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1. Introduction

Let A be an additive category. An idempotent morphism e2 = e : A → A in A is said to be split if
there are two morphisms p : A → B and q : B → A such that e = qp and pq = 1B. The category A
is said to be idempotent complete if every idempotent morphism splits. Note that A is idempotent
complete if and only if every idempotent morphism has a kernel if and only if every idempotent
morphism has a cokernel, see [1]. Every additive categoryA can be embedded fully faithfully into an
idempotent complete category Ã. Balmer and Schlichting [2] proved that the idempotent completion
of a triangulated category is a triangulated category. Bühler showed that the idempotent completion of
an exact category is an exact category. Liu and Sun [4] showed that the idempotent completion of a
right triangulated category is again right triangulated.

Recently, suspended categories were introduced by Li in [3] as a simultaneous generalization of
exact categories, triangulated categories and right triangulated categories. In this article, we will unify
these conclusions stated above by showing that when A is a suspended category then the idempotent
completion ofA is also a suspended category.

2. Preliminaries

We first recall some notions and facts on the idempotent completion of additive categories.
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Definition 2.1. [2, Definition 1.2] LetA be an additive category. The idempotent completion ofA is
denoted by Ã which be defined as follows. The objects of Ã are pairs (A, p), where A is an object of
A and p : A → A is an idempotent morphism. A morphism in Ã from (A, p) to (B, q) is a morphism
f : A→ B such that q f = f p = f . For any object (A, p) in Ã, the identity morphism 1(A, p) = p.

Remark 2.2. [1, Remark 6.3] LetA be an additive category and Ã be an idempotent complete ofA.
The biproduct in Ã is defined as

(A, p) ⊕ (B, q) = (A ⊕ B, p ⊕ q).

There exists a fully faithful additive functor ℓA : A → Ã defined as follows. For an object A inA, we
have that ℓA(A) = (A, 1A) and for a morphism f inA, we have that ℓA( f ) = f . Since the functor ℓA is
fully faithful, we can viewA as a full subcategory of Ã.

Proposition 2.3. [1, Proposition 6.10] LetA be an additive category andB be an idempotent complete
category. For every additive functor F : A → B, there exists a functor F̃ : Ã → B̃ and a natural
isomorphism ϕ : F⇒ F̃ℓA.

Now we recall the notion of suspended categories from [3].
Let A be an additive category and X be a full subcategory of A. Recall that we say a morphism

f : A→ B in C is an X -monic if

HomA( f , X) : HomA(B, X)→ HomA(A, X)

is an epimorphism for all X ∈ X . Similarly, we say that f is a left X -approximation of A if f is an
X -monic and B ∈ X . The subcategory X is said to be covariantly finite in A, if every object in A
has a left X -approximation. The notions of left X -approximation and covariantly finite subcategories
are also known as X -preenvelope and preenveloping subcategories, respectively.

Let A be an additive category with an additive endofunctor Σ : A → A and X ⊆ C be two full

subcategories ofA. A right Σ-sequence A
f
−→ B

g
−→ C

h
−→ ΣA inA is called a right C-sequence if C ∈ C,

g is a weak cokernel of f (i.e. the induced sequence HomA(C,A) → HomA(B,A) → HomA(A,A) is
exact) and h is a weak cokernel of g.

Dually, a left Σ-sequence ΣA
f
−→ B

g
−→ C

h
−→ A is called a left C-sequence if B ∈ C, f is a weak kernel

of g and g is a weak kernel of h.

Definition 2.4. [3, Definition 3.1] LetA be an additive category with an additive endofunctor Σ : A →
A and X ⊆ C be two full subcategories of A. A triple (A,R(C,Σ),X ) is a right suspended category
where R(C,Σ) is a class of right C-sequences (whose elements are also called right C-triangles) if
R(C,Σ) is closed under isomorphisms and finite direct sums and the following conditions are satisfied:

(RS1) (a) For any A ∈ C, there exists a sequence A i // X // U // Σ(A) in R(C,Σ) where i is an
X -preenvelope such that for any morphism f : A −→ B in C, there exists a sequence

A

(
i
f

)
−−→ X ⊕ B −→ N −→ Σ(A)

in R(C,Σ).
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(b) For any morphism f : A −→ B in C, there exists a sequence

A

(
1
f

)
−−→ A ⊕ B

( f −1 )
−−−−−→ B

0
−−→ Σ(A)

in R(C,Σ).

