoiding predators, and the predation risk caused by environment conditions [13–15]. Moreover, the
Allee effect is mainly divided into two forms: Strong and weak [16]. The strong Allee effect denotes
the negative per capita growth rate when population density is below the so-called Allee threshold and
the growth rate becomes positive when the population density is above this threshold [17]. This means,
the population must surpass the threshold to grow. Contrarily, a population with a weak Allee effect
has no such above threshold and the weak Allee effect means that when the species density is low,
the per capita growth rate becomes small, but remains positive [18, 19]. This implies the Allee effect
may lead to much more complex dynamics and thereby affect the survival of the population. In fact
in [20], Hilker et al. have introduced the strong Allee effect in a simple epidemic model [21, 22] and
shown that Allee effect can induce surprisingly rich dynamical behaviors, like periodic oscillations,
multiple alternative steady states and homoclinic loops with the extinction of host populations. The
complexity reveals, the introduction of the Allee effect in mathematical systems has important practical
significance to the study of long-term species morphology and the development of species. This could
have far-reaching implications in areas of biological protection.

On the other hand, there is another key objective that can also affect the dynamical behaviors of
the prey-predator models: Functional response [23]. It refers to the average number of prey killed by
each individual predator per unit of time and has two main types: Predator-dependent (as a function
of prey and predators densities) and prey-dependent (as a function of the prey density) [24]. Exactly,
functional response denotes the latter, like the famous Holling family [25], plays a predominant role in
species dynamics models. For instance, since 1965, Holling’s type II functional response has acted as
the basis for many literatures [26–30] on predator-prey theory.

Specially, for insect pest management, in [28] Sun et al. considered a prey-predator system with
Holling type II functional response in the predator: dx

dt = x(r − rx
K − by),

dy
dt = y

(
λbx

1+bhx − d1

)
,

(1.1)

where x(t) and y(t) denote the population densities of prey and predator at time t, respectively. r is
the growth rate of x(t), K is the environment capacity in the absence of predator. bx

1+bhx , which is
assumed to be the typical Holling type II functional response form, gives a description of the per capita
conversion rate from prey to predator. Concretely, b and h represent the searching rate and handling
time of predator, λ denotes the conversion efficiency. All the parameters are positive. By dynamical
analysis, Sun et al. [28] concluded if 0 ≤ h ≤ λ

d1
, system (1.1) has two saddles P0(0, 0), P1(K, 0), and a

globally asymptotically stable focus P3

(
d1

b(λ−hd1) ,
r(Kb(λ−hd1)−d1)

Kb2(λ−hd1)

)
.

Thus, motivated by the above discussion, we naturally want to know: When an Allee effect is
subject to the first species of system (1.1), what will happen to the dynamical properties? Hence, we
construct the following ecological model with a strong Allee effect in prey dx

dt = x(r − rx
K )(x − A) − bxy,

dy
dt = y

(
λbx

1+bhx − d1

)
,

(1.2)
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where A is the strong Allee effect parameter and it satisfies 0 < A < K and other parameters are the
same as system (1.1). Let t = Krt, x = 1

K x and y = b
r y, and drop the bars, we get dx

dt = x(1 − x)(x − α) − 1
K xy,

dy
dt = y

(
ωx

1+ηx − σ
)
,

(1.3)

where α = A
K , ω = λb

r , σ = d1
Kr , η = bhK, and the strong Allee effect parameter α taken as 0 < α < 1.

Our main purpose aims to see how the strong Allee effect affect the dynamics of the prey-predator
model with Holling type II functional response. The layout of this paper is as follows. First, the
positivity and boundedness of solution of system (1.3) are studied in Section 2. Then, in Section 3,
we give the analysis of equilibria of system (1.3), including the distribution of all the possible
equilibria and their stability. In Section 4, we verify the existence of transcritical bifurcation and
Hopf-bifurcation. Additionally, numerical simulations and computations are carried out to explore and
visualize the impact of the strong Allee effect in Section 5. Finally, this paper is concluded with a brief
summary in Section 6.

2. Preliminaries

Next, the positivity and boundedness of the solutions of system (1.3) will be shown in the region
R2

+ = {(x, y) : x ≥ 0, y ≥ 0}.

