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1. Introduction

One of the most important components of Riemannian geometry is determining the bound of the
eigenvalue for the Laplacian on a particular manifold. The eigenvalue that occurs as a solutions
of the Dirichlet or Neumann boundary value problems for the curvature functions is one of the
main goals. Because different boundary conditions exist on a manifold, one can adopt a theoretical
perspective to the Dirichlet boundary condition, using the upper bound for the eigenvalue as a
technique of analysis for the Laplacians on a given manifold by using appropriate bound. Estimating
the eigenvalue for the Laplacian and α-Laplacian operators has been increasingly popular over the
years [18, 19, 21, 25–27, 31]. The generalization of the usual Laplacian operator, which is anisotropic
mean curvature, was studied in [15]. Let K denotes a complete non compact Riemannian manifold, and
B denotes the compact domain within K. Let λ1(B) > 0 be a first eigenvalue of the Dirichlet boundary
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value problem:
−∆α + λα = 0, in B and α on ∂B,

where ∆ represents the Laplacian operator on the Riemannian manifold Km. The Reilly formula
is dedicated entirely with the fundamental geometry of a given manifold. This can be generally
acknowledged with the following phrase.

Let (Km, g) be a compact m-dimensional Riemannian manifold, and λ1 denotes the first nonzero
eigenvalue of the Neumann problem:

−∆α + λα = 0, on Km and
∂α

∂ν
= 0 on ∂Km,

where ν is the outward normal on ∂Km.
Reilly [25] established the following inequality for a manifold Km isometrically immersed in the

Euclidean space Rk with ∂Km = 0:

λ∇1 ≤
1

Vol(Km)

∫
Km
‖H‖2dV, (1.1)

where H is the mean curvature vector of immersion Km into Rn, λ∇1 denotes the first non-zero eigenvalue
of the Laplacian on Km and dV denotes the volume element of Km.

The upper bounds for α-Laplace operator in the sense of first eigenvalue for Finsler submanifold in
the setting of Minkowski space was computed by Zeng and He [32]. Seto and Wei [28] presented the
first eigenvalue of the Laplace operator for a closed manifold. However, F. Du et al. [13] derived the
generalized Reilly inequality (1.3) and the first nonzero eigenvalue of the α-Laplace operator. Having
followed the very similar approach, Blacker and Seto [4] demonstrated a Lichnerowicz type lower limit
for the first nonzero eigenvalue of the α-Laplacian for Neumann and Dirichlet boundary conditions.
Further, Papageorgiou et al. [24] studied p-Laplacian for concave-convex problems. Recently, p(x)-
Laplacian are studied in the papers [14, 17].

The first non-null eigenvalue of the Laplacian is demonstrated in [10, 12], which is deemed a
generalization of work of Reilly [29]. The results of the distinct classes of Riemannian submanifolds
for diverse ambient spaces show that the results of both first nonzero eigenvalues portray similar
inequality and have same upper bounds [9,10]. In the case of the ambient manifold, it is clear from the
previous studies that Laplace operators on Riemannian manifolds played a significant role in achieving
various advances in Riemannian geometry (see [3, 6, 8, 11, 15, 22, 23, 29, 32]).

The α-Laplacian on a m-dimensional Riemannian manifold Km is defined as

∆α = div(|∇h|α−2∇h), (1.2)

where α > 1, if α = 2, then the above formula becomes usual Laplacian operator.
The eigenvalue of ∆h, from the other hand is Laplacian like. If a function h , 0 meets the following

equation with dirichlet boundary condition or Neumann boundary condition as discussed earlier:

∆αh = −λ|h|α−2h,

where λ is a real number called Dirichlet eigenvalue. In the same way, the previous requirements apply
to the Neumann boundary condition.
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If we look at Riemannian manifold without boundary, the Reilly type inequality for first nonzero
eigenvalue λ1,α for α-Laplacian was computed in [30]:

