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Abstract: In this article, we study the nonlinear sine-Gordon equation (sGE) under Mittag-Leffler
and exponential decay type kernels in a fractal fractional sense. The Laplace Adomian decomposition
method (LADM) is applied to investigate the sGE under the above-mentioned operators. The
convergence analysis is provided for the proposed method. The results are validated by considering
numerical examples with different initial conditions for both kernels and confirm the competence of the
proposed technique. It is revealed that the obtained series solutions of the model with fractal fractional
operators converge to the exact solutions. The numerical results converge to the particular exact
solutions, proving the significance of LADM for nonlinear systems under fractal fractional derivatives.
The absolute error analysis between the exact and obtained series solutions with both operators is
shown in the tabulated form. The physical interpretations of the attained results with different fractal
and fractional parameters are discussed in detail.
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1. Introduction

Fractional calculus (FC) is the field of mathematics that investigate the extension or generalization
of classical derivatives and integrals with fractional order. The idea was first explored in a document
by Leibnitz to L-Hospital in 1695 [1–3]. In the late 20th century, FC gained great importance due to
its implementation in different areas of physics and engineering. FC offers numerous useful tools for
solving a variety of differential and integral equations. Particularly, the field of fractional derivatives
has shown a growing interest in time-fractional partial and ordinary differential equations. It has been
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discovered that when imperceptible generators of time evolution are used, fractional time derivatives
develops. The significance of studying fractional differential equations improved many concepts such
as stability, equilibrium and time evolution in long time bounds [4, 5]. The complexity of natural
physical phenomena has stimulated the development of mathematical models. The fundamental
calculus is particularly useful for studying problems that arise in several applied disciplines. However,
several physical systems may be better explained using fractional calculus, because it is more
appropriate to study fractional order and fractal dimension with long-term memory and chaotic
behaviour [6].

The applications of fractional calculus have currently been extended to certain fields such as
biology, physics, viscoelasticity, probability, transport theory, potential theory, electrochemistry,
scattering theory, ground water theory, finance, wave propagation, and fluid mechanics [7–11]. It
should be noted that several forms of fractional derivatives including Caputo, Capote-Fabrizio (C-F),
Riemann-Liouville and Atangana Baleanu in Caputo’s sense (ABC) have been defined to model the
above physical phenomena [12]. In 2017, Atangana proposed the fractal fractional (FF) derivative
involves two constraints, one of which signifies the fractal derivative while the other demonstrating
the power-law kernel, the Mittag-Leffler or exponential decay type kernels [13]. This extended
concept performs better than classical and fractional derivative approaches. It is because studying
with fractal-fractional derivatives enables us to study at each fractional operator and fractal dimension
simultaneously [14–16]. The idea of FF derivative is very suitable to study complex problems due to
the fact that by dealing with FF derivatives, one can study the fractional operator as well as fractal
dimensions at the same time [13]. Presently, this concept has extensively been considered for to
investigate the dynamics of COVID-19 SIR models [17] and the fluid flow in fluid mechanics [18].

The analytical solutions of nonlinear FDE’s are sometimes impossible to calculate or even just
possible with suitable presumptions. Therefore, many methods have been proposed, such as the
variational iteration technique, Fourier spectral methods, finite difference schemes, Haar wavelet
numerical technique and the two-step Adams-Bashforth method [19, 20]. Similarly, the Adomian has
presented a novel iterative scheme applied to solve approximate solutions for classical and
non-integer integrable/non-integrable DE’s [21–23]. The Adomian decomposition method (ADM)
has also been extensively applied to study linear/nonlinear FDE’s [23, 24].