2.1. Positivity

Lemma 2.1. For all t ≥ 0, every solution of system (1.3) with initial value is positive.
Proof. Solving system (1.3) with positive initial condition (x(0), y(0)), we get the result:

x(t) = x(0)
[
exp

∫ t

0

(
(1 − x(s))(x(s) − α) −

1
K

y(s)
)

ds
]
> 0,

y(t) = y(0)
[
exp

∫ t

0

(
ωx(s)

(1 + ηx(s))
− σ

)
ds

]
> 0.

Hence, any solution of system (1.3) starting from the interior of the first quadrant xy-plane still remains
in it for all future times.

2.2. Uniform boundedness

Lemma 2.2. Every solution of system (1.3) with positive initial value is uniformly bounded.
Proof. Let Φ = Kωx + y and δ = min {α, σ}, we have

dΦ
dt

+ δΦ = Kω
[
x(1 − x)(x − α) −

1
K

xy
]

+
ωxy

1 + ηx
− σy + δKωx + δy

≤ −Kωx3 + Kω(1 + α)x2 − Kω(α − δ)x − (σ − δ)y

≤ −Kωx3 + Kω(1 + α)x2 ≤
4Kω(1 + α)3

27
, %.
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Integrating the above inequality, we have Φ(t) ≤ e−δtΦ(0) +
%

δ
(1 − e−δt) and lim supΦ(t) ≤ %δ−1, as

t → ∞, independently of the initial conditions. Therefore, the solutions of system (1.3) are uniformly
bounded.
Remark 2.1. From the perspective of ecology, uniform boundedness of system (1.3) means that the
interacting two species are ecologically well behaved and none of them can grow exponentially for a
long period of time owing to limited food sources.

3. Equilibria and stability analysis

3.1. Existence of equilibria

Obviously, for all permissible parameters, system (1.3) always has three boundary equilibria
E0(0, 0) , E1(1, 0) and E2(α, 0). If system (1.3) admits the positive equilibrium, then x and y must
satisfy the equation as follows: {

(1 − x)(x − α) − y
K = 0,

ωx
1+ηx − σ = 0. (3.1)

By some simple algebraic calculations, we obtain the system has a unique positive equilibrium
E3

(
σ

ω−ση
, K(ω−(η+1)σ)(σ−α(ω−ση))

(ω−ση)2

)
for ωα

1+ηα
< σ < ω

1+η
.

3.2. Stability of equilibria

Theorem 3.1. The trivial equilibrium E0 is a hyperbolic stable node.
Proof. The Jacobian matrix at E0(0, 0) is given by

JE0 =

(
−α 0
0 −σ

)
, (3.2)

which, clearly, has two negative eigenvalues λ1(E0) = −α < 0 and λ2(E0) = −σ < 0. Hence, the
extinction equilibrium E0 in the first quadrant is always a stable node.
Theorem 3.2. For the boundary equilibrium E1:

(i) if σ < ω
1+η

, then E1 is a hyperbolic saddle;
(ii) if σ = ω

1+η
, then E1 is a non-hyperbolic saddle node. It means S ε(E1) is divided into two parts by

two separatrices that tend to E1 along the left and the right of E1, where S ε(E1) is a neighborhood
of E1 with sufficient small radius ε. One part consists of two hyperbolic sectors and another is a
parabolic sector which is on the upper half plane.

(iii) if σ > ω
1+η

, then E1 is a stable node.

Proof. The corresponding Jacobian matrix at E1(1, 0) is calculated as follows:

JE1 =

(
α − 1 − 1

K
0 ω

1+η
− σ

)
, (3.3)

with two eigenvalues λ1(E1) = α − 1 < 0 and λ2(E1) = ω
1+η
− σ. Thus E1 is a hyperbolic saddle if

σ < ω
1+η

and a stable node if σ > ω
1+η

(see Fig.1(a) and (c)). For σ = ω
1+η

, namely, the eigenvalue
λ2(E1) = 0 and E1 is non-hyperbolic, so we can not judge its type from the eigenvalues directly. Below
we will use Theorem 7.1 in Chapter 2 in [31] to discuss the stability properties of E1.
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By letting (x̄, ȳ) = (x − 1, y), we change system (1.3) into a standard form and then expand it to{ dx̄
dt = (α − 1)x̄ − 1