λ1,α = in f
{∫K
|∇h|q∫

K
|h|q

: h ∈ W1,α(K1){0},
∫

K
|h|α−2h = 0

}
. (1.3)

However, Chen [7] pioneered the geometry of slant immersions as a natural extension of both
holomorphic and totally real immersions. Further, Lotta [20] introduced the notion of slant
submanifolds in the frame of almost contact metric manifolds, these submanifolds further explored
by Cabrerizo et al. [5]. More precisely, Cabririzo et al. explored slant submanifolds in the setting of
Sasakian manifolds. Another generalization of slant and contact CR-submanifolds was given by V. A.
Khan and M. A. Khan [16], basically they proposed the notion of pseudo-slant submanifolds in the
almost contact metric manifolds and provide an example of these submanifolds.

After reviewing the literature, a natural question emerges: Is it possible to obtain the Reilly
type inequalities for submanifolds of spheres via almost contact metric manifolds, which were studied
in [2, 10, 12]? To answer this question, we explore the Reilly type inequalities for pseudo-slant
submanifolds isometrically immersed in a generalized Sasakian space form. To this end our aim is
to compute the bound for first non zero eigenvalues via α-Laplacian. The present study is leaded by
the application of Gauss equation and studies done in [9, 10, 13].

2. Preliminaries

A (2n + 1)-dimensional C∞-manifold K̄ is said to have an almost contact structure, if on K̄ there
exist a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satisfying the following properties:

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (2.1)

The manifold K̄ with the structure (φ, ξ, η) is called almost contact metric manifold. There exists a
Riemannian metric g on an almost contact metric manifold K̄, satisfying the following:

η(e1) = g(e1, ξ), g(φe1, φe2) = g(e1, e2) − η(e1)η(e2), (2.2)

for all e1, e2 ∈ T K̄, where T K̄ is the tangent bundle of K̄.
In [1], Alegre et al. introduced the notion of generalized Sasakian space form as that an almost

contact metric manifold (K̄, φ, ξ, η, g) whose curvature tensor R̄ satisfies

R̄(e1, e2)e3 = f1{g(e2, e3)e1 − g(e1, e3)e2} + f2{g(e1, φe3)φe2

− g(e2, φe3)φe1 + 2g(e1, φe2)φe3} + f3{η(e1)η(e3)e2

− η(e2)η(e3)e1 + g(e1, e3)η(e2)ξ − g(e2, e3)η(e1)ξ},
(2.3)

for all vector fields e1–e3 and certain differentiable functions f1– f3 on K̄.
A generalized Sasakian space form with functions f1– f3 is denoted by K̄( f1, f2, f3). If f1 = c+3

4 ,
f2 = f3 = c−1

4 , then M̄( f1, f2, f3) becomes a Sasakian space form M̄(c) [1]. If f1 = c−3
4 , f2 = f3 = c+1

4 ,
then M̄( f1, f2, f3) becomes a Kenmotsu space form M̄(c) [1], and if f1 = f2 = f3 = c

4 , then K̄( f1, f2, f3)
becomes a cosymplectic space form K̄(c) [1].
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Let K be a submanifold of an almost contact metric manifold K̄ with induced metric g. The
Riemannian connection ∇̄ of K̄ induces canonically the connections∇ and∇⊥ on the tangent bundle T K
and the normal bundle T⊥K of K respectively, then the Gauss and Weingarten formulae are governed by

∇̄e1e2 = ∇e1e2 + σ(e1, e2), (2.4)

∇̄e1v = −Ave1 + ∇⊥e1
v, (2.5)

for each e1, e2 ∈ T K and v ∈ T⊥K, where σ and Av are the second fundamental form and the shape
operator respectively for the immersion of K into K̄, they are related as

g(σ(e1, e2), v) = g(Ave1, e2), (2.6)

where g is the Riemannian metric on K̄ as well as the induced metric on K.
If Te1 and Ne1 represent the tangential and normal part of φe1 respectively, for any e1 ∈ T K, one

can write
φe1 = Te1 + Ne1. (2.7)

Similarly, for any v ∈ T⊥K, we write

φv = tv + nv, (2.8)

where tv and nv are the tangential and normal parts of φv, respectively. Thus, T (resp. n) is 1-1 tensor
field on T K (resp. T⊥K) and t (resp. n) is a tangential (resp. normal) valued 1-form on T⊥K (resp.
T K).