(RS2) For any commutative diagram of sequences in R(C,Σ)

A
f //

α
��

B
g //

β

��

C h //

γ

��

Σ(A)

Σ(α)
��

A
′ u // X v // C′ w // Σ(A

′

)

with X ∈X , if α factors through f , then γ factors through v.

(RS3) For each solid commutative diagram

A
f //

α
��

B
g //

β
��

C h //

γ
��

ΣA

Σα
��

A
′ u // B

′ v // C
′ w // ΣA

′

with rows in R(C,Σ), the dotted morphism exists which makes the whole diagram commutative.

(RS4) If any three sequences

A
f // B l // D i // Σ(A) , B

g // C h // E
j // Σ(B) and A

g f // C k // F m // Σ(A)

are in R(C,Σ) and f , g are X -monic, then there exists two morphisms α : D −→ F and
β : F −→ E of C, such that the diagram below is commutative:

A B D ΣA

A C F ΣA

E E

ΣB ΣD

f // l // i //

g
��

α
��

g f
//

k
//

m
//

h
��

β
��

j
�� ��

Σ(l)
//

⟳

where the third column from the left is in R(C,Σ), with α is an X -monic.

Dually, we can define the notion of a left suspended category.

Now we give some examples of right suspended categories from [3].
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Example 2.5. (1) If (A,Σ,∆) is a right triangulated category, we take X = 0, C = A and R(A,Σ) = ∆.
Then the triple (A,R(A,Σ) = ∆, 0) is a right suspended category. We know that any triangulated
category can be viewed as a right triangulated category. Hence any triangulated category can be viewed
as a right suspended category.

(2) Let (A,E) be an exact category and

R(A,Σ = 0) = {A→ B→ C → 0 | A↣ B↠ C ∈ E}.

Then (A,R(A,Σ = 0),A) is a right suspended category.
(3) Let (A,E) be an exact category with enough injectives. We denote by I the full subcategory of

all injectives objects inA. Then (A,R(A,Σ = 0),I) is a right suspended category, where

R(A,Σ = 0) = {A→ B→ C → 0 | A↣ B↠ C ∈ E}.

We collect some useful lemmas which can be used in the sequel.

Lemma 2.6. Assume (A,R(C,Σ),X ) be satisfies (RS1),(RS2),(RS3). If

A
f // B

g // C h // Σ(A) and A
f // B

g′ // C′ h′ // Σ(A)

are in R(C,Σ), then there exists an isomorphism γ : C −→ C′ which makes the following diagram
commutative:

A B C ΣA

A B C′ ΣA

f // g // h //

γ
��

f
//

g′
//

h′
//

Proof. It can be proved in a similar way as in [3, Lemma 3.2]

Lemma 2.7. Let (A,R(C,Σ),X) be a right suspended category. Given a commutative diagram

A B C ΣA

A B C ΣA

f // g // h //

p
��

q
��

Σ(p)
��

f
//

g
//

h
//

with rows in R(C,Σ). If p : A → A and q : B → B are idempotent morphisms, then there exists an
idempotent morphism α : C → C such that the diagram

A B C ΣA

A B C ΣA

f // g // h //

p
��

q
��

α
��

Σ(p)
��

f
//

g
//

h
//

commutes.

Proof. The proof is very similar to [2, Lemma 1.13], we omit it. □
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3. Idempotent completion of right suspended categories

Let (A,R(C,Σ),X ) be a right suspended category. Then the additive endofunctor Σ of A induces
the endofunctor Σ̃ of idempotent completion Ã given by Σ̃(A, e) = (ΣA,Σe). Moreover, it is easy to see
that there is a commutative diagram

A
Σ //

ℓA
��

A

ℓA
��

Ã
Σ̃ // Ã

Clearly, ℓA(C) ⊆ C̃, and ℓA(X ) ⊆ X̃ .
We define a right Σ̃-sequence in Ã,

A
f1
−→ B

f2
−→ C

f3
−→ Σ̃A (∆)

to be a right C̃-sequence in R(C̃, Σ̃) if there is a right C̃-sequence in R(C̃, Σ̃)

A′
f ′1
−→ B′

f ′2
−→ C′

f ′3
−→ Σ̃A′ (∆′)

such that ∆ ⊕ ∆′ is isomorphic to a right C-sequence in R(C,Σ) or equivalently, it is a direct summand
of a right C-sequence in R(C,Σ). It is easy to see that R(C̃, Σ̃) is closed under isomorphisms and finite
direct sums. For convenience, we usually write Σ̃ as Σ.

