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Abstract: For a simple connected graph G of order n, the distance signless Laplacian matrix is defined
by D¢(G) = D(G) + Tr(G), where D(G) and Tr(G) is the distance matrix and the diagonal matrix of
vertex transmission degrees, respectively. The zero divisor graph I'(R) of a finite commutative ring R is
a simple graph, whose vertex set is the set of non-zero zero divisors of R and two vertices v, w € I'(R)
are edge connected whenever vw = wy = 0. In this article, we find the D?-eigenvalues of zero divisor
graph of the ring Z, for general value n = pll1 plzz, where p; < p, are distinct prime numbers and
I1, 1, € N. Further, we investigate the D?-eigenvalues of zero divisor graphs of local rings and the rings
whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener

index of I'(Z,) for some special values of n.
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1. Introduction

Throughout this study, all graphs are simple, finite, and connected. A graph is symbolized by G =
(V(G), E(G)), where V(G) = {w,w,,...,w,} represents its vertex set, whereas E(G) represents its
edge set. Further, the number of elements in V(G) is the order n while the size m of G is the number
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of elements in E(G). We write u ~ v if a vertex u is adjacent to a vertex v. The degree (valency)
symbolized by dg(v) of a vertex v is the number of vertices incident on v. If every vertex of G has
the same degree, it is referred to as a regular graph. The n X n matrix A = (a,,), where «,, = 1
when 1 is edge connected to J, and O otherwise, is the adjacency matrix of G. Assume that Deg(G) =
diag(dy, 02, .. .,0,) is the diagonal matrix, where o; = ds(v;), i = 1,2,...,n is the vertex degrees of G.
The real symmetric positive-definite matrix Q(G) = Deg(G) + A(G) is known as the signless Laplacian
matrix, while its eigenvalue set including multiplicities is called the signless Laplacian spectrum of G.
We denote the complete graph by K,,, for more notations and terminology, see [8].

The distance d(v,w) between two unique vertices w # v is specified in G as the length of the
smallest path connecting v and w. The diameter of G is defined as the greatest distance among any two
of its vertices. The matrix D(G) = (d(v, w)) is said to be the distance matrix of G, while Trgz(u;) is the
transmission degree of u; and it is equal to the total of the distances between u; and all other vertices
inG,ie., Trg(u)) = 2, dw,uy). If Trg(v;) (or simply Tr;) is the transmission degree of v; € V(G),

weV(G)
the sequence {Tr;}, i = 1,2,...,nis known as the transmission degree sequence of G.
Suppose Tr(G) = diag(Try,Tr,,...,Tr,) is the diagonal matrix of vertex transmissions degree

sequence of G. The authors of [6] presented the signless Laplacian for the distance matrix of G. The
matrix D2(G) = D(G) + Tr(G) is known as the distance signless Laplacian matrix of G. Also, D2(G)
is real symmetric positive-definite for n > 2, so its eigenvalues are real and may be arranged say
Y1 > y2 > -++ > y,, where ¥ is said to be the D?-spectral radius. More about D¢-matrix can be seen
in [7, 15,16, 19] and references therein.

For a commutative ring R with multiplicative identity 1(# 0), the zero divisor graphs of R,
represented by I'(R), is a simple, connected and undirected graph whose vertex set is the set of non-
zero zero divisors of R, in which two vertices x; and x, are edge connected whenever x;x, = 0. The
zero divisor graphs including their adjacency and (distance) Laplacian eigenvalues have been studied
in [5,9,10,16,18,20,21,25]. For eigenvalue analysis of other graphs defined on groups, see [2,3,22-24].

The rest of the manuscript is structured as follows. In Section 2, we start with some essential results
and use them in proving our main problems. In Section 3, we deliberate the trace norms of I'(Z,) of
the D2(G)-matrix for some special values of .

2. D¢-eigenvalues of zero divisor graphs of F(szlpzz)
172

Assume an n X n matrix

Ain Aip 0 Al
3 Ari Axp -0 Agw
Am,l Am,Z e Am,m
such that, its columns and rows are partitioned according to a partition I1 = {m,7m,,...,7m,} of [ =

{1,2,...,n}. The quotient matrix Q (see [8]) of A is the matrix having m order, where (k, {)-th entry
is the average column sums (row sums) of A, .. The partition I1 is referred to as the equitable if every
block A, has some constant column (row) sum, in such case, Q is known as the equitable quotient
matrix. For equitable partitions, every eigenvalue of Q is also the eigenvalue of A.

Next, we have the definition of the joined union of graphs and state a result about D-spectrum of
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the joined union.