The notion of slant submanifolds in contact geometry was first defined by Lotta [20]. Later,
these submanifolds were studied by Cabrerizo et al. [5]. Now, we have following definition of slant
submanifolds.

Definition 2.1. A submanifold K of an almost contact metric manifold K̄ is said to be slant submanifold
if for any x ∈ K and X ∈ TxK − 〈ξ〉, the angle between X and φX is constant. The constant angle
θ ∈ [0, π/2] is then called slant angle of K in K̄. If θ = 0, the submanifold is invariant submanifold,
and if θ = π/2, then it is anti-invariant submanifold. If θ , 0, π/2, it is proper slant submanifold.

Moreover, Cabrerizo et al. [5] proved the characterizing equation for slant submanifold. More
precisely, they proved that a submanifold Nm is said to be a slant submanifold if and only if ∃ a
constant τ ∈ [0, π/2] and a (1, 1) tensor field T which satisfies the following relation:

T 2 = τ(I − η ⊗ ξ), (2.9)

where τ = − cos2 θ.
From (2.9), it is easy to conclude the following:

g(Te1,Te2) = cos2 θ{g(e1, e2) − η(e1)η(e2)}, (2.10)

∀e1, e2 ∈ K.
Now, we define the pseudo-slant submanifold, which was introduced by V. A. Khan and M. A.

Khan [16].
A submanifold K of an almost contact metric manifold K̄ is said to be pseudo-slant submanifold if

there exist two orthogonal complementary distributions S θ and S ⊥ such that
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(1) T K = S ⊥ ⊕ S θ ⊕ 〈ξ〉.
(2) The distribution S ⊥ is anti-invariant, i.e., φS ⊥ ⊆ T⊥K.
(3) The distribution S θ is slant with slant angle θ , π/2.

If θ = 0, then the pseudo-slant submanifold is a semi-invariant submanifold. Now, we have the
following example of pseudo-slant submanifold.

Example 2.1. [16] Consider the 5-dimensional submanifold R9 with usual Sasakian structure, such
that

x(u, v,w, s, t) = 2(u, 0,w, 0, 0, v, s cos θ, s sin θ, t),

for any θ ∈ (0, π/2). Then it is easy to see that this is an example of pseudo-slant submanifold.
Moreover, it can be observed

e1 = 2(
∂

∂x1 + y1 ∂

∂z
), e2 = 2

∂

∂y2 e3 = 2(
∂

∂x3 + y3 ∂

∂z
),

e4 = 2 cos θ
∂

∂y3 + 2 sin θ
∂

∂y4 , e5 = 2
∂

∂z
= ξ,

form a local orthonormal frame of T M. In which S ⊥ = 〈e1, e2〉 and S θ = 〈e3, e4〉, where D⊥ is anti-
invariant and S θ is slant distribution with slant angle θ.

Suppose Km=p+2q+1 be a pseudo-slant submanifold of dimension m, in which p and 2q
are the dimensions of the anti-invariant and slant distributions respectively. Moreover, let
{u1, u2, . . . , up, up+1 = v1, up+2 = v2, . . . , um−1 = v2q, um = v2q+1 = ξ} is an orthonormal frame of vectors
which form a basis for the submanifold K p+2q+1, such that {u1, . . . , up} is tangential to the distribution
D⊥ and the set {v1, v2 = sec θTv1, v3, v4 = sec θTv3, . . . v2q = sec θTv2q−1} is tangential to Dθ. By the
Eq (2.3), the curvature tensor R̄ for pseudo-slant submanifold N p+2q+1 is given by

R̄(ui, u j, ui, u j) = f1(m2 − m) + f2
(
3

m∑
i, j=1

g2(φui, u j) − 2(m − 1)
)
. (2.11)

The dimension of the pseudo-slant submanifold Km can be decomposed as m = p + 2q + 1, then
using the formula (2.9) for slant and anti-invariant distributions, we have

g2(φui, ui+1) = 0, f or i ∈ {1, . . . , p − 1},

and
g2(φui, ui+1) = cos2 θ, for i ∈ {p + 1, . . . , 2q − 1}.