Here, we consider one-dimensional sGE

φtt(x, t) − φxx(x, t) + sin φ(x, t) = 0. (1.1)

Equation (1.1) is a real-valued, non-linear hyperbolic wave equation/partial differential equation
including the operator of D’Alembert and the sine of the indefinite function known as the
classical/integer order sine-Gordon equation. In the 19th century, this equation with different solution
techniques became recognized to study various differential geometry phenomena. In the 1970s, the
equation got great importance when it was understood that it leads to solitons kink and anti-kink
solutions. Eq (1.1) has various real applications to investigate localized modes in single and
multi-stacked long Josephson junctions [25–31] and in modeling of ferromagnetism, physics of
elementary particles and quantum optics [32]. We will investigate Eq (1.1) with both C-F and ABC
fractional operators together with fractal dimension using Laplace transform with ADM [33] with

φ(x, 0) = A(x) and φt(x, 0) = B(x), (1.2)
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2. Preliminaries

Definition 1. For φ(t) ∈ H(a, b) and α ∈ [0, 1), the exponential decay type kernel is given by [34]

CF Dαφ(t) =
Q(α)
1 − α

∫ t

a
exp

(
−α(t − s)

1 − s

)
φ′(s) ds.

Definition 2. Suppose that φ(t) is a continuous function and β ∈ (0, 1), then the exponential decay type
kernel with order (α, β) for a function φ(t) is given by [13]

FFE
0 Dα, β

t φ(t) =
Q(α)
1 − α

d
dtβ

∫ t

0
exp

(
−α(t − s)

1 − s

)
φ(s)ds,

FFE
0 Dα, β

t φ(t) =
Q(α)tβ−1

β(1 − α)
d
dt

∫ t

0
exp

(
−α(t − s)

1 − s

)
φ(s)ds.

More generally, we can write as

FFE
0 Dα, β, γ

t φ(t) =
Q(α)
1 − α

dγ

dtβ

∫ t

0
exp

(
−α(t − s)

1 − s

)
φ(s)ds, 0 < α, β ≤ 1.

Definition 3. Let φ(t) ∈ H(a, b), and α ∈ [0, 1], the Mittag-Leffler kernel is given by [35]

ABC
a Dα

t φ(t) =
A(α)
1 − α

∫ t

a
Eα

(
−α(t − s)α

1 − α

)
φ′(s)ds, n − 1 < α ≤ n.

Definition 4. Let φ(t) fractal differentiable and a continuous function with order β ∈ (0, 1), then the
Mittag-Leffler kernel with (α, β) is given by [13]

FFMR
0 Dα, β

t φ(t) =
A(α)
1 − α

d
dtβ

∫ t

0
Eα

(
−α(t − s)α

1 − α

)
φ(s)ds, A(α) = 1 − α +

α

γ(α)
.

FFMR
0 Dα, β

t φ(t) =
A(α)tβ−1

β(1 − α)
d
dt

∫ t

0
Eα

(
−α(t − s)α

1 − α

)
φ(s)ds.

More generally, we can write

FFMR
0 Dα, β, γ

t φ(t) =
A(α)
1 − α

dγ

dtβ

∫ t

0
exp

(
−α(t − s)

1 − s

)
φ(s)ds, 0 < α, β ≤ 1.

Definition 5. The fractal-Laplace transform with order α for a continuous function φ in (a, b) is given
by [13, 36]

FLαs (φ(t)) =

∫ ∞

0
tα−1e−stφ(t)dt.
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Definition 6. The Laplace transform for Caputo fractional derivative of order α for a function φ(t) is
defined as

L
{
C
0 Dα

t φ(t)
}

= sαφ(s) −
n−1∑
k=0

(
s(α−k−1)φ(0)k

)
, n − 1 < α ≤ n,

where

L{φ(t)} =

∞∫
0

φ(t)e−stdt = φ(s).

It should be noted that by putting β=1, one can obtain the usual Laplace transform.

3. Fractal fractional sine-Gordon equation with C-F derivative

Here, we consider fractal fractional sine-Gordon equation with exponential decay kernel as

FFEDα, β
t φ − φxx + sin φ = 0, 0 < α ≤ 1, 0 < β ≤ 1, (3.1)

with

φ(x, 0) = A(x) and φt(x, 0) = B(x), (3.2)

By re-grouping Eq (3.1), we obtain

CF Dα
t φ = βtβ−1{φxx − sin φ}. (3.3)

Applying Laplace transform to Eq (3.3), gives

L
{
CF Dα

t φ
}

= L
{
βtβ−1 {φxx − N(φ)}

}
. (3.4)