Lemma 3.1. Let (A,R(C,Σ),X = 0) be a right suspended category. A sequence

A ⊕ A′
(

x 0
0 x′

)
−−−−→ B ⊕ B′

( y 0
0 y′

)
−−−−→ C ⊕C′

(
z 0
0 z′

)
−−−−→ Σ(A ⊕ A′)

is a right C-sequence in R(C,Σ) if and only if both two sequences

A
x
−−→ B

y
−−→ C

z
−−→ Σ(A) and A′

x′
−−→ B′

y′
−−→ C′

z′
−−→ Σ(A′)

are right C-sequences in R(C,Σ).

Proof. Since R(C,Σ) is closed under finite direct sums, it is enough to show the necessity. By axiom
(RS1), there are two right C-sequences in R(C,Σ)

A
x
−→ B

a
−→ C1

b
−→ ΣA,

A′
x′
−→ B′

a′
−→ C′1

b′
−→ ΣA′.

By axiom (RS3), there exists a commutative diagram

A ⊕ A′
(

x 0
0 x′

)
//

( 1 0 )
��

B ⊕ B′
( y 0

0 y′
)
//

( 1 0 )
��

C ⊕C′
(

z 0
0 z′

)
//

( f g )
��

ΣA ⊕ A′

( 1 0 )
��

A x // B a // C1
b // ΣA
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Thus, we have f y = a and b f = z. Similarly, one can find a morphism f ′ : C′ → C′1 such that f ′y′ = a′

and and b′ f ′ = z′. Hence, we have the following commutative diagram

A ⊕ A′
(

x 0
0 x′

)
// B ⊕ B′

( y 0
0 y′

)
// C ⊕C′

(
z 0
0 z′

)
//( f 0

0 f ′
)

��

ΣA ⊕ A′

A ⊕ A′
(

x 0
0 x′

)
// B ⊕ B′

(
a 0
0 a′

)
// C1 ⊕C′1

(
b 0
0 b′

)
// ΣA

By Lemma 2.6, we know that
(

f 0
0 f ′

)
is an isomorphism. It follows that f and f ′ are isomorphisms. It

is easy to see that there exists a commutative diagram

A x // B
y // C z //

f
��

ΣA

��
A x // B a // C1

b // ΣA

where the second row lies in R(C,Σ). It follows that A
x
−→ B

y
−→ C

z
−→ ΣA lies in R(C,Σ). Similarly, we

can show that A′
x′
−→ B′

y′
−→ C′

z′
−→ ΣA′ lies in R(C,Σ). □

Now we state and prove our main result in this article.

Theorem 3.2. Let Σ be an endofunctor when restricted to C, (A,R(C,Σ),X = 0) be a right suspended
category. Then the triple (Ã,R(C̃, Σ̃), X̃ = 0) is a right suspended category.

Proof. We will check the axioms of suspended categories.

(RS1) (a) Let A be an arbitrary object in C̃. Then there is A′ in C̃ such that A ⊕ A′ ∈ C
actually ,if A = (N, e) take A′ = (N, idN − e) we have A ⊕ A′ � ℓA(N)). Note

that A ⊕ A′ 0 // 0 // 0 // Σ(A ⊕ A′) is a right C-sequence in R(C,Σ). It is clear
that 0 is an X -preenvelope. By the definition of right C̃-sequences in Ã, we obtain

A 0 // 0 // 0 // Σ(A) in R(C̃, Σ̃) with 0 is an X̃ -preenvelope.