Then
m∑

i, j=1

g2(φui, u j) = 2q cos2 θ.

The relation (2.11) implies that

R̄(ui, u j, ui, u j) = f1(m2 − m) + f2
(
6q cos2 θ − 2(m − 1)

)
. (2.12)
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From the relation (2.12) and Gauss equation, one has

f1m(m − 1) + f2
(
6q cos2 θ − 2(m − 1)

)
= 2τ − n2‖H‖2 + ‖σ‖2

or
2τ = n2‖H‖2 − ‖σ‖2 + f1m(m − 1) + f2

(
6q cos2 θ − 2(m − 1)

)
. (2.13)

In the paper [2], one of the present author Ali H. Alkhaldi with others studied the effect of the
conformal transformation on the curvature and second fundamental form. More precisely, assume that
K̄2n+1 consists a conformal metric g = e2ρḡ, where ρ ∈ C∞(K̄). Then Γ̄a = eρΓa stands for the dual
coframe of (K̄, ḡ), ēa == eρea represents the orthogonal frame of (K̄, ḡ). Moreover, we have

Γ̄ab = Γab + ρaΓb − ρbΓa, (2.14)

where ρa is the covariant derivative of ρ along the vector ea, i.e., dρ =
∑

a ρaea.

e2ρR̄pqrs =Rpqrs − (ρprδqs + ρqsδpr − ρpsδqr − ρqrδps)
+ (ρpρrδqs + ρqρsδpr − ρqρtδps − ρpρsδqr) − |∇α|2(δprδqs − δilδqr).

(2.15)

Applying pullback property in (2.14) to Km via point x, we get

σ̄α
pq = e−ρ(σα

pq − ραδqp), (2.16)

H̄α = eα(Hα − ρα). (2.17)

The following significant relation was proved in [1]:

e2ρ(‖σ̄‖2 − m‖H̄‖2) + m‖H‖2 = ‖σ‖2. (2.18)

3. Main Theorem

Initially, some basic results and formulas will be discussed which are compatible with the papers [2,
22]. Now, we have the following result.

Lemma 3.1. [2] Let Km be a slant submanifold of a Sasakian space form K̄2t+1(c) which is closed
and oriented with dimension ≥ 2. If f : Km → K̄2t+1(c) is embedding from Km to K̄2t+1(c). Then there
is a standard conformal map x : K̄2t+1(c) → S 2t+1(1) ⊂ R2t+2 such that the embedding Γ = x ◦ f =

(Γ1, . . . ,Γ2t+2) satisfies that ∫
Km
|Γa|α−2ΓadVK = 0, a = 1, . . . , 2(t + 1),

for α > 1.

In the next result, we obtain a result which is analogous to Lemma 2.7 of [22]. Indeed, in
Lemma 3.1, by the application of test function, we obtain the higher bound for λ1,α in terms of
conformal function.
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Proposition 3.1. Let Km be a m-dimensional pseudo slant submanifold, which is closed orientable
isometrically immersed in a generalized Sasakian space form K̄2t+1( f1, f2, f3), then we have

λ1,αVol(Km) ≤ 2|1−
α
2 |(t + 1)|1−

α
2 |m

α
2

∫
Km

(e2ρ)
α
2 dV, (3.1)

where x is the conformal map used in Lemma 3.1, and α > 1. The standard metric is identified by Lc

and consider x∗L1 = e2pLc.