L {φ} =
A(x)

s
+

B(x)
s2 +

(s + (1 − s)α)
s2 L

[
βtβ−1 {φxx − N(φ)}

]
. (3.5)

Consider φ(x, t) in series form

φ(x, t) =

∞∑
n=0

φn(x, t), (3.6)

while the Taylor series expansion of N(φ) = sin φ(x, t), gives

N(φ) = φ −
φ3

3!
+
φ5

5!
−
φ7

7!
· · · =

∞∑
j=0

(−1) j+2 φ2 j+1

(2 j + 1)!
, (3.7)

where the nonlinear term N(φ) can be written as

N(φ) =

∞∑
n=0

An, (3.8)
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where An represents Adomian polynomial [37] described by

An =
1
n!

dn

dλn

N  n∑
k=0

λkφk


λ=0

.

Now applying L−1 to Eq (3.5) together with Eqs (3.6), (3.8) and (3.2), we obtain

∞∑
n=0

φn(x, t) = A(x) + tB(x) + L−1

( (s + (1 − s)α)
s2

)
L

βtβ−1

φxx −

∞∑
n=0

An



 . (3.9)

From Eq (3.9), we obtain

φ0 = A(x) + tB(x),

φ1 = L−1
[(

(s + (1 − s)α)
s2

)
L

{
βtβ−1(φ0xx − A0)

}]
,

φ2 = L−1
[(

(s + (1 − s)α)
s2

)
L

{
βtβ−1(φ1xx − A1)

}]
,

φ3 = L−1
[(

(s + (1 − s)α)
s2

)
L

{
βtβ−1(φ2xx − A2)

}]
,

....

The obtained solution can be expressed as

φ(x, t) = φ0 + φ1 + φ2 + φ3 + · · · . (3.10)

4. Fractal fractional sine-Gordon equation with ABC derivative

Consider fractal fractional sine-Gordon with Mittag-Leffler kernel as

FFMDα, β
t φ − φxx + sin φ = 0, 0 < β ≤ 1, 1 < α ≤ 2 (4.1)

with

φ(x, 0) = A(x) and φt(x, 0) = B(x). (4.2)

Using the Laplace transform on Eq (4.1)

L
{
CF Dα

t φ
}

= L
{
βtβ−1 {φxx − N(φ)}

}
. (4.3)

Expanding using Laplace transform, we obtain

L {φ} =
A(x)

s
+

B(x)
s2 +

(s + (1 − s)α)
A(α)s2 L

[
βtβ−1 {φxx − N(φ)}

]
, (4.4)

where α = fractional order, β = fractal order and fractal order and A(α) is a scaling function such that
A(α) = 1 − α + α

v(α) i.e., A(1) = 1. With the help of Eqs (3.6)–(3.8) and Eq (4.2), we obtain

φ0 = A(x) + tB(x),
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φ1 = L−1
[(

1 +
α

sα
− α

)
L

{
βtβ−1(φ0xx − A0)

}]
,

φ2 = L−1
[(

1 +
α

sα
− α

)
L

{
βtβ−1(φ1xx − A1)

}]
,

φ3 = L−1
[(

1 +
α

sα
− α

)
L

{
βtβ−1(φ2xx − A2)

}]
,

....

The series solution can be written as

φ =

∞∑
n=0

φn. (4.5)

5. Convergence analysis

With the help of the following theorem, we investigate the convergence of the approximation series
solutions derived using the suggested technique.

Theorem 1. Let A and B are Banach spaces and T : A→ B is an operator such that ∀a1, a∗1 ∈ A

||T(a1) − T(a∗1)|| ≤ k||a1 − a∗1||,

then T has a unique fixed point provide that T(a1) = a1 [By Banach contraction theorem].
Let us consider the series in the form (see Eqs (3.10) and (4.5))

φ(x, t) =

∞∑
n=0

φn

calculated by LADM then, we have

Φ(n) = T(Φn−1), Φn−1 =

n−1∑
i=1

ai, n = 1, 2, 3, · · · .

Further consider that

A0 = a0 ∈ Br(a1) where Br(a1) =
{
a∗1 : ||a1 − a∗1|| < r

}
,

then

1) Φ(n) ∈ Br(a1),
2) limn→∞Φ(n) = a1.