For any morphism f : A→ B in C̃, there exists two objects A′, B′ ∈ C̃ such that A⊕ A′, B⊕

B′ ∈ C. For the morphism A⊕ A′
(

f 0
0 0

)
−−−−→ B⊕ B′ in C, by axiom (RS1)(a), there exists a right

C-sequence

A ⊕ A′
(

f 0
0 0

)
−−−−→ B ⊕ B′

a1
−−→ N

a2
−−→ Σ(A ⊕ A′) (3.1)

in R(C,Σ). By Lemma 2.7, there exists an idempotent morphism p = p2 : N → N which
makes the following diagram commutative:

A ⊕ A′ B ⊕ B′ N Σ(A ⊕ A′)

A ⊕ A′ B ⊕ B′ N Σ(A ⊕ A′)

(
f 0
0 0

)
// a1 // a2 //

( 1 0
0 0

)
��

( 1 0
0 0

)
��

p

��

( 1 0
0 0

)
��(

f 0
0 0

) //
a1

//
a2

//
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Therefore, the sequence A
f
−→ B

pa1
−−→ (N, p)

a2 p
−−→ Σ(A) is in R(C̃, Σ̃).

(b) For each morphism f : A→ B in C̃, there are two objects A′, B′ ∈ C̃ such that A⊕A′, B⊕B′ ∈

C. For the morphism A ⊕ A′
(

f 0
0 0

)
−−−−→ B ⊕ B′ in C, by axiom (RS1)(b), there is a right C-

sequence in R(C,Σ)

A ⊕ A′

 1 0
f 0
0 1
0 0


−−−−→ A ⊕ B ⊕ A′ ⊕ B′

(
f −1 0 0
0 0 0 −1

)
−−−−−−−−−→ B ⊕ B′

0
−−→ Σ(A ⊕ A′)

which guarantees

A

(
1
f

)
−−→ A ⊕ B

( f −1 )
−−−−−→ B

0
−−→ Σ(A)

is a right C̃-sequence in R(C̃, Σ̃).

(RS2) For any two right C̃-sequences

A
f // B

g // C h // Σ(A) , (3.2)

A′ 0 // 0 0 // C′ n // Σ(A′) (3.3)

lies in R(C̃, Σ̃). For any commutative diagram

A B C ΣA

A′ 0 C′ ΣA′

f // g // h //

α
��

β
��

γ
��

Σ(α)
��

0
//

0
//

n
//

with α factors through f . Next we will prove γ = 0, thus we are done.

By the definition of right C̃-sequences, there are two right C̃-sequences

U
f ′ // V

g′ // W h′ // Σ(U) , (3.4)

U′ l′ // V ′ m′ // W ′ n′ // Σ(U′) (3.5)

lie in R(C̃, Σ̃). Taking the direct sum of right C̃-sequences (3.2) and (3.4), we get a right C̃-
sequence

A ⊕ U

( f 0
0 f ′

)
−−−−−→ B ⊕ V

( g 0
0 g′

)
−−−−→ C ⊕W ′

(
h 0
0 h′

)
−−−−→ Σ(A ⊕ U) (3.6)

in R(C̃, Σ̃) such that (3.6) is isomorphic to a right C-sequence in R(C,Σ).

Similarly, taking the direct sum of right C̃-sequences (3.3) and (3.5), we get a right C̃-sequence

A′ ⊕ U′
(

0 0
0 l′

)
−−−−→ 0 ⊕ V ′

(
0 0
0 m′

)
−−−−−→ C′ ⊕W ′

(
n 0
0 n′

)
−−−−→ Σ(A′ ⊕ U′) (3.7)

AIMS Mathematics Volume 7, Issue 7, 13442–13453.



13449

in R(C̃, Σ̃) such that (3.7) is isomorphic to a right C-sequence in R(C,Σ). Thus we have a
commutative diagram in R(C,Σ)

A ⊕ U B ⊕ V C ⊕W Σ(A ⊕ U)

A′ ⊕ U′ 0 ⊕ V ′ C′ ⊕W ′ Σ(A′ ⊕ U′).

( f 0
0 f ′

)
//

( g 0
0 g′

)
//

(
h 0
0 h′

)
//

(
α 0
0 0

)
��

( 0 0
0 0

)
��

(
γ 0
0 0

)
��

(
Σ(α) 0

0 0

)
��(

0 0
0 l′

) // (
0 0
0 m′

) // (
n 0
0 n′

) //

Note that
(
α 0
0 0

)
factors through

(
f 0
0 f ′

)
since α factors through f , hence

(
γ 0
0 0

)
factors through(

0 0
0 m′

)
. In particular, we have (

γ 0
0 0

)
=

(
0 0
0 m′

)( a11 a12
a21 a′22

)
which implies γ = 0.