Proof. Consider Γa as a test function along with Lemma 3.1, we have

λ1,α

∫
Km
|Γa|α ≤ |∇Γa|αdV, 1 ≤ a ≤ 2(t + 1), (3.2)

observing that
∑2t+2

a=1 |Γ
a|2 = 1, then |Γa| ≤ 1, we get

2t+2∑
a=1

|∇Γa|2 =

m∑
i=1

|∇eiΓ|
2 = me2ρ. (3.3)

On using 1 < α ≤ 2, we conclude
|Γa|2 ≤ |Γa|α. (3.4)

By the application of Hölder’s inequality, together with (3.2)–(3.4), we get

λ1,αVol(Km) = λ1,α

2t+2∑
a=1

∫
Km
|Γa|2dV ≤ λ1,α

2t+2∑
a=1

∫
Km
|Γa|αdV

≤ λ1,α

∫
Km

2t+2∑
a=1

|∇Γa|
αdV ≤ (2t + 2)1−α/2

∫
Km

(
2t+1∑
a=1

|∇Γa|2)α/2dV

= 21− α2 (t + 1)1− α2

∫
Km

(me2ρ)
α
2 dV,

(3.5)

which is (3.1). On the other hand, if we assume α ≥ 2, then, by Hölder inequality,

I =

2t+2∑
a=1

|Γa|2 ≤ (2t + 2)1− 2
α
( 2t+2∑

a=1

|Γa|α
) 2
α . (3.6)

As a result, we get

λ1,αVol(Nm) ≤ (2t + 2)
α
2−1( 2t+2∑

a=1

λ1,α

∫
Nm
|Γa|αdV

)
. (3.7)

The Minkowski inequality provides

2t+2∑
a=1

|∇Γa|α ≤
( 2t+2∑

a=1

|∇Γa|2
) α

2 = (me2ρ)
α
2 . (3.8)

By the application of (3.2), (3.7) and (3.8), it is easy to get (3.1).
�
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In the next theorem, we are going to provide a sharp estimate for the first eigenvalue of the α-Laplace
operator on the pseudo-slant submanifold of a generalized Sasakian space form K̄2t+1( f1, f2, f3).

Theorem 3.1. Let Km be a m-dimensional pseudo-slant submanifold of a generalized Sasakian space
form K̄2t+1( f1, f2, f3), then

(1) The first non-null eigenvalue λ1,α of the α-Laplacian satisfies

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

{ ∫
Km

(
f1 + f2

( 6q cos2 θ

m(m − 1)
−

2
m

)
+ ‖H‖2

)
dV

}α/2 (3.9)

for 1 < α ≤ 2, and

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

{ ∫
Km

(
f1 + f2

( 6q cos2 θ

m(m − 1)
−

2
m

)
+ ‖H‖2

)
dV

}α/2 (3.10)

for 2 < α ≤ m
2 +1, where p and 2q are the dimensions of the anti-invariant and slant distributions.

(2) The equality satisfies in (3.9) and (3.10) if and only if α = 2 and Km is minimally immersed in a
geodesic sphere of radius rc of K̄2t+1( f1, f2, f3) with the following relations:

r0 =
( m
λ∆

1

)1/2
, r1 = sin−1 r0, r−1 = sinh−1 r0.

Proof. 1 < α ≤ 2 =⇒ α
2 ≤ 1. Proposition 3.1 together with Hölder inequality provides

λ1,αVol(Km) ≤ 21− α2 (t + 1)1− α2 m
α
2

∫
Km

(e2ρ)
α
2 dV

≤ 21− α2 (t + 1)|1−
α
2 | m

α
2 (Vol(Km))1− α2

( ∫
Km

e2ρdV
) α

2 .