K ȳ − (2 − α)x̄2 − 1
K x̄ȳ − x̄3,

dȳ
dt = c1 x̄ȳ + c2 x̄2ȳ + c3 x̄3ȳ + Q0(x̄, ȳ),

(3.4)

where c1 = ω
(1+η)2 , c2 = −

ωη

(1+η)3 , c3 =
ωη2

(1+η)4 , and Q0(x̄, ȳ) represents a power series with terms x̄iȳ j

(i + j ≥ 5).
By the linear transformation (

x̄
ȳ

)
=

(
1 −1
0 (1 − α)K

) (
u
v

)
, (3.5)

then system (3.4) becomes{ du
dt = d1u + d2u2 + d3uv + d4v2 + d5u3 + d6u2v + d7uv2 + d8v3 + Q1(u, v),
dv
dt = c1uv − c1v2 + c2u2v − 2c2uv2 + c2v3 + Q2(u, v),

(3.6)

where
d1 = α − 1, d2 = −2 + α, d3 = −2α + 3 − c1, d4 = −1 − c1,

d5 = −1, d6 = c2 − 3, d7 = −3 − 2c2, d8 = c2 − 1,

and Q1(u, v) and Q2(u, v) represent power series with terms uiv j(i + j ≥ 4).
Let τ = d1t, then system (3.6) becomes

 du
dτ = u + d2

d1
u2 + d3

d1
uv + d4

d1
v2 +

d5
d1

u3 +
d6
d1

u2v + d7
d1

uv2 + d8
d1

v3 +
Q1(u,v)

d1
, u + P(u, v),

dv
dτ = c1

d1
uv − c1

d1
v2 + c2

d1
u2v − 2c2

d1
uv2 + c2

d1
v3 +

Q2(u,v)
d1
, Q(u, v).

(3.7)

From the implicit function theorem and du
dτ = 0, we can obtain a unique function

u = ϕ1(v) = −
d4

d1
v2 +

d3d4 − d1d8

d2
1

v3 + · · · ,

which satisfies ϕ1(0) = ϕ′1(0) = 0 and ϕ1(v) + P(ϕ1(v), v) = 0. Then substituting it into the second
equation of (3.7), we have that

dv
dτ

= −
c1

d1
v2 −

c1d4 − c2d1

d2
1

v3 −
c1(d3d4 − d1d8) − 2c2d1d4

d3
1

v4 + O(|v|5). (3.8)

The coefficient of v2 is − c1
d1
< 0. Thus, by using Theorem 7.1 in Chapter 2 in [31], we get E1 is a

saddle node. This means that a neighborhood of S ε(E1) is divided into two parts by two separatrices
that tend to E1 along the left and the right of E1 (see Figure 1(b)). One part consists of two hyperbolic
sectors and another is a parabolic sector which is on the upper half plane.
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Figure 1. The phase portraits of system (1.3).
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Theorem 3.3. For the boundary equilibrium E2:

(i) if σ < ωα
1+ηα

, then E2 is an unstable node;
(ii) if σ = ωα

1+ηα
, then E2 is a non-hyperbolic saddle node. This means S ε(E2) is divided into two parts

by two separatrices that move away along the left and the right of E2. One part consists of two
hyperbolic sectors, and another is a parabolic sector which is on the upper half-plane;

(iii) if σ > ωα
1+ηα

, then E2 is a hyperbolic saddle.

Proof. The Jacobian matrix JE2 of E2(α, 0) is

JE2 =

(
α(1 − α) − 1

Kα

0 ωα
1+ηα
− σ

)
. (3.9)

Then the eigenvalues λ1(E2) = α(1 − α) > 0 and λ2(E2) = ωα
1+ηα
− σ. Clearly, E2 is an unstable node if

σ < ωα
1+ηα

and a saddle if σ > ωα
1+ηα

(see Figure 1(d) and ( f )). However, when σ = ωα
1+ηα

, the eigenvalue
λ2(E2) = 0 which indicates E2 is non-hyperbolic. In order to deduce its stability, we translate E2 to the
origin via the translation (x̄, ȳ) = (x − α, y) and then expand system (1.3) to{ dx̄

dt = (1 − α)αx̄ − α
K ȳ + (1 − 2α)x̄2 − 1

K x̄ȳ − x̄3,
dȳ
dt = f1 x̄ȳ + f2 x̄2ȳ + M0(x̄, ȳ),

(3.10)

where f1 = ω
(1+ηα)2 , f2 = −

ωη

(1+ηα)3 , and M0(x̄, ȳ) represents a power series in (x̄, ȳ) with terms x̄iȳ j(i +

j ≥ 4).
Let

T =

(
1 1
0 K(1 − α)

)
be an invertible matrix. We use the following linear transformation(

u
v

)
= T

(
x̄
ȳ

)
, (3.11)

then system (3.10) turns into{ du
dt = e1u + e2u2 + e3uv + e4v2 + e5u3 + e6v3 + e7u2v + e8uv2 + M1(u, v),
dv
dt = f1uv + f1v2 + f2u2v + 2 f2uv2 + f2v3 + M2(u, v),

(3.12)

where e1 = (1 − α)α, e2 = 1 − 2α, e3 = 1 − 3α − f1, e4 = −α − f1, e5 = −1, e6 = f2 − 1, e7 = f2 − 3,
and e8 = 2 f2 − 3. M1(u, v) and M2(u, v) represent power series with terms uiv j(i + j ≥ 4).