(RS3) For any two right C̃-sequences

A
f // B

g // C h // Σ(A) and X x // Y
y // Z z // Σ(X)

in R(C̃, Σ̃), the diagram below with the leftmost square is commutative

∆ A B C ΣA

Γ X Y Z Σ(X)

f // g // h //

α
��

β
��

γ
��

(α,β)
��

x
//

y
//

z
//

⟳

Next we will prove that there exists a morphism γ : C −→ Z which makes the whole diagram
commutative in Ã. By the definition of right C̃-sequences, there exists right C-sequence ∆′,Γ′

and morphisms i : ∆ −→ ∆′, p : ∆′ −→ ∆, j : Γ −→ Γ′, q : Γ′ −→ Γ, such that pi = 1∆, q j = 1Γ,
which induce a morphism j ◦ (α, β) ◦ p : ∆′ −→ Γ′ in A, since ∆′ and Γ′ are right C-sequence
in R(C,Σ). According to axiom (RS3), we have a right C-sequence map u : ∆′ −→ Γ′, which
induces a right C-sequence morphism q ◦ u ◦ i : ∆ −→ Γ extending (α, β) in R(C̃, Σ̃).

(RS4) For any three right C̃-sequence A
f // B l // D i // Σ(A) , B

g // C h // E
j // Σ(B) and

A
g f // C k // E m // Σ(A) are in R(C̃, Σ̃) ,with f , g are X -monics in C̃. For the morphism

f : A −→ B in C̃, there exists A′, B′ in C̃, such that A ⊕ A′, B ⊕ B′ in C, Clearly

A
f // B l // D i // Σ(A) , (3.8)

A′ // 0 // Σ(A′) // Σ(A′) (3.9)

and
0 // B′ // B′ // 0 (3.10)

AIMS Mathematics Volume 7, Issue 7, 13442–13453.
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are right C̃-sequences in R(C̃, Σ̃). Take the direct sum of right triangles (3.8)–(3.10), we get the
following right C̃-sequence:

A ⊕ A′
(

f 0
0 0

)
−−−−→ B ⊕ B′

( l 0
0 1
0 0

)
−−−−→ D ⊕ B′ ⊕ Σ(A′)

( i 0 0
0 0 1

)
−−−−−→ Σ(A ⊕ A′) (3.11)

By the proof of (RS1), we know that any morphism in C can be embedded into a right C-

sequence, since the morphism A ⊕ A′
(

f 0
0 0

)
−−−−→ B ⊕ B′ in C, therefore,it can be extended to a right

C-sequence (3.1). By Lemma 2.6, (3.11) is isomorphic to (3.1) in R(C,Σ).
Similarly, the following right C̃-sequence

B ⊕ B′
(

g 0
0 0

)
−−−−→ C ⊕C′

( h 0
0 1
0 0

)
−−−−→ E ⊕C′ ⊕ Σ(B′)

(
j 0 0
0 0 1

)
−−−−−→ Σ(B ⊕ B′) (3.12)

is isomorphic to a right C-sequence in R(C,Σ). Since the morphism g f : A→ C in C̃, similar to
above, the following right C̃-sequence

A ⊕ A′
(

g f 0
0 0

)
−−−−−→ C ⊕C′

( k 0
0 1
0 0

)
−−−−→ F ⊕C′ ⊕ Σ(A′)

( m 0 0
0 0 1

)
−−−−−−→ Σ(A ⊕ A′) (3.13)

is isomorphic to a right C-sequence in R(C,Σ).