(3.11)

We can calculate e2ρ with the help of conformal relations and Gauss equation. Let K̄2k+1 =

K̄2k+1( f1, f2, f3), and ḡ = e−2ρLc, ḡ = c∗L1. From (2.13), the Gauss equation for the embedding f
and the pseudo slant embedding Γ = x ◦ f , we have

R =
(
f1
)
m(m − 1) +

(
f2
)
(m − 1){6q cos2 θ − 2(m − 1)} + m(m − 1)‖H‖2 + m‖H‖2 − S ‖σ|2, (3.12)

R̄ − m(m − 1) = m(m − 1)‖H̄‖2 + (m‖H̄‖2 − ‖σ̄|2). (3.13)

On tracing (2.15), we have

e2ρR̄ = R − (m − 2)(m − 1)|∇ρ|2 − 2(m − 1)∆ρ. (3.14)

Using (3.12) and (3.13) in (3.14), we get

e2ρ(m(m − 1) + m(m − 1)‖H̄‖2 + (m‖H̄‖2 − ‖σ̄|2))
=
(
f1
)
m(m − 1) +

(
f2
)
{6q cos2 θ − 2(m − 1)} + m(m − 1)‖H‖2

+ (m‖H‖2 − ‖σ|2) − (m − 2)(m − 1)‖∇ρ‖2 − 2(m − 1)∆ρ.

(3.15)

�
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The above relation implies

e2ρ‖σ̄|2 − (m − 2)(m − 1)|∇ρ|2 − 2(m − 1)∆ρ

=m(m − 1)
[
{e2ρ − f1 − ( f2)(

6q cos2 θ

m(m − 1)
−

2
m

)}(e2ρ‖H̄‖2 − ‖H‖2)
]
+ m(e2ρ‖H̄‖2 − ‖H‖2).

(3.16)

From (2.17) and (2.18), we derive

m(m − 1)
{
e2ρ − ( f1) − ( f2)(

6q cos2 θ

m(m − 1)
−

2
m

)
}
+ m(m − 1)

∑
α

(Hα − ρα)2

=m(m − 1)‖H‖2 − (m − 2)(m − 1)|∇ρ|2 − 2(m − 1)∆ρ.

(3.17)

Further, on simplification we get

e2ρ =
{(

f1
)

+
(
f2
)(6q cos2 θ

m(m − 1
)
−

2
m

) + ‖H‖2
}
−

2
m

∆ρ −
m − 2

m
|∆ρ|

2 − ‖(∇ρ)⊥ − H‖2. (3.18)

On integrating along dV , it is easy to see that

λ1,αVol(Km) ≤ 2|1−
α
2 |(t + 1)|1−

α
2 |m

α
2 (Vol(Km))1− α2

( ∫
Km

e2ρdV
) α

2 .

≤
2|1−

α
2 |(t + 1)|1−

α
2 |m

α
2

(Vol(Km))
α
2−1

{ ∫
Km
{ f1 + f2(

6q cos2 θ

m(m − 1)
−

2
m

) + ‖H‖2}dV
}α/2

,

(3.19)

which is equivalent to (3.9). If α > 2, then it is not possible to apply Hölder inequality to govern∫
Km(e2ρdV)

α
2 by using

∫
Km(e2ρ). Now, multiply both sides of (3.18) by e(α−2)ρ and integrating on Km,∫

Km
eαρdV ≤

∫
Km

{
f1 + f2(

6q cos2 θ

m(m − 1)
−

2
m

) + ‖H‖2
}
e(α−2)ρdV −

(m − 2 − 2α + 4
m

) ∫
Km

e(α−2)|∆ρ|2dV

≤

∫
Km

{
f1 + f2(

6q cos2 θ

m(m − 1)
−

2
m

) + ‖H‖2
}
e(α−2)ρdV.

(3.20)

From the assumption, it is evident that m ≥ 2α − 2. On applying Young’s inequality, we arrive∫
Km

{
f1 + f2(

6q cos2 θ

m(m − 1)
−

2
m

) + ‖H‖2
}
e(α−2)ρdV

≤
2
α

∫
Km

{
| f1 + f2(

6q cos2 θ

m(m − 1)
−

2
m

) + ‖H‖2|
}α/2dV +

α − 2
α

∫
Km

e
α
ρ dV.