Set τ = e1t, we attain du
dτ = u + e2

e1
u2 + e3

e1
uv + e4

e1
v2 +

e5
e1

u3 +
e6
e1

v3 + e7
e1

u2v + e8
e1

uv2 +
M1(u,v)

e1
, u + U(u, v),

dv
dτ =

f1
e1

uv +
f1
e1

v2 +
f2
e1

u2v +
2 f2
e1

uv2 +
f2
e1

v3 +
M2(u,v)

e1
, N(u, v).

(3.13)

From du
dτ = 0, we obtain the implicit function

u = ϕ1(v) = −
e4

e1
v2 −

e1e6 − e3e4

e2
1

v3 + · · · ,
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which satisfies ϕ1(0) = ϕ′1(0) = 0 and ϕ1(v) + U(ϕ1(v), v) = 0. Then substituting it into the second
equation of (3.13), we have

dv
dτ

=
f1

e1
v2 −

f1e4 − f2e1

e2
1

v3 + O(|v|4). (3.14)

Hence, according to the Theorem 7.1 in Chapter 2 in [31], we have m = 2 and am = ω
(1−α)α(1+ηα)2 > 0,

so E2 is a saddle node. That indicates a neighborhood of S ε(E2) is divided into two parts by two
separatrices that move away along the left and the right of E2. One part consists of two hyperbolic
sectors and another is a parabolic sector which is on the upper half plane (see Figure 1(e)).

Theorem 3.4. For the positive equilibrium E3:

(i) if ω(1+α)
2+η(1+α) < σ < ω

1+η
, then E3 is locally asymptotically stable;

(ii) if σ =
ω(1+α)

2+η(1+α) , then E3 is a center or weak focus;
(iii) if ωα

1+ηα
< σ < ω(1+α)

2+η(1+α) , then E3 is unstable.

Proof. The Jacobian matrix JE3 of E3(x∗, y∗) is

JE3 =

(
x∗(1 − 2x∗ + α) − 1

K x∗
ωy∗

(1+ηx∗)2 0

)
. (3.15)

From x∗(1 − x∗)(x∗ − α) − 1
K x∗y∗ = 0, we can derive

JE3 =

 x∗ (1+α)(ω−ση)−2σ
ω−ση

− 1
K x∗

ωy∗

(1+ηx∗)2 0

 . (3.16)

So the determinant and the trace of Jacobian matrix JE3 are calculated by

Det[JE3] =
ωx∗y∗

K(1 + ηx∗)2 and Tr[JE3] = x∗
(1 + α)(ω − ση) − 2σ

ω − ση
.

When ωα
1+ηα

< σ < ω
1+η

, Det[JE3] is positive, but the sign of Tr[JE3] cannot be obtained directly. If
ω(1+α)

2+η(1+α) < σ < ω
1+η

, then Tr[JE3] < 0, that is E3 is locally asymptotically stable (see Figure 2(a)). If
σ =

ω(1+α)
2+η(1+α) , then Tr[JE3] = 0, that implies JE3 has a pair of purely imaginary eigenvalues. It confirms

that the equilibrium E3 may be a center, a weak focus or a center focus. We also can easily show that
F(x, y) = −x3 + (1 + α)x2 − 1

K xy and G(x, y) =
ωxy
1+ηx , which are the nonlinear parts of system (1.3), are

analytic functions. Thus, from the corollary of Theorem 2.1 in Chapter 4 in [31], we obtain that E3 is
a center (see Figure 2(b),(c)) or weak focus. If ωα

1+ηα
< σ < ω(1+α)

2+η(1+α) , then Tr[JE3] > 0, it means E3 is
unstable (see Figure 2(d),(e)). Thus, this completes the proof.

AIMS Mathematics Volume 7, Issue 9, 16296–16314.