Proof. To prove (1) and (2), we use mathematical induction.
1) Let the statement is true for n = 1, then gives

||A1 − a1|| = ||T(A0) − T(a1)|| ≤ k||a10 − a1||,
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which implies that it is also valid for n − 1

||Φn−1 − a1|| ≤ kn−1||a10 − a1||,

||Φ(n) − a1|| = ||T(Φn−1) − T(a1)|| ≤ k||Φn−1 − a1|| ≤ kn||A0 − a1||,

||Φ(n) − a1|| = ||T(Φn−1) −T (a1)|| ≤ k||a10 − e|| ≤ kn||a10 − a1||,

||Φ(n) − a1|| ≤ kn||a10 − a1|| ≤ knr < r,

Φ(n) ∈ BQr(a1).

2) Since we have ||Φ(n) − a1|| ≤ kn||a10 − a1||, and limn→∞ kn = 0, therefore

lim
n→∞
||A − a1|| = 0 ⇒ lim

n→∞
Φ(n) = a1.

Hence Theorem 1 is proved. �

We can also demonstrate that

G(x, t) =

∞∑
n=0

Gn.

6. Numerical examples

To validate the proposed method, a specific examples with different subsidiary conditions of the
governing equation is considered.

Example 1. We consider Eq (1.1) with initial conditions

φ(x, 0) = 0 and φt(x, 0) = 4 sech(x). (6.1)

The exact solution of Eq (1.1) with initial conditions (6.1) can be obtained as

φ = 4 tanh−1 [t sech(x)] . (6.2)

Here, we discuss two cases
Case I: Consider Eq (1.1) with exponential decay Kernel as

FFEDα, β
t φ − φxx + sin φ = 0, 0 < α, β ≤ 1. (6.3)

Proceeding with the techniques discussed in section 3 together with conditions (6.1), we obtain

U0 = 4t sech(x),

U1 =
8
15
βtβ+1sech3(x)

15
(
α − 1 − αt

β+2

)
β + 1

−
20t2

(
α − 1 − αt

β+4

)
β + 3

+
16 t4sech2(x)

(
α − 1 − αt

β+6

)
β + 5

 ,
....

Finally, we can write

U(x, t) =

∞∑
n=0

Un(x, t). (6.4)
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Case II: Consider Eq (1.1) with fractal-fractional Mittag-Leffler kernel as

FFEDα, β
t φ − φxx + sin φ = 0, 1 < α ≤ 2, 0 < β ≤ 1, (6.5)

Proceeding with the technique discussed in section 4 together with (6.1), we obtain

V0 = 4tsech(x),

V1 =
8

15
βtβ+1sech3(x)

15
(
α − 1 − αt

β+2

)
β + 1

−
20t2

(
α − 1 − αt

β+4

)
β + 3

+
16 t4sech2(x)

(
α − 1 − αt

β+6

)
β + 5

 ,
....

Similar to the above result, we can write

V(x, t) =

∞∑
n=0

Vn(x, t). (6.6)
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0.2

0.4
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1

φ
(x

,t
)/

 U

Exact

α=1.0

α=0.7

α=0.4

β=1

-6 -4 -2 0 2 4 6
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0

0.2

0.4

0.6

0.8

1

φ
(x

,t
)/

 U

Exact

β=1.0

β=0.7

β=0.4

α=0.8

Figure 1. The comparison between Eq (6.2) versus Eq (6.4) for different values of fractional
and fractal variables.

7. Discussion

In Figure 1, the left upper panel signify the estimate amongst the exact (6.2) and approximate C-F
solution (6.4) for β = 1 a with numerous values of α as shown in figure for t = 0.2. One can see that,
for different fractional order the amplitude of soliton wave solution is does not altered. This shows that
fractional order does not affect qualitatively the solitary wave solution of the system. The right panel
of Figure 1, signifies the fractal dimension effect of the obtained C-F solution (6.4) for α = 0.8 with
different values of fractal variable β and time t = 0.3. Similar to the left panel the fractal dimension
qualitatively does not affect the solution of the system. In Figure 2, the left panel shows the contrast
between the exact versus ABC solution (6.6) for β = 1 with altered values of α . The right panel
displays the influence of fractal dimension on considered equation for the fractional order α. From the
figures, a good agreement is obtained between the exact and the solution with exponential decay kernel
with different fractal and fractional orders. Figure 3 represent the surface plots for both C-F and ABC
solutions with α = β = 1.
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Exact

β=1.0

β=0.6

β=0.4
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Figure 2. The comparison between exact solution (6.2) versus ABC solution (6.6) for
different values of fractional and fractal variables.