(3.21)

From (3.20) and (3.21), we conclude the following:∫
Km

eαρdV ≤
∫

Km

{
| f1 + f2(

6q cos2 θ

m(m − 1)
−

2
m

) + ‖H‖2|
}α/2dV. (3.22)

Substituting (3.22) in (3.1), we obtain (3.10). For the pseudo slant submanifolds, the equality case
holds in (3.9), the equality cases of (3.2) and (3.4) imply that

|Γa|2 = |Γa|α, ∆αΓ
a = λ1,α|Γ

a|α−2Γa,
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for a = 1, . . . , 2t + 2. For 1 < α < 2, we have |Γa| = 0 or 1. Therefore, there exists only one a for which
|Γa| = 1 and λi,α = 0, and it can not be possible since eigenvalue λi,α , 0. This leads to use the value of
α equal to 2, therefore, we can apply Theorem 1.5 of [15].

For α > 2, the equality in (3.10) still holds, this indicates that equalities in (3.7) and (3.8) satisfy,
and this leads to

|Γ1|α = · · · = |Γ2t+2|α,

and there exists a such that |∇Γa| = 0. It shows that Γa is a constant and λ1,α = 0, this again contradicts
with the fact that λ1,α , 0, this completes the proof.
Note 3.1. If α = 2, then the α-Laplacian operator becomes the Laplacian operator. Therefore, we have
the following corollary.

Corollary 3.1. Let Km be a m-dimensional pseudo-slant submanifold of a generalized Sasakian space
form K̄2t+1( f1, f2, f3), then the first non-null eigenvalue λ∆

1 of the Laplacian satisfies

λ∆
1 ≤

m
(Vol(K))

∫
Km

{
f1 + f2

(6q cos2 θ − 2
m

)
+ ‖H‖2

)}
dV. (3.23)

By the application of Theorem 3.1 for 1 < α ≤ 2, we have the following result.

Theorem 3.2. Let Km be a m-dimensional pseudo-slant submanifold of a generalized Sasakian space
form K̄2t+1( f1, f2, f3), then the first non-null eigenvalue λ1,α of the α-Laplacian satisfies

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

[ ∫
Km

(
f1 + f2

(6q cos2 θ − 2
m

)
+ ‖H‖2

) α
2(α−1)

]α−1dV (3.24)

for 1 < α ≤ 2, and

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

[ ∫
Km

(
f1 + f2

(6q cos2 θ − 2
m

)
+ ‖H‖2

) α
2(α−1)

]α−1dV (3.25)

for 2 < α ≤ m
2 + 1.

Proof. Suppose 1 < α ≤ 2, we have α
2(α−1) ≥ 1, then the Hölder inequality provides∫

Km

{
( f1) + ( f2)(

3 cos2 θ − 2
m

) + ‖H‖2
}
dV

≤
(
(Vol(Km))1− 2(α−1)

α
)
×

[ ∫
Km

(
f1 + f2

( 6q cos2 θ

m(m − 1)
−

2
m

)
+ ‖H‖2

) α
2(α−1)

] 2(α−1)
α .

(3.26)

On combining (3.9) and (3.26), we get the required inequality, this completes the proof. �

Note 3.2. If θ = 0, then the pseudo-slant submanifolds become the semi-invariant submanifolds.
By the application of above findings, we can deduce the following results for semi-invariant

submanifolds in the setting of Sasakian manifolds.

Corollary 3.2. Let Km be a m-dimensional semi-invariant submanifold of a generalized Sasakian space
form K̄2t+1( f1, f2, f3), then
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(1) The first non-null eigenvalue λ1,α of the α-Laplacian satisfies

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

{ ∫
Km

(
f1 + f2

(6q − 2)
m

+ ‖H‖2
)}α/2dV (3.27)

for 1 < α ≤ 2, and

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

{ ∫
Km

(
f1 + f2

(6q − 2)
m

+ ‖H‖2
)}α/2dV (3.28)

for 2 < α ≤ m
2 +1, where p and 2q are the dimensions of the anti-invariant and slant distributions.