16304

x ’ = x (1 − x) (x − 0.2) − x y/1.3
y ’ = y (1 x/(1 + 0.6 x) − 0.5)    

 
 

 
 

 
 

0 0.2 0.4 0.6 0.8 1 1.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

E
3

E
1

E
2

E
0

(a)

x ’ = x (1 − x) (x − 0.2) − x y/1.3 
y ’ = y (1 x/(1 + 0.6 x) − 0.441176)

 
 

 
 

 
 

0 0.2 0.4 0.6 0.8 1 1.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

E
3

E
2

E
1

E
0

(b)

x ’ = x (1 − x) (x − 0.2) − x y/1.3 
y ’ = y (1 x/(1 + 0.6 x) − 0.441176)

 
 

 
 

 
 

0.595 0.596 0.597 0.598 0.599 0.6 0.601 0.602 0.603 0.604 0.605

0.206

0.2065

0.207

0.2075

0.208

0.2085

0.209

0.2095

0.21

x

y

E
3

(c)

x ’ = x (1 − x) (x − 0.2) − x y/1.3
y ’ = y (1 x/(1 + 0.6 x) − 0.44106)

 
 

 
 

 
 

0 0.2 0.4 0.6 0.8 1 1.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

E
1

E
2

E
0

E
3

(d)

x ’ = x (1 − x) (x − 0.2) − x y/1.3
y ’ = y (1 x/(1 + 0.6 x) − 0.44106)
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Figure 2. The phase portraits of system (1.3): (a) When σ = 0.5 > σH, E3(x∗, y∗) is
locally asymptotically stable; (b) When σ = σH, unstable periodic orbits bifurcate through
Hopf-bifurcation around E3(x∗, y∗); (c) Local amplification of (b) for (x, y) ∈ [0.595, 0.605]×
[0.206, 0.21]; (d) When σ = 0.44106 < σH = 0.441176, a stable limit cycle appears around
E3(x∗, y∗); (e) Local amplification of (d) for (x, y) ∈ [0.54, 0.66] × [0.17, 0.25].
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4. Bifurcation analysis

In this part, we mainly put the focus on the various bifurcation behaviors of system (1.3).

4.1. Transcritical bifurcation

Theorem 4.1. For transcritical bifurcation, the following statements are true.

(1) When the parameters satisfy σ = σTC1 = ω
1+η

, system (1.3) undergoes a transcritical bifurcation
referred as TC1 at E1;

(2) When the parameters satisfy σ = σTC2 = ωα
1+ηα

, system (1.3) undergoes another transcritical
bifurcation referred as TC2 at E2.

Proof. (1) Now we verify the transversality condition for transcritical bifurcation by using Sotomayor’s
theorem [32, 33]. If σ = σTC1 = ω

1+η
, then Det[JE1] = 0, which means one eigenvalue of the Jacobian

matrix JE1 is zero. Let V and W represent the two eigenvectors corresponding to the zero eigenvalue
of JE1 and it’s transpose JT

E1
, respectively, and they are given by

V =

(
v1

v2

)
=

(
1

K(α − 1)

)
and W =

(
w1

w2

)
=

(
0
1

)
.

Furthermore, we have

Fσ(E1;σTC1) =

(
0
−y

)
(E1;σTC1 )

=

(
0
0

)
, (4.1)

DFσ(E1;σTC1)V =

(
0 0
0 −1

) (
1

K(α − 1)

)
(E1;σTC1 )

=

(
0

K(α − 1)

)
, (4.2)

D2F(E1;σTC1)(V,V) =


∂2F1
∂x2 v2

1 + 2∂2F1
∂x∂y v1v2 + ∂2F1

∂y2 v2
2

∂2F2
∂x2 v2

1 + 2∂2F2
∂x∂y v1v2 + ∂2F2

∂y2 v2
2


(E1;σTC1 )

=

 −2
2Kω(α−1)

(1+η)2

 .
Also

WT Fσ(E1;σTC1) = 0,

WT [
DFσ(E1;σTC1)V

]
= K(α − 1) , 0,

WT
[
D2F(E1;σTC1)(V,V)

]
=

2Kω(α − 1)
(1 + η)2 , 0.

Consequently, system (1.3) undergoes a transcritical bifurcation at σ = σTC1 .
(2) Now we also apply Sotomayor’s theorem to prove the transversality condition for another

transcritical bifurcation at σ = σTC2 = ωα
1+ηα

. Similar to the process of the former, the transversality
condition is derived.