By axiom (RS4), we can get the following commutative diagram inA:

A ⊕ A′ B ⊕ B′ D ⊕ B′ ⊕ Σ(A′) Σ(A ⊕ A′)

A ⊕ A′ C ⊕C′ F ⊕C′ ⊕ Σ(A′) Σ(A ⊕ A′)

E ⊕C′ ⊕ Σ(B′) E ⊕C′ ⊕ Σ(B′)

Σ(B ⊕ B′) ΣD ⊕ Σ(B′) ⊕ Σ2(A)

(
f 0
0 0

)
//

( l 0
0 1
0 0

)
//

( i 0 0
0 0 1

)
//

(
g 0
0 0

)
��

h1

��
(

g f 0
0 0

)
//

( k 0
0 1
0 0

)
//

( m 0 0
0 0 1

)
//

( h 0
0 1
0 0

)
��

h2

��

(
j 0 0
0 0 1

)
��

(
Σ(l)◦ j 0 0

0 0 1

)
��(

Σ(l) 0
0 1

) //

where the third column is a right C-sequence in R(C,Σ) and h1 is an X -monic.
We write

h1 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

, h2 =


b11 b12 b13

b21 b22 b23

b31 b32 b33

.
AIMS Mathematics Volume 7, Issue 7, 13442–13453.
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According to the above commutative diagram, we have
k 0
0 1
0 0


(
g 0
0 0

)
=


a11 a12 a13

a21 a22 a23

a31 a32 a33




l 0
0 1
0 0

,
(
m 0 0
0 0 1

)
a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
(
i 0 0
0 0 1

)
,


h 0
0 1
0 0

 =

b11 b12 b13

b21 b22 b23

b31 b32 b33



k 0
0 1
0 0

.
(
Σ(l) ◦ j 0 0

0 0 1

)
b11 b12 b13

b21 b22 b23

b31 b32 b33

 = 0.

Hence

h1 =


a11 0 a13

a21 0 a23

0 0 1

, h2 =


b11 0 b13

b21 1 b23

0 0 0

.
According to h2 ◦ h1 = 0, we have

b11 0 b13

b21 1 b23

0 0 0



a11 0 a13

a21 0 a23

0 0 1

 =


b11a11 0 b11a13 + b13

b21a11 + a21 0 b21a13 + a23 + b23

0 0 0

 = 0.

Thus we obtain
b21a11 + a21 = 0,

b11a11 = 0,

b21a13 + a23 + b23 = 0,

b11a13 + b13 = 0.

For the object F ⊕ C′ ⊕ Σ(A′), there are morphisms u, v : F ⊕ C′ ⊕ Σ(A′) −→ F ⊕ C′ ⊕ Σ(A′)
where

u =


1 0 −a13

b21 1 b23

0 0 1

, v =


1 0 a13

−b21 1 a23

0 0 1


such that u and v are inverse of each other. Therefore we can get a commutative diagram as
follows:

D ⊕ B′ ⊕ Σ(A′) F ⊕C′ ⊕ Σ(A′) E ⊕C′ ⊕ Σ(B′) Σ(D) ⊕ Σ(B′) ⊕ Σ2(A′)

D ⊕ B′ ⊕ Σ(A′) F ⊕C′ ⊕ Σ(A′) E ⊕C′ ⊕ Σ(B′) Σ(D) ⊕ Σ(B′) ⊕ Σ2(A′)

h1 // h2 //

(
Σ(l)◦ j 0 0

0 0 1

)
//

u

��u◦h1 // h2◦v //

(
Σ(l)◦ j 0 0

0 0 1

)
//
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Note that

uh1 =


1 0 −a13

b21 1 b23

0 0 1



a11 0 a13

a21 0 a23

0 0 1

 =

a11 0 0
0 0 0
0 0 1

,
h2v =


b11 0 b13

b21 1 b23

0 0 0




1 0 a13

−b21 1 a23

0 0 1

 =

b11 0 0
0 1 0
0 0 0

,
we obtain the right C̃-sequence D

a11
−−→ F

b11
−−→ E

Σ(l)◦ j
−−−−→ Σ(D) in R(C̃, Σ̃).

Therefore, we can get the following commutative diagram in Ã:

A B D ΣA

A C F ΣA

E E

ΣB ΣD

f // l // i //

g
��

a11
��

g f
//

k
//

m
//

h
��

b11
��

j
�� ��

Σl
//

⟳

where a11 is an X̃ -monic.

This completes the proof. □

Remark 3.3. In Theorem 3.2, when A = C is a triangulated category, it is just Theorem 1.5 in [2];
whenA = C is an exact category, it is just Proposition 6.13 in [1]; whenA = C is a right triangulated
category, it is just Theorem 2.14 in [4].

4. Conclusions

In this article, we show that the idempotent completion of a right suspended category has a natural
structure of right suspended category and dually this is true for a left suspended category.
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