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xn−1yn

yn ± zn−2
,

with initial values are non-zero real numbers.
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1. Introduction

This paper is devoted to study the expressions forms of the solutions and periodic nature of the
following third-order rational systems of difference equations

xn+1 =
yn−1zn

zn ± xn−2
, yn+1 =

zn−1xn

xn ± yn−2
, zn+1 =

xn−1yn

yn ± zn−2
,

with initial conditions are non-zero real numbers.
In the recent years, there has been great concern in studying the systems of difference equations.

One of the most important reasons for this is a exigency for some mechanization which can be used
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in discussing equations emerge in mathematical models characterizing real life situations in economic,
genetics, probability theory, psychology, population biology and so on.

Difference equations display naturally as discrete peer and as numerical solutions of differential
equations having more applications in ecology, biology, physics, economy, and so forth. For all that
the difference equations are quite simple in expressions, it is frequently difficult to realize completely
the dynamics of their solutions see [1–19] and the related references therein.

There are some papers dealed with the difference equations systems, for example, The periodic
nature of the solutions of the nonlinear difference equations system

An+1 =
1

Cn
, Bn+1 =

Bn

An−1Bn−1
, Cn+1 =

1
An−1

,

has been studied by Cinar in [7].
Almatrafi [3] determined the analytical solutions of the following systems of rational recursive

equations
xn+1 =

xn−1yn−3

yn−1(±1 ± xn−1yn−3)
, yn+1 =

yn−1xn−3

xn−1(±1 ± yn−1xn−3)
.

In [20], Khaliq and Shoaib studied the local and global asymptotic behavior of non-negative
equilibrium points of a three-dimensional system of two order rational difference equations

xn+1 =
xn−1

ε + xn−1yn−1zn−1
, yn+1 =

yn−1

ζ + xn−1yn−1zn−1
, zn+1 =

zn−1

η + xn−1yn−1zn−1
.

In [9], Elabbasy et al. obtained the form of the solutions of some cases of the following system of
difference equations

xn+1 =
a1 + a2yn

a3zn + a4xn−1zn
, yn+1 =

b1zn−1 + b2zn

b3xnyn + b4xnyn−1
,

zn+1 =
c1zn−1 + c2zn

c3xn−1yn−1 + c4xn−1yn + c5xnyn
.

In [12], Elsayed et al. have got the solutions of the systems of rational higher order difference equations

An+1 =
1

An−pBn−p
, Bn+1 =

An−pBn−p

An−qBn−q
,

and
An+1 =

1
An−pBn−pCn−p

, Bn+1 =
An−pBn−pCn−p

An−qBn−qCn−q
, Cn+1 =

An−qBn−qCn−q

An−rBn−rCn−r
.

Kurbanli [25, 26] investigated the behavior of the solutions of the following systems

An+1 =
An−1

An−1Bn − 1
, Bn+1 =

Bn−1

Bn−1An − 1
, Cn+1 =

1
CnBn

,

An+1 =
An−1

An−1Bn − 1
, Bn+1 =

Bn−1

Bn−1An − 1
, Cn+1 =

Cn−1

Cn−1Bn − 1
.

In [32], Yalçınkaya has obtained the conditions for the global asymptotically stable of the system

An+1 =
BnAn−1 + a
Bn + An−1

, Bn+1 =
AnBn−1 + a
An + Bn−1

.
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Zhang et al. [39] investigated the persistence, boundedness and the global asymptotically stable of the
solutions of the following system

Rn = A +
1

Qn−p
, Qn = A +

Qn−1

Rn−rQn−s
.

Similar to difference equations and systems were studied see [21–24,27–38].

2. The system: xn+1 =
yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2

In this section, we obtain the expressions form of the solutions of the following three dimension
system of difference equations

xn+1 =
yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2
, (1)

where n ∈ N0 and the initial conditions are non-zero real numbers.