Figure 3. The left panel shows the surface plot of Eq (6.4), while the panel shows surface
plot for solution (6.6).

Example 2. case I: Consider Eq (6.3) with initial conditions

φ(x, 0) = 0 and φt(x, 0) =
8

ex + e−x , (7.1)

and exact solution

φ = 4 arctan
(

2t
ex + e−x

)
. (7.2)

The series solution of Eq (6.3) with initial conditions (7.1) is obtained in the form

φ0 =
8t

e−x + ex ,

φ1 =
64βe3xtβ+1

3
(
e2x + 1

)3

(
3(α − 1)
β + 1

−
3αt

(β + 1)(β + 2)
+

4t2(α t + (β + 4)(1 − α)
(β + 3)(β + 4)

)
AIMS Mathematics Volume 7, Issue 8, 14975–14990.
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−
64βe3xtβ+1

15
(
e2x + 1

)5

(
64t4e2x(α t + (β + 6)(1 − α))

(β + 5)(β + 6)

)
,

....

The final series can be written as

φ(x, t) =

∞∑
n=0

φn(x, t). (7.3)

Case II: Consider Eq (6.5) with initial conditions

φ(x, 0) = 0 and φt(x, 0) =
8

e−x + ex . (7.4)

The series solution of Eq (6.5) with initial conditions (7.4) is

φ0 =
8t

e−x + ex ,

φ1 =
64βe3xtβ

15
(
e2x + 1

)5

(
2e2x

(
(α − 1)

(
5
(
3 − 4t2

)
cosh(2x) + 32t4 − 20t2 + 15

)
−

32αΓ(β + 5)tα+4

Γ(α + β + 5)

))

−
64βe3xtβ

15
(
e2x + 1

)5

5α
(
e2x + 1

)2
Γ(β + 1)tα

(
3(α + β + 1)(α + β + 2) − 4(β + 1)(β + 2)t2

)
Γ(α + β + 3)

 ,
....

The final approximate solutions can be expressed in the form

φ(x, t) =

∞∑
n=0

φn(x, t). (7.5)
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Figure 4. The comparison between exact solution (7.2) versus CF solution (7.3) for different
values of fractional and fractal variables.
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The left panel in Figure 4 represents comparison between exact solution (7.2) and approximate C-F
solution (7.3) for β = 1 with different values of α as shown in the figure. The right panel represent
the C-F approximate solution (7.3) for α = 1 for different values of fractal variable β. Similarly, The
left panel in Figure 5 shows the comparison of exact versus ABC approximate solution (7.5) for β = 1
and different values of α, while, the right panel represents the effect of fractal dimension on considered
model for α = 1.3 and different values of β. The surface plots forC-F and ABC solutions are given in
Figure 6.
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Exact
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Figure 5. The comparison between an exact solution (7.2) against ABC solution(7.5) for
different values of fractional and fractal variables.

Figure 6. The left panel shows surface plot for (7.3), while the right panel shows surface plot
for (7.5).

8. Error analysis

In Figure 7, the left panel represent the error between exact solution (6.2) and approximate
solution (6.4) for α = β = 1. The right panel contains error between the exact solution (6.2) and
approximate ABC solution (6.6) for α = 2 and β = 1 shown in Table 1. One can easily observe the
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comparison of error amongst C-F and ABC approximate solutions.
The absolute error estimate between an exact (7.2) and an approximate C-F solution (7.3) is given

in the left panel of Figure 8, by considering α = β = 1. Similarly, the right panel shows the absolute
error between an exact solution (6.2) and an approximate ABC solution (7.5) for α = 2, β = 1. One
can easily observed from Table 2 that, the absolute error decreases on both sides of the domain between
CF and ABC solutions and the solitary wave solution maintains its shape.
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Figure 7. The surface plot for error estimate for approximate solutions (6.4) versus (6.6).