(2) The equality satisfies in (3.27) and (3.28) if and only if α = 2, and Km is minimally immersed in
a geodesic sphere of radius rc of K̄2t+1( f1, f2, f3) with the following relations:

r0 =
( m
λ∆

1

)1/2
, r1 = sin−1 r0, r−1 = sinh−1 r0.

Further, by Corollary 3.4 and Note 3.1, we deduce the following.

Corollary 3.3. Let Km be a m-dimensional semi-invariant submanifold of a generalized Sasakian space
form K̄2t+1( f1, f2, f3), then the first non-null eigenvalue λ∆

1 of the Laplacian satisfies

λ∆
1 ≤

m
(Vol(K))

∫
Km

{
f1 +

f2(6q − 2)
m

+ ‖H‖2
)}

dV. (3.29)

In addition, we also have the following corollary, which can be derived by Theorem 3.2.

Corollary 3.4. Let Km be a m-dimensional semi-invariant submanifold of a generalized Sasakian space
form K̄2t+1( f1, f2, f3), then the first non-null eigenvalue λ1,α of the α-Laplacian satisfies

λ1,α ≤
2(1− α2 )(t + 1)(1− α2 )m

α
2

(Vol(K))α/2
×

[ ∫
Km

(
f1 +

f2(6q − 2)
4

+ ‖H‖2
) α

2(α−1)
]α−1dV (3.30)

for 1 < α ≤ 2.

4. Conclusions

In this paper, we established the upper bounds for the first eigenvalues of the α-Laplacian
operator for the pseudo-slant submanifolds in the setting of generalized Sasakian space forms. The
class of pseudo-slant submanifold includes the class of semi-invariant, invariant, anti-invariant, and
slant submanifolds. Therefore, the results obtained in this paper generalize the results for the first
eigenvalues for these particular submanifolds.
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30. L. Véron, Some existence and uniqueness results for solution of some quasilinear elliptic equations
on compact Riemannian manifolds, Colloquia Math. Soc. János Bolyai, 62 (1991), 317–352.

31. C. W. Xiong, Eigenvalue estimates of Reilly type in product manifolds and
eigenvalue comparison of strip domains, Differ. Geom. Appl., 60 (2018), 104–115.
https://doi.org/10.1016/j.difgeo.2018.06.003

32. F. Q. Zeng, Q. He, Reilly-type inequalities for the first eigenvalue of p-Laplcian of submanifolds in
Minkowski spaces, Mediterr. J. Math., 14 (2017), 1–9. https://doi.org/10.1007/s00009-017-1005-8

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 16054–16066.

http://dx.doi.org/https://doi.org/10.1186/s13662-022-03689-6
http://dx.doi.org/https://doi.org/10.1007/BF01399507
http://dx.doi.org/https://doi.org/10.1016/j.na.2016.09.015
http://dx.doi.org/https://doi.org/10.1016/S0362-546X(98)00266-1
http://dx.doi.org/https://doi.org/10.1016/j.na.2012.11.026
http://dx.doi.org/https://doi.org/10.1007/s00209-014-1282-x
http://dx.doi.org/https://doi.org/10.3390/math8030421
http://dx.doi.org/https://doi.org/10.1007/BF02567385
http://dx.doi.org/https://doi.org/10.1007/BF02566494
http://dx.doi.org/https://doi.org/10.1007/s002200050009
http://dx.doi.org/https://doi.org/10.1016/j.na.2017.07.007
http://dx.doi.org/https://doi.org/10.1016/j.na.2012.04.012
http://dx.doi.org/https://doi.org/10.1016/j.difgeo.2018.06.003
http://dx.doi.org/https://doi.org/10.1007/s00009-017-1005-8
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main Theorem
	Conclusions