Definition 2.1. (Joined union) Assume G is an order n graph with vertex set V(G) = {1,2,...,n} and
G; = Gi(V;, E;) are disjoint graphs having n; order, 1 < i < n. The joined union G|G,G,,...,G,] of
graphs, is obtained by considering graphs G;, i = 1,2,...,n and connect every vertex of Gy to each
vertex of Gy, when k and € are connected in G.

Theorem 2.2. [16] For a graph G with V(G) = {uy,...,u,}, and G; is the ri-regular graphs having

n; order whose adjacency eigenvalues are r; = ;) > Ap > ... = A, whenever i = 1,2,...,n. The

DC-spectrum of G[G,,...,G,] contains the eigenvalues 2n; + n.—ri—Adx—4 fori =1,...,nand

k=23,...,n, whenn. = 3 mdg(u;,ux). The other n DC-cigenvalues of G|G.,...,G,] are the
k=1 k#i

eigenvalues of following equitable quotient matrix:

dn; + n1 -2r—4 nodg(uy, us) .. n,do(uy, u,)
mdg(uy, u dny +n, —2r —4 ... n,dg(us, u,)
0= 1 G(: 2, U1) 2 2: 2 ) G(:2 . o0
nmdg(u,, uy) nydg(u,, us) . 4dn, + nn -2r,—4

In general, it is very non trivial to determine the eigenvalues of any matrix. Here in algebraic theory
of graphs, the eigenvalues of matrices corresponding to some special graphs like the complete bipartite
graphs, the complete graphs are easily found. So, effort lies in transforming a graph by some operations
into some nicely structures, so that the maximum eigenvalues of graph can be obtained. In [10], the
authors showed that I'(Z,) may be written as the joined union of graphs, where the components are
either null graphs or cliques. The authors in [21] have found the structure of I'(Z,) with n = pl]‘ plz2
Theorem 2.3. [2]] For the zero divisor graph I'(Z,)) withn = pll‘ plzz, where p\ < p, are distinct primes
and both |, = 25y, and I, = 2s, are positive even integers, where sy, s, > 1 are positive integers. The
structure of I'(Z,) is given as:

T(Z0) = Cal Kyt oo Ky oo s Ky Koy ity Ky
K¢(1’1 ),K¢(p -1 12 e K¢(p11]-1p;2),. .. ,K¢(p11]—1), - Kqﬁ(pi‘plzz Haeees
Kyt Kt gy Ky Kyt Ko Ky K¢(p2)],

where [, is referred to as the divisor graph since its vertices are defined as proper divisors of n and
two vertices are connected if their product is a multiple of n.

From the Theorems 2.2 and 2.3, we see that out of n — 1 — ¢(n) number of D2-eigenvalues of I'(Z,),
n—1—t— ¢(n) are positive integer, where ¢ is the order of ', the other t D¢-eigenvalues of the graph
I'(Z,) are the eigenvalues of the equitable quotient matrix.

Next, we will illustrate the D?-eigenvalues of the graph I'(Z,) with n = pll1 plzz, where p; < p, are
distinct primes and /; < [, are positive even integers. This generalize the results of [16] in a natural

setting.
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Theorem 2.4. For the graph 1“(sz1 2 ), the D2-spectrum of I'(Z,)) comprises of the eigenvalues
172

Y =2N + p(pps = pl =3, fori=j=1,2,...,51,.... — 1,

Yu =2N +6(p)(p5 " ~ 1) - P =3,

)/,-:2N+p ¢(p) -3, forj:1,2,...,lz—1, andi=1+1,....[;+1 -1,
Yi+h :2N+(P1 1)¢(P )— -3,

yi:ZN—p1p2—3,f0r]:1,2,...,12, andi=1l+L+1,...,1; + 20,

Yi :2N—pf‘p£ 3, forj=1,2,...,5,— 1, and
i:ll+S212+1,...,11+S212+S2—1,

Yi :2N—pf‘pé—1,forj=sz,...,lz, andi=1 + ;b + s2,...,0 + (52 + Dby

yi=2N-plipl -1, for j=1,2,....50— 1, andi=1L + L+ 1,....,L, + L],
¥ =2N + ¢(p5 ) = piipl =1, for j=1,2,...,5,— 1, and
l—ll+lllz+1,...,+S2—1

Vi —2N+(;5(pl2 7y - plllpé— 1, for j=s3,..., b, and
i=h+Lhb+sy,....0+LbL+1L -1

with multiplicities §(p)™'p5) = L (P p; ) = L (0 "3 ) =1, .., dp}' oy ) =1, d(py )~ 1,
respectively, where i = 1,...,ly and j = 1,...,1,. The perszstmg DQ-eigenvalues of F(Zn) are the
eigenvalues of matrix (2.1).