Table 1. Comparison between an exact and approximate solutions for α = β = 1 for C-F
solutions, α = 2 and β = 1 for ABC solution, for Example1.

(x,t) φ(x, t) U(x, t) V(x, t) | φ − U | | φ − V |

(-8,0.2) 5.3674×10−04 5.3674×10−04 5.3674×10−04 6.3914×10−12 4.4788×10−10

(-4,0.2) 0.0239 0.0239 0.294 1.0392×10−6 7.2822×10−5

(0,0.2) 0.8109 0.7895 2.2964 0.0214 1.4855
(4,0.2) 0.0293 0.0293 0.294 1.0392×10−6 7.2822×10−5

(8,0.2) 5.3674×10−04 5.3674×10−04 5.3674×10−4 6.3914×10−12 4.4788×10−10

(-8,0.4) 0.0011 0.0011 0.0011 4.9894×10−11 6.8625×10−10

(-4,0.4) 0.0586 0.0586 0.0587 8.1128×10−6 1.1158×10−4

(0,0.4) 1.6946 1.5198 4.0443 0.1748 2.23497
(4,0.4) 0.0586 0.0586 0.0587 8.1128×10−6 1.1158×10−4

(8,0.4) 0.0011 0.0011 0.0011 4.9894×10−11 6.8625×10−10
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Figure 8. The surface plot of the absolute error for solution obtained (7.3) and (7.5).

Table 2. The comparison between an exact and approximate solutions for α = β = 1 for C-F
solutions and α = 2 and β = 1 for ABC solutions for Example 2.

(x,t) φ(x, t) U(x, t) V(x, t) | φ − U | | φ − V |

(-8,0.6) 0.0016 0.0016 0.0016 7.4454×10−11 6.0491×10−10

(-4,0.2) 0.0879 0.0879 0.0880 1.2166×10−5 9.8396 ×10−5

(0,0.2) 2.4000 2.1478 5.0551 0.2522 2.6551
(4,0.2) 0.0879 0.0879 0.0880 1.2106×10−5 9.8396×10−5

(8,0.2) 0.0016 0.0016 0.0016 7.4454×10−11 6.0491×10−10

(-8,0.4) 8.0511×10−4 8.0511×10−4 8.0511×10−4 1.0481×10−11 6.1688×10−10

(-4,0.4) 0.0439 0.0439 0.0440 1.7041×10−6 1.0030×10−4

(0,0.4) 1.2000 1.1653 3.2632 0.0347 2.0622
(4,0.4) 0.0439 0.0439 0.0440 1.7041×10−6 1.0030×10−4

(8,0.4) 8.0511×10−4 8.0511×10−4 8.0511×10−4 1.0481×10−11 6.1688×10−10

9. Conclusions

We have investigated the time fractional non-integrable sine-Gordon equation with Mittag Leffler
and exponential decay type kernels in FF sense. The series solution of the sGE is obtained using
ADM with Laplace transform. The main advantage of LAMD is that calculating only two iterations,
comparatively precise results of sG solitary wave solution is obtained with fractal fractional operators.
The suggested approach has the key advantage of calculating series solutions to the considered
problem without any perturbation, discretization, or measuring complicated polynomials. For
applications, we have considered a numerical example with both kernels and different subsidiary
conditions. The numerical results are presented and compared with analytical solutions for different
fractional variables and fractal dimensions. One can see that good agreements are obtained for
solitary wave solutions of the model. It is revealed that, by bearing in mind the solitonic solution in
the form of sech and exponential functions, kink type solitary wave solutions of sGE is obtained
supposed examples for both non-singular fractional operators with fractional dimensions. It is well
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known that sGE is evidently the most famous demonstration of a kink-bearing nonlinear PDE, and
therefore a perfect system for considerate kink and anti-kink occurrences. The absolute error estimate
is calculated, where, for comparatively small time (less than one), the error minimizes between the
approximate and exact solutions.
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