Theorem 1. We assume that {xn, yn, zn} are solutions of system (1). Then

x6n−2 =
ak3n

n−1∏
i=0

(a + (6i)k)(a + (6i + 2)k)(a + (6i + 4)k)
,

x6n−1 =
b f 3n

n−1∏
i=0

(g + (6i + 1) f )(g + (6i + 3) f )(g + (6i + 5) f )
,

x6n =
c3n+1

n−1∏
i=0

(d + (6i + 2)c)(d + (6i + 4)c)(d + (6i + 6)c)
,

x6n+1 =
ek3n+1

(a + k)
n−1∏
i=0

(a + (6i + 3)k)(a + (6i + 5)k)(a + (6i + 7)k)
,

x6n+2 =
f 3n+2

(g + 2 f )
n−1∏
i=0

(g + (6i + 4) f )(g + (6i + 6) f )(g + (6i + 8) f )
,

x6n+3 =
hc3n+2

(d + c)(d + 3c)
n−1∏
i=0

(d + (6i + 5)c)(d + (6i + 7)c)(d + (6i + 9)c)
,

y6n−2 =
dc3n

n−1∏
i=0

(d + (6i)c)(d + (6i + 2)c)(d + (6i + 4)c)
,
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y6n−1 =
ek3n

n−1∏
i=0

(a + (6i + 1)k)(a + (6i + 3)k)(a + (6i + 5)k)
,

y6n =
f 3n+1

n−1∏
i=0

(g + (6i + 2) f )(g + (6i + 4) f )(g + (6i + 6) f )
,

y6n+1 =
hc3n+1

(d + c)
n−1∏
i=0

(d + (6i + 3)c)(d + (6i + 5)c)(d + (6i + 7)c)
,

y6n+2 =
k3n+2

(a + 2k)
n−1∏
i=0

(a + (6i + 4)k)(a + (6i + 6)k)(a + (6i + 8)k)
,

y6n+3 =
b f 3n+2

(g + f )(g + 3 f )
n−1∏
i=0

(g + (6i + 5) f )(g + (6i + 7) f )(g + (6i + 9) f )
,

and

z6n−2 =
g f 3n

n−1∏
i=0

(g + (6i) f )(g + (6i + 2) f )(g + (6i + 4) f )
,

z6n−1 =
hc3n

n−1∏
i=0

(d + (6i + 1)c)(d + (6i + 3)c)(d + (6i + 5)c)
,

z6n =
k3n+1

n−1∏
i=0

(a + (6i + 2)k)(a + (6i + 4)k)(a + (6i + 6)k)
,

z6n+1 =
b f 3n+1

(g + f )
n−1∏
i=0

(g + (6i + 3) f )(g + (6i + 5) f )(g + (6i + 7) f )
,

z6n+2 =
c3n+2

(d + 2c)
n−1∏
i=0

(d + (6i + 4)c)(d + (6i + 6)c)(d + (6i + 8)c)
,

z6n+3 =
ek3n+2

(a + k)(a + 3k)
n−1∏
i=0

(a + (6i + 5)k)(a + (6i + 7)k)(a + (6i + 9)k)
,

where x−2 = a, x−1 = b, x0 = c, y−2 = d, y−1 = e, y0 = f , z−2 = g, z−1 = h and z0 = k.
Proof. For n = 0 the result holds. Now assume that n > 1 and that our assumption holds for n − 1,

AIMS Mathematics Volume 7, Issue 8, 15532–15549.