WT Fσ(E2;σTC2) = 0,

WT [
DFσ(E2;σTC2)V

]
= −Kα(1 − α) , 0,
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and
WT

[
D2F(E2;σTC2)(V,V)

]
=
−2Kωα(1 − α)

(1 + η)2 , 0,

where

V =

(
v1

v2

)
=

(
1

Kα(1 − α)

)
and W =

(
w1

w2

)
=

(
0
1

)
are the two eigenvectors corresponding to the zero eigenvalue of the Jacobian matrix JE2 and it’s
transpose JT

E2
, respectively. Hence, we complete the proof.

In particular, from Figure 1(a), we can see that for σ < σTC1 , there are two equilibria E1 and E3.
And E1 is unstable and E3 is stable. For σ = σTC1 (see Figure 1(b)), these two equilibria coalesce. For
σ > σTC1(see Figure 1(c)), E1 is stable and E3 is unstable. In this case, E3 is a negative equilibrium.
Biologically, we consider the positive equilibria, so we ignore it in the corresponding phase portrait.
Thus, an exchange of stability has occurred at σ = σTC1 , that is to say, the transcritical bifurcation
at σ = σTC1 occurs by the Sotomayor’s theorem. Moreover, the occurrence of another transcritical
bifurcation at σ = σTC2 is similarly illustrated in Figure1(d), (e), ( f ).

4.2. Hopf-bifurcation and the existence of limit cycle

In this subsection, the possible occurrence of Hopf-bifurcation around the interior equilibrium E3

about the bifurcation parameter σ is explored. In a two dimensional system, it is concluded Hopf-
bifurcation occurs as the stability of the interior equilibrium changes (from stable to unstable or vice-
versa) and a periodic solution appears (or disappears). Next, we will give the proof of the existence for
Hopf-bifurcation of system (1.3).

4.2.1. Hopf-bifurcation

Theorem 4.2. The conditions for occurrence of Hopf-bifurcation at the critical value σ = σH =
ω(1+α)

2+η(1+α) around the positive equilibrium E3(x∗, y∗) are ωα
1+ηα

< σ < ω
1+η

and d
dσTr[JE3] , 0 at σ = σH.

Proof. From the Jacobian matrix JE3 calculated at E3(x∗, y∗), we consider σ as a bifurcation parameter.
For occurrence of Hopf-bifurcation, the characteristic equation of JE3 must have a pair of purely
imaginary roots. At σ = σH, Tr[JE3] = 0, then the characteristic equation of JE3 becomes

λ2 + Det[JE3] = 0. (4.3)

When ωα
1+ηα

< σ < ω
1+η

, Det[JE3] > 0, namely the above characteristic equation has a pair of conjugated
imaginary eigenvalues λ1,2 = ±iθ, where θ =

√
Det[JE3].

Now we check the transversality condition d
dσ {Re(λ)} |σ=σH , 0 which confirms the eigenvalues

cross the imaginary axis transversely with non-zero speed. Let σ be any point in the neighbourhood of
σH, the eigenvalues of the Jacobian matrix JE3 at σ are λ1,2 = χ(σ) ± iθ(σ), where χ(σ) =

Tr[JE3 ]
2 and

θ(σ) =

√
Det[JE3] −

Tr2[JE3 ]
4 . Then

d
dσ
{Re(λ)} |σ=σH =

d
dσ

χ(σ)|σ=σH =
d

2dσ
Tr[JE3]|σ=σH =

3
48ω

(1 + α)(2 + (1 + α)η)2 , 0. (4.4)

Thus the transversality condition is verified and a Hopf-bifurcation of system (1.3) occurs at σ = σH.
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4.2.2. Direction of Hopf-bifurcation

In order to determine the direction of Hopf-bifurcation and the stability of the periodic solution
which originates from the positive equilibrium via Hopf bifurcation, the first Lyapunov coefficient [33]
needs to be computed.

Firstly, set z1 = x − x∗ and z2 = y − y∗, then system (1.3) can be written as{
ż1 = m10z1 + m01z2 + m20z2

1 + m11z1z2 + m02z2
2 + m30z3

1 + m21z2
1z2 + m12z1z2

2 + m03z3
2,

ż2 = n10z1 + n01z2 + n20z2
1 + n11z1z2 + n02z2

2 + n30z3
1 + n21z2

1z2 + n12z1z2
2 + n03z3

2 + O1(z1, z2),
(4.5)

where

m10 = (1 − 2x∗ + α)x∗, m01 = −
1
K

x∗, m20 = 1 − 3x∗ + α, m11 = −
1
K
, m02 = 0,

m30 = −1, m21 = m12 = m03 = 0, n10 =
ωy∗

(1 + ηx∗)2 , n01 = 0, n20 = −
ωηy∗

(1 + ηx∗)3 ,

n11 =
ω

(1 + ηx∗)2 , n02 = 0, n30 = −
ωη2y∗

(1 + ηx∗)4 , n21 = −
ωη

(1 + ηx∗)3 , n12 = n03 = 0.