15536

that is,

x6n−8 =
ak3n−3

n−2∏
i=0

(a + (6i)k)(a + (6i + 2)k)(a + (6i + 4)k)
,

x6n−7 =
b f 3n−3

n−2∏
i=0

(g + (6i + 1) f )(g + (6i + 3) f )(g + (6i + 5) f )
,

x6n−6 =
c3n−2

n−2∏
i=0

(d + (6i + 2)c)(d + (6i + 4)c)(d + (6i + 6)c)
,

x6n−5 =
ek3n−2

(a + k)
n−2∏
i=0

(a + (6i + 3)k)(a + (6i + 5)k)(a + (6i + 7)k)
,

x6n−4 =
f 3n−1

(g + 2 f )
n−2∏
i=0

(g + (6i + 4) f )(g + (6i + 6) f )(g + (6i + 8) f )
,

x6n−3 =
hc3n−1

(d + c)(d + 3c)
n−2∏
i=0

(d + (6i + 5)c)(d + (6i + 7)c)(d + (6i + 9)c)
,

y6n−8 =
dc3n−3

n−2∏
i=0

(d + (6i)c)(d + (6i + 2)c)(d + (6i + 4)c)
,

y6n−7 =
ek3n−3

n−2∏
i=0

(a + (6i + 1)k)(a + (6i + 3)k)(a + (6i + 5)k)
,

y6n−6 =
f 3n−2

n−2∏
i=0

(g + (6i + 2) f )(g + (6i + 4) f )(g + (6i + 6) f )
,

y6n−5 =
hc3n−2

(d + c)
n−2∏
i=0

(d + (6i + 3)c)(d + (6i + 5)c)(d + (6i + 7)c)
,

y6n−4 =
k3n−1

(a + 2k)
n−2∏
i=0

(a + (6i + 4)k)(a + (6i + 6)k)(a + (6i + 8)k)
,

y6n−3 =
b f 3n−1

(g + f )(g + 3 f )
n−2∏
i=0

(g + (6i + 5) f )(g + (6i + 7) f )(g + (6i + 9) f )
,

and
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z6n−8 =
g f 3n−3

n−2∏
i=0

(g + (6i) f )(g + (6i + 2) f )(g + (6i + 4) f )
,

z6n−7 =
hc3n−3

n−2∏
i=0

(d + (6i + 1)c)(d + (6i + 3)c)(d + (6i + 5)c)
,

z6n−6 =
k3n−2

n−2∏
i=0

(a + (6i + 2)k)(a + (6i + 4)k)(a + (6i + 6)k)
,

z6n−5 =
b f 3n−2

(g + f )
n−2∏
i=0

(g + (6i + 3) f )(g + (6i + 5) f )(g + (6i + 7) f )
,

z6n−4 =
c3n−1

(d + 2c)
n−2∏
i=0

(d + (6i + 4)c)(d + (6i + 6)c)(d + (6i + 8)c)
,

z6n−3 =
ek3n−1

(a + k)(a + 3k)
n−2∏
i=0

(a + (6i + 5)k)(a + (6i + 7)k)(a + (6i + 9)k)
.

It follows from Eq (1) that

x6n−2 =
y6n−4z6n−3

z6n−3 + x6n−5

=

 k3n−1

(a+2k)
n−2∏
i=0

(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)


 ek3n−1

(a+k)(a+3k)
n−2∏
i=0

(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)

 ek3n−1

(a+k)(a+3k)
n−2∏
i=0

(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k)

+
 ek3n−2

(a+k)
n−2∏
i=0

(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k)



=

 k3n

(a+2k)
n−2∏
i=0

(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)


(a + 3k)

n−2∏
i=0

(a + (6i + 9)k)


 k

(a+3k)
n−2∏
i=0

(a+(6i+9)k)

 +

 1
n−2∏
i=0

(a+(6i+3)k)




=

 k3n

(a+2k)
n−2∏
i=0

(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)

k +

 (a+3k)
n−2∏
i=0

(a+(6i+9)k)

n−2∏
i=0

(a+(6i+3)k)




=

 k3n

(a+2k)
n−2∏
i=0

(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k)


[k + (a + (6n − 3)k)]
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=
ak3n

a(a + 2k) (a + (6n − 2)k)
n−2∏
i=0

(a + (6i + 4)k)(a + (6i + 6)k)(a + (6i + 8)k)
.

Then we see that

x6n−2 =
k3n

n−1∏
i=0

(a + (6i)k)(a + (6i + 2)k)(a + (6i + 4)k)
.

Also, we see from Eq (1) that

y6n−2 =
z6n−4x6n−3

x6n−3 + y6n−5

=

 c3n−1

(d+2c)
n−2∏
i=0

(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c)


 hc3n−1

(d+c)(d+3c)
n−2∏
i=0

(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)

 hc3n−1

(d+c)(d+3c)
n−2∏
i=0

(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c)

+
 hc3n−2

(d+c)
n−2∏
i=0

(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c)



=

 c3n

(d+2c)
n−2∏
i=0

(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c)


(d + 3c)

n−2∏
i=0

(d + (6i + 9)c)


 c

(d+3c)
n−2∏
i=0

(d+(6i+9)c)

 +

 1
n−2∏
i=0

(d+(6i+3)c)




=

 c3n

(d+2c)
n−2∏
i=0

(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c)


[c + d + (6n − 3)c]

=
c3n

[d + (6n − 2)c] (d + 2c)
n−2∏
i=0

(d + (6i + 4)c)(d + (6i + 6)c)(d + (6i + 8)c)
.