By ignoring the higher order terms of degree 4 and above, then system (4.5) becomes

Ż = JE3Z + A(Z), (4.6)

where

Z =

(
Z1

Z2

)
and A =

(
A1

A2

)
=


m20z2

1 + m11z1z2 + m02z2
2 + m30z3

1
+m21z2

1z2 + m12z1z2
2 + m03z3

2
n20z2

1 + n11z1z2 + n02z2
2 + n30z3

1
+n21z2

1z2 + n12z1z2
2 + n03z3

2

 .
The eigenvector v̄ of JE3 for the eigenvalue iθ at σ = σH is v̄ =

(
m01

iθ − m10

)
.

Now we define

Q = (Re(v̄),−Im(v̄)) =

(
m01 0
−m10 −θ

)
.

Let Z = QU, where U =

(
u
v

)
. Under this transformation, system (4.6) becomes

U̇ = (Q−1JE3 Q)U + A(QU).

Thus (
u̇
v̇

)
=

(
0 −θ

θ 0

)
=

(
u
v

)
+

(
S 1(u, v;σ = σH)
S 2(u, v;σ = σH)

)
, (4.7)

where S 1 and S 2 are non-linear in u and v given by

S 1(u, v;σ = σH) =
1

m01A1
, S 2(u, v;σ = σH) = −

1
θm01

(m10A1 + m01A2)
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with
A1 =(m20m2

01 − m11m01m10 + m02m2
10)u2 + θ(2m02m10 − m11m01)uv + θ2m02v2

+ (m12m01m2
10 − m03m3

10 + m30m3
01 − m21m2

01m10)u3

+ θ(2m12m10m01 − m21m2
01 − 3m03m2

10)u2v

+ θ2(m12m01 − 3m03m10)uv2 − θ3m03v3,

A2 =(n20m2
01 − n11m01m10 + n02m2

10)u2 + θ(2n02m10 − n11m01)uv + θ2n02v2

+ (n12m01m2
10 − n03m3

10 + n30m3
01 − n21m2

01m10)u3

+ θ(2n12m10m01 − n21m2
01 − 3n03m2

10)u2v

+ θ2(n12m01 − 3n03m10)uv2 − θ3n03v3.

Regarding the normal form (4.7), we calculate the first Lyapunov coefficient and obtain

l1 =
1
16

(
S 1

uuu + S 1
uvv + S 2

vvv

)
+

1
16θ

(
S 1

uv(S
1
uu + S 1

vv) − S 2
uv(S

2
uv + S 2

vv) − S 1
uuS 2

uu + S 1
vvS

2
vv

)
=

1
16

(
6m30m2

01 + 2n21m2
01

)
+

1
16θ

(
−2ωm20m01 +

2
θ

n11n20m3
01 +

4
θ

n20m20m3
01

)
= −

1
4

x∗2
(

1
K2 +

x∗2

K3(1 + ηx∗)

)
.

Evidently, l1 < 0, so that a stable Hopf-bifurcating limit cycle appears and the Hopf-bifurcation is
supercritical, which indicates the stable periodic solution overlaps an unstable interior equilibrium.
From view of ecology, this phenomenon means that both predators and prey reach an oscillatory
coexistence state. And, in the next section, we are going to explore this phenomenon a step further
with the help of numerical simulations.

5. Numerical simulation and discussion

To verify the validity of the obtained analytical results, in this part, some numerical simulations and
computations are carried out. Firstly, the phase portraits corresponding to the scenario of no positive
equilibrium and one positive equilibrium are plotted in Figures 1 and 2 by varying the key parameter
value σ and keeping other fixed parameters values α = 0.2, K = 1.3, ω = 1 and η = 0.6. Further,
using this set of parameter values and different values of σ, we also give some time series diagrams
of system (1.3) for a better visualization of how the strong Allee effect influence the dynamics of the
model, with special attention to the stability and cyclical behavior.