Then

y6n−2 =
dc3n

n−1∏
i=0

(d + (6i)c)(d + (6i + 2)c)(d + (6i + 4)c)
.

Finally from Eq (1), we see that

z6n−2 =
x6n−4y6n−3

y6n−3 + z6n−5

=

 f 3n−1

(g+2 f )
n−2∏
i=0

(g+(6i+4) f )(g+(6i+6) f )(g+(6i+8) f )


 b f 3n−1

(g+ f )(g+3 f )
n−2∏
i=0

(g+(6i+5) f )(g+(6i+7) f )(g+(6i+9) f )

 b f 3n−1

(g+ f )(g+3 f )
n−2∏
i=0

(g+(6i+5) f )(g+(6i+7) f )(g+(6i+9) f )

+
 b f 3n−2

(g+ f )
n−2∏
i=0

(g+(6i+3) f )(g+(6i+5) f )(g+(6i+7) f )
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=

 f 3n

(g+2 f )
n−2∏
i=0

(g+(6i+4) f )(g+(6i+6) f )(g+(6i+8) f )


(g + 3 f )

n−2∏
i=0

(g + (6i + 9) f )


 f

(g+3 f )
n−2∏
i=0

(g+(6i+9) f )

 +

 1
n−2∏
i=0

(g+(6i+3) f )




=

 f 3n

(g+2 f )
n−2∏
i=0

(g+(6i+4) f )(g+(6i+6) f )(g+(6i+8) f )

 f +

 (g+3 f )
n−2∏
i=0

(g+(6i+9) f )

n−2∏
i=0

(g+(6i+3) f )




=

 f 3n

(g+2 f )
n−2∏
i=0

(g+(6i+4) f )(g+(6i+6) f )(g+(6i+8) f )

[
f + (g + (6n − 3) f )

]
=

f 3n

(g + (6n − 2) f )(g + 2 f )
n−2∏
i=0

(g + (6i + 4) f )(g + (6i + 6) f )(g + (6i + 8) f )
.

Thus

z3n−2 =
g f 3n

n−1∏
i=0

(g + (6i) f )(g + (6i + 2) f )(g + (6i + 4) f )
.

By similar way, one can show the other relations. This completes the proof.
Lemma 1. Let {xn, yn, zn} be a positive solution of system (1), then all solution of (1) is bounded and
approaching to zero.
Proof. It follows from Eq (1) that

xn+1 =
yn−1zn

zn + xn−2
≤ yn−1, yn+1 =

zn−1xn

xn + yn−2
≤ zn−1,

zn+1 =
xn−1yn

yn + zn−2
≤ xn−1,

we see that

xn+4 ≤ yn+2, yn+2 ≤ zn, zn ≤ xn−2, ⇒ xn+4 < xn−2,

yn+4 ≤ zn+2, zn+2 ≤ xn, xn ≤ yn−2, ⇒ yn+4 < yn−2,

zn+4 ≤ xn+2, xn+2 ≤ yn, yn ≤ zn−2, ⇒ zn+4 < zn−2,

Then all subsequences of {xn, yn, zn} (i.e., for {xn} are {x6n−2}, {x6n−1}, {x6n}, {x6n+1}, {x6n+2},
{x6n+3} are decreasing and at that time are bounded from above by K, L and M since K =

max{x−2, x−1, x0, x1, x2, x3}, L = max{y−2, y−1, y0, y1, y2, y3} and M = max{z−2, z−1, z0, z1, z2, z3}.
Example 1. We assume an interesting numerical example for the system (1) with x−2 = −.22, x−1 =

−.4, x0 = .12, y−2 = −.62, y−1 = 4, y0 = .3, z−2 = .4, z−1 = .53 and z0 = −2. (See Figure 1).
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Figure 1. This figure shows the behavior of the solutions of the system (1) with the initial
conditions x−2 = −.22, x−1 = −.4, x0 = .12, y−2 = −.62, y−1 = 4, y0 = .3, z−2 = .4, z−1 =

.53 and z0 = −2. (We see from this figure that all solutions converges to zero).

3. The system: xn+1 =
yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn − zn−2

In this section, we get the solution’s form of the following system of difference equations

xn+1 =
yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn − zn−2
, (2)

where n ∈ N0 and the initial values are non-zero real numbers with x−2 , ±z0,, −2z0, z−2 , y0,,

2y0,, 3y0 and y−2 , 2x0,, ±x0.

Theorem 2. Assume that {xn, yn, zn} are solutions of (2). Then for n = 0, 1, 2, ...,

x6n−2 =
(−1)nk3n

a2n−1(a + 2k)n , x6n−1 =
(−1)nb f 3n

( f − g)2n(3 f − g)n , x6n =
(−1)nc3n+1

d2n(2c − d)n ,

x6n+1 =
ek3n+1

(a − k)n(a + k)2n+1 , x6n+2 =
(−1)n f 3n+2

gn(2 f − g)2n+1 , x6n+3 =
(−1)nhc3n+2

(c − d)2n+1(c + d)n+1 ,

y6n−2 =
(−1)nc3n

d2n−1(2c − d)n , y6n−1 =
ek3n

(a − k)n(a + k)2n , y6n =
(−1)n f 3n+1

gn(2 f − g)2n ,

y6n+1 =
(−1)nhc3n+1

(c − d)2n(c + d)n+1 , y6n+2 =
(−1)nk3n+2

a2n(a + 2k)n+1 , y6n+3 =
(−1)nb f 3n+2

( f − g)2n+1(3 f − g)n+1 ,

and

z6n−2 =
(−1)n f 3n

gn−1(2 f − g)2n , z6n−1 =
(−1)nhc3n

(c − d)2n(c + d)n , z6n =
(−1)nk3n+1

a2n(a + 2k)n ,
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z6n+1 =
(−1)nb f 3n+1

( f − g)2n+1(3 f − g)n , z6n+2 =
(−1)n+1c3n+2

d2n+1(2c − d)n , z6n+3 =
−ek3n+2

(a − k)n(a + k)2n+2 ,

where x−2 = a, x−1 = b, x0 = c, y−2 = d, y−1 = e, y0 = f , z−2 = g, z−1 = h and z0 = k.

Proof. The result is true for n = 0. Now suppose that n > 0 and that our claim verified for n − 1.
That is,

x6n−8 =
(−1)n−1k3n−3

a2n−3(a + 2k)n−1 , x6n−7 =
(−1)n−1b f 3n−3

( f − g)2n−2(3 f − g)n−1 , x6n−6 =
(−1)n−1c3n−2

d2n−2(2c − d)n−1 ,

x6n−5 =
ek3n−2

(a − k)n−1(a + k)2n−1 , x6n−4 =
(−1)n−1 f 3n−1

gn−1(2 f − g)2n−1 , x6n−3 =
(−1)n−1hc3n−1

(c − d)2n−1(c + d)n ,

y6n−8 =
(−1)n−1c3n−3

d2n−3(2c − d)n−1 , y6n−7 =
ek3n−3

(a − k)n−1(a + k)2n−2 , y6n−6 =
(−1)n−1 f 3n−2

gn−1(2 f − g)2n−2 ,

y6n−5 =
(−1)n−1hc3n−2

(c − d)2n−2(c + d)n , y6n−4 =
(−1)n−1k3n−1

a2n−2(a + 2k)n , y6n−3 =
(−1)n−1b f 3n−1

( f − g)2n−1(3 f − g)n ,

and

z6n−8 =
(−1)n−1 f 3n−3

gn−2(2 f − g)2n−2 , z6n−7 =
(−1)n−1hc3n−3

(c − d)2n−2(c + d)n−1 , z6n−6 =
(−1)n−1k3n−2

a2n−2(a + 2k)n−1 ,

z6n−5 =
(−1)n−1b f 3n−2

( f − g)2n−1(3 f − g)n−1 , z6n−4 =
(−1)nc3n−1

d2n−1(2c − d)n−1 , z6n−3 =
−ek3n−1

(a − k)n−1(a + k)2n .