Case 5.1. For σ=0.5, the high mortality of natural enemy predator, prey and the natural enemy
populations reach a stable coexistence state because of the reduced predation pressure on prey and
Allee effect ( Figures 2(a) and 3).

Case 5.2. For gradually decreasing the value of σ, the positive equilibrium E3 of model (1.3)
loses stability via a Hopf bifurcation at σH=0.441176 ( Figure 2(b), (c)) and the Hopf bifurcation is
supercritical as the first Lyapunov coefficient l1 = −0.072449680827 < 0. Meanwhile, as shown
in Figure 4, both the total populations begin to oscillate. From Figure 2(d), (e), it is found when
σ < σH slightly, a stable limit cycle from E3 is bifurcated. Prey and predator populations reach an
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oscillation coexistence state (Figure 5). The amplitude of the oscillation is initially small, but then
increases rapidly with decreasing σ, which is illustrated with a three-dimensional bifurcation diagram
in Figure 6. Biologically, the populations fluctuate a lot, which corresponds to the sudden increase of
prey.

Case 5.3. For small value σ=0.3, the low mortality of natural enemy predator, we observe that the
limit cycle disappears and both prey and predator approach the extinction state for the higher predation
pressure on prey and the Allee effect (Figures 1( f ) and 7).

(a) (b)

Figure 3. The time series diagram of system (1.3) for σ=0.5 with the initial condition
[x(0), y(0)]=[1, 0.1].

(a) (b)

Figure 4. The time series diagram of system (1.3) for σH=0.441176 with the initial condition
[x(0), y(0)]=[1, 0.1]

.
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(a) (b)

Figure 5. The time series diagram of system (1.3) for σ=0.44106 with the initial condition
[x(0), y(0)]=[1, 0.1].

Figure 6. The three-dimensional space bifurcation diagram with σ ∈ [0.42, 0.45], where the
black curve represents unstable equilibria, the red curve represents the stable equilibria and
the blue surface denotes the stable limit cycle.

(a) (b)

Figure 7. The time series diagram of system (1.3) for σ=0.3 with the initial condition
[x(0), y(0)]=[1, 0.1].
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Remark 5.1. One can see that the model is sensitive to the initial condition. The strong Allee
effect causes more complex dynamics, with total population density tending to either the extinction
state E0(0, 0) or coexistence state E3(x∗, y∗) depending on the selection of the initial condition. In the
real world, for biological protection, our purpose is generally to maintain the sustainable survival of
species rather than eradicating the species completely. Accordingly, in the above cases, we choose the
initial condition [x(0), y(0)]=[1, 0.1].

6. Conclusions

In this article, a predator-prey model with strong Allee effect in prey was proposed. We investigated
the classification and stability of each equilibrium of system (1.3) and fulfilled a comprehensive
bifurcation analysis. Qualitative analysis shows that the model’s dynamics grow more complicated
when Allee effect is incorporated into the first species. More specifically, with the comparison to
system (1.1) [28] in absence of Allee effect, we find some new dynamical properties of model (1.3).

(1) System (1.3) possesses more types of equilibria due to the strong Allee effect. The extinction
equilibrium is always an attractor, whereas the stability of other two boundary equilibria and the unique
interior equilibrium changes with different parameter conditions. For the system with no Allee effect,
both boundary equilibria are saddles and the interior equilibrium is always globally asymptotically
stable.

(2) System (1.3) exhibits more bifurcation behaviors for the existence of multiple types of equilibria.
Only one transcritical bifurcation occurs for system (1.1), whereas system (1.3) undergoes two
transcritical bifurcations and one Hopf-bifurcation. Also a stable limit cycle around unstable positive
equilibrium E3 corresponding to system (1.3) appears.

It can be clearly seen that the strong Allee effect can lead to potential changes in system dynamics.
It also has a significant role in ecology. Allee effect, such as, can destabilize the coexistence steady
state. From stable coexistence to oscillating coexistence, and then from oscillating coexistence to
overall populations extinction state, the prey and predator populations go through multiple stability
switches. Moreover, in all cases, the possibility of total species extinction in the model is caused
by Allee effect. This suggests that if prey or predators are subject to Allee effect, the measures we
adopt for nature preservation should take this into consideration, which is important for analyzing the
long-term survival of all populations.

We just consider the impact of Allee effect in prey on the dynamical behaviors of the predator-prey
system in this paper. It will be an interesting theme to study the dynamics of the model with Allee
effects in both populations. We will leave this as future work.
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