Now from Eq (2), it follows that

x6n−2 =
y6n−4z6n−3

z6n−3 + x6n−5

=

(
(−1)n−1k3n−1

a2n−2(a + 2k)n

) (
−ek3n−1

(a − k)n−1(a + k)2n

)
(

−ek3n−1

(a − k)n−1(a + k)2n

)
+

(
ek3n−2

(a − k)n−1(a + k)2n−1

)

=

(
(−1)nk3n

a2n−2(a + 2k)n

)
(−k + a + k)

=
(−1)nk3n

a2n−1(a + 2k)n ,

y6n−2 =
z6n−4x6n−3

x6n−3 + y6n−5
=

(
(−1)nc3n−1

d2n−1(2c−d)n−1

) (
(−1)n−1hc3n−1

(c−d)2n−1(c+d)n

)(
(−1)n−1hc3n−1

(c−d)2n−1(c+d)n

)
+

(
(−1)n−1hc3n−2

(c−d)2n−2(c+d)n

)
=

(
(−1)nc3n

d2n−1(2c−d)n−1

)
c + c − d

=
(−1)nc3n

d2n−1(2c − d)n ,

z6n−2 =
x6n−4y6n−3

y6n−3 − z6n−5
=

(
(−1)n−1 f 3n−1

gn−1(2 f−g)2n−1

) (
(−1)n−1b f 3n−1

( f−g)2n−1(3 f−g)n

)
(

(−1)n−1b f 3n−1

( f−g)2n−1(3 f−g)n

)
−

(
(−1)n−1b f 3n−2

( f−g)2n−1(3 f−g)n−1

)
=

(
(−1)n−1 f 3n

gn−1(2 f−g)2n−1

)
( f − 3 f + g)

=
(−1)n f 3n

gn−1(2 f − g)2n .

Also, we see from Eq (2) that
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x6n−1 =
y6n−3z6n−2

z6n−2 + x6n−4

=

(
(−1)n−1b f 3n−1

( f−g)2n−1(3 f−g)n

) (
(−1)n f 3n

gn−1(2 f−g)2n

)
(

(−1)n f 3n

gn−1(2 f−g)2n

)
+

(
(−1)n−1 f 3n−1

gn−1(2 f−g)2n−1

)
=

(
(−1)nb f 3n

( f−g)2n−1(3 f−g)n

)
(− f + 2 f − g)

=
(−1)nb f 3n

( f − g)2n(3 f − g)n ,

y6n−1 =
z6n−3x6n−2

x6n−2 + y6n−4
=

(
−ek3n−1

(a−k)n−1(a+k)2n

) (
(−1)nk3n

a2n−1(a+2k)n

)(
(−1)nk3n

a2n−1(a+2k)n

)
+

(
(−1)n−1k3n−1

a2n−2(a+2k)n

)
=

(
ek3n

(a−k)n−1(a+k)2n

)
−k + a

=
ek3n

(a − k)n(a + k)2n ,

z6n−1 =
x6n−3y6n−2

y6n−2 − z6n−4
=

(
(−1)n−1hc3n−1

(c−d)2n−1(c+d)n

) (
(−1)nc3n

d2n−1(2c−d)n

)(
(−1)nc3n

d2n−1(2c−d)n

)
−

(
(−1)nc3n−1

d2n−1(2c−d)n−1

)
=

(
(−1)n−1hc3n

(c−d)2n−1(c+d)n

)
c − (2c − d)

=
(−1)nhc3n

(c − d)2n(c + d)n .

Also, we can prove the other relations.

Example 2. See below Figure 2 for system (2) with the initial conditions x−2 = 11, x−1 = 5, x0 =

13, y−2 = 6, y−1 = 7, y0 = 3, z−2 = 14, z−1 = 9 and z0 = 2.

Figure 2. This figure shows the behavior of solutions of the systems of rational recursive
sequence xn+1 =

yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn − zn−2
, when we take the initial

conditions: x−2 = 11, x−1 = 5, x0 = 13, y−2 = 6, y−1 = 7, y0 = 3, z−2 = 14, z−1 = 9
and z0 = 2. (See the figure we can conclude that all the solutions unboundedness solutions).
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4. The system: xn+1 =
yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn − yn−2
, zn+1 =

xn−1yn

yn + zn−2

Here, we obtain the form of solutions of the system

xn+1 =
yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn − yn−2
, zn+1 =

xn−1yn

yn + zn−2
, (3)

where n ∈ N0 and the initial values are non-zero real numbers with x−2 , ±z0,, 2z0, z−2 , ±y0,, −2y0

and y−2 , x0,, 2x0,, 3x0.

Theorem 3. If {xn, yn, zn} are solutions of system (3) where x−2 = a, x−1 = b, x0 = c, y−2 = d, y−1 = e,
y0 = f , z−2 = g, z−1 = h and z0 = k. Then for n = 0, 1, 2, ...,

x6n−2 =
k3n

a2n−1(a − 2k)n , x6n−1 =
(−1)nb f 3n

( f − g)n( f + g)2n , x6n =
(−1)nc3n+1

dn(d − 2c)2n ,

x6n+1 =
(−1)nek3n+1

(a − k)2n(a + k)n+1 , x6n+2 =
(−1)n f 3n+2

g2n(2 f + g)n+1 , x6n+3 =
(−1)nhc3n+2

(c − d)2n+1(3c − d)n+1 ,

y6n−2 =
(−1)nc3n

dn−1(d − 2c)2n , y6n−1 =
(−1)nek3n

(a − k)2n(a + k)n , y6n =
(−1)n f 3n+1

g2n(2 f + g)n ,

y6n+1 =
(−1)nhc3n+1

(c − d)2n+1(3c − d)n , y6n+2 =
−k3n+2

a2n+1(a − 2k)n , y6n+3 =
(−1)nb f 3n+2

( f − g)n( f + g)2n+2 ,

and

z6n−2 =
(−1)n f 3n

g2n−1(2 f + g)n , z6n−1 =
(−1)nhc3n

(c − d)2n(3c − d)n , z6n =
k3n+1

a2n(a − 2k)n ,

z6n+1 =
(−1)nb f 3n+1

( f − g)n( f + g)2n+1 , z6n+2 =
(−1)nc3n+2

dn(2c − d)2n+1 , z6n+3 =
(−1)n+1ek3n+2

(a − k)2n+1(a + k)n+1 .

Proof. As the proof of Theorem 2 and so will be left to the reader.

Example 3. We put the initials x−2 = 8, x−1 = 15, x0 = 13, y−2 = 6, y−1 = 7,
y0 = 3, z−2 = 14, z−1 = 19 and z0 = 2, for the system (3), see Figure 3.
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Figure 3. This figure shows the unstable of the solutions of the difference equations
system (3) with the initial values x−2 = 8, x−1 = 15, x0 = 13, y−2 = 6, y−1 = 7,
y0 = 3, z−2 = 14, z−1 = 19 and z0 = 2.

The following systems can be treated similarly.

5. The system: xn+1 =
yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2

In this section, we deal with the solutions of the following system

xn+1 =
yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2
, (4)

where n ∈ N0 and the initial values are non-zero real with x−2 , z0,, 2z0,, 3z0, z−2 , ±y0,, 2y0 and
y−2 , ±x0,, −2x0.

Theorem 4. The solutions of system (4) are given by

x6n−2 =
(−1)nk3n

an−1(a − 2k)2n , x6n−1 =
(−1)nb f 3n

( f − g)2n( f + g)n , x6n =
(−1)nc3n+1

d2n(d + 2c)n ,

x6n+1 =
−ek3n+1

(a − k)2n+1(a − 3k)n , x6n+2 =
(−1)n+1 f 3n+2

g2n+1(2 f − g)n , x6n+3 =
(−1)n+1hc3n+2

(c − d)n(c + d)2n+2 ,

y6n−2 =
(−1)nc3n

d2n−1(d + 2c)n , y6n−1 =
ek3n

(a − k)2n(a − 3k)n , y6n =
(−1)n f 3n+1

g2n(2 f − g)n ,

y6n+1 =
(−1)nhc3n+1

(c + d)2n+1(c − d)n , y6n+2 =
−k3n+2

an(a − 2k)2n+1 , y6n+3 =
(−1)nb f 3n+2

( f − g)2n+1( f + g)n+1 ,

and

z6n−2 =
(−1)n f 3n

g2n−1(2 f − g)n , z6n−1 =
(−1)nhc3n

(c + d)2n(c − d)n , z6n =
(−1)nk3n+1

an(a − 2k)2n ,
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z6n+1 =
(−1)nb f 3n+1

( f − g)2n( f + g)n+1 , z6n+2 =
(−1)nc3n+2

d2n(2c + d)n+1 , z6n+3 =
ek3n+2

(a − k)2n+1(a − 3k)n+1 ,

where x−2 = a, x−1 = b, x0 = c, y−2 = d, y−1 = e, y0 = f , z−2 = g, z−1 = h and z0 = k.

Example 4. Figure 4 shows the behavior of the solution of system (4) with x−2 = 18, x−1 = −15, x0 =

3, y−2 = 6, y−1 = .7, y0 = −3, z−2 = 4, z−1 = −9 and z0 = 5.

Figure 4. This figure shows the behavior of the system xn+1 =
yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2
with the initial conditions:- x−2 = 18, x−1 = −15, x0 = 3,

y−2 = 6, y−1 = .7, y0 = −3, z−2 = 4, z−1 = −9 and z0 = 5. − 0.6, x−1 = 0.2, x0 = −5. (From
the figure, we see that all solutions goes to zero).

6. The system: xn+1 =
yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn − yn−2
, zn+1 =

xn−1yn

yn − zn−2

In this section, we obtain the solutions of the difference system

xn+1 =
yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn − yn−2
, zn+1 =

xn−1yn

yn − zn−2
, (5)

where the initials are arbitrary non-zero real numbers with x−2 , z0, z−2 , y0 and y−2 , x0.

Theorem 5. If {xn, yn, zn} are solutions of system (5) where x−2 = a, x−1 = b, x0 = c, y−2 = d, y−1 = e,
y0 = f , z−2 = g, z−1 = h and z0 = k. Then

x6n−2 =
k3n

a3n−1 , x6n−1 =
b f 3n

( f − g)3n , x6n =
c3n+1

d3n ,

x6n+1 =
ek3n+1

(k − a)3n+1 , x6n+2 =
f 3n+2

g3n+1 , x6n+3 =
hc3n+2

(c − d)3n+2 ,
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y6n−2 =
c3n

d3n−1 , y6n−1 =
ek3n

(k − a)3n , y6n =
f 3n+1

g3n ,

y6n+1 =
hc3n+1

(c − d)3n+1 , y6n+2 =
k3n+2

a3n+1 , y6n+3 =
b f 3n+2

( f − g)3n+2 ,

and

z6n−2 =
f 3n

g3n−1 , z6n−1 =
hc3n

(c − d)3n , z6n =
k3n+1

a3n ,

z6n+1 =
b f 3n+1

( f − g)3n+1 , z6n+2 =
c3n+2

d3n+1 , z6n+3 =
ek3n+2

(k − a)3n+2 .

Example 5. Figure 5 shows the dynamics of the solution of system (5) with x−2 = 18, x−1 = −15, x0 =

3, y−2 = 6, y−1 = .7, y0 = −3, z−2 = 4, z−1 = −9 and z0 = 5.

Figure 5. This figure shows the behavior of the system of nonlinear difference equations (5)
with the initial conditions considered as follows:- x−2 = 18, x−1 = −15, x0 = 3, y−2 = 6,
y−1 = .7, y0 = −3, z−2 = 4, z−1 = −9 and z0 = 5.

7. Conclusions

This paper discussed the expression’s form and boundedness of some systems of rational third
order difference equations. In Section 2, we studied the qualitative behavior of system xn+1 =

yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2
, first we have got the form of the solutions of this system,

studied the boundedness and gave numerical example and drew it by using Matlab. In Section 3, we
have got the solution’s of the system xn+1 =

yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn − zn−2
, and take a

numerical example. In Sections 4–6, we obtained the solution of the following systems respectively,
xn+1 =

yn−1zn

zn + xn−2
, yn+1 =

zn−1xn

xn − yn−2
, zn+1 =

xn−1yn

yn + zn−2
, xn+1 =

yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn + yn−2
, zn+1 =

xn−1yn

yn + zn−2
, and xn+1 =

yn−1zn

zn − xn−2
, yn+1 =

zn−1xn

xn − yn−2
, zn+1 =

xn−1yn

yn − zn−2
. Also, in each case we take a

numerical example to illustrates the results.
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