Proof. Letn = pll‘plzz, where 2 < p; < p, are primes and 2 < [; = 2s; < 2s, = I, where s, and s, are
positive even integers. Then by Theorem 2.3, we have

I(Z,) :T”[Kaﬁ(pll‘*lplf)’ T ’K¢(pf1p122)’ T de(pf)’be(plfpf oo K¢(p 'p2y
K¢(p/11), K¢(pl -1 /2 ), ceey K(ﬁ([)? pzz), e K¢(pll|—1), “e K(P(p;] ), “e K¢([7 [752)’
.y K¢(p;1), e ey K¢(p122*1), ey K¢(p;2), ey K¢(172)]‘

We shall now use Theorem 2.2, for calculating the D?-eigenvalues of I'(Z,). For that, we first need
to know the values of n;’s. It is well established that zero divisor graphs of rings have a maximum
diameter of three, so p| ~ pi if and only if n = i = j, otherwise pi ~ p‘pi, k+i > nand pj ~
Piph, h+ j>nand finally ptps ~ piph, k> 1,h > 1. This means, d(p’i,pé) =3,if1<j,i<n-1in
T, likewise distance between other vertices is at most 2. Now,

=200 PR 4 (P PR + e+ B(PD)) + (PP -+ (PP +
+¢(p1>>+2(¢(p TP (P T P () >)+---+2(¢<pi1pl; )
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tek PI PR+ B(DI) H e+ 2P+ PP+ + B(p2) — G(p),

where by definition of ”;’ q&(pll‘_1 plzz) is removed and p; ~ plzl_1 plzz, so we subtract ¢(py). As >, ¢(d) =1,
dil
soorderof I'(Z,) isN =n—¢(n)—1 = 3, ¢(n). By applying Theorem 2.2, and using the number
1,n#d|n

I
theory identities ), qS(p"l) = p’1 — 1 and ¢(z1, 22) = ¢(21)P(z2), if and only if (71, z2) = 1, we simplify the
i=1

form of n| as:

ny =2(N — ¢(pi "' pE) + (P pET) + -+ + 9P p) + - + B(p)) = B(p1)
=2(N = ¢(p ™ p2)) + ¢(P(S(PET) + -+ B(p) + -+ B(p2) + 1) = $(p2)
=2(N — ¢(p ™' p5)) + d(Pp5 ™" — d(py).

Now, by Theorem 2.2, the D?-eigenvalues of I'(Z,) are given as:

20y +ny —ry = Ay —4 = 20(p) ' p3) + 2N — ¢(p ' p3) + (P15 T —d(p1) 0 -0 -4
= 2N+ ¢(p})py - d(p1) — 4.

Thus, 2N + ¢(plll )p122—1 — ¢(p)) — 4 is the D?-eigenvalue with multiplicity ¢(plll_1 pl;) — 1. Continuing
in the same manner, other n;.’s are given by:

n, =2(N = ¢(p 7 p2)) + p(piHpa = (p) = 1), fori=j=2,...,51,..., 1 = 1,
n, =2(N = ¢(p5)) + ¢(p\)(p5~ = D) = (p] — 1),
n, =2(N — (Pl p2 ) + p(p2pt T — (ph =D fori=1 +1,..., 0+ — 1
and j=1,...,8,....,L -1,
ny,., =2(N = ¢(pi) + d(p)(p ™ = 1) = (p5 = 1),
n, =2(N = ¢ ' p2 ) — (pip) = 1), fori=L + L+ 1,...,0 + 20,

andjzl,...,sz,...,lz,

n, =2(N - ¢l pE N = (P ph = 1), fori =1 +sib+1,..., 1 + 1l + 5, — 1

and j=1,...,5, -1,

n; =2N — (/)(pi'plzz_j) —(pi'py=D), fori=0L +sib+s,....0 +(s1 + Db

andj:s2,...,lz,

n, =2(N - ¢(p2 N - (plipl 1), fori=L + L+ 1,....0L + L+ 5~ 1
and j=1,...,5, — 1,
n, =2N — ¢(pE ) = (pip) = 1), fori=1 + Ll + s, ..., L + il + 1 — 1

andj:s2,...,lz—1.
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Now, using the values of these nls and the Theorem 2.2, the other D2-eigenvalues can be calculated
as in statement. The rest D¢-eigenvalues of the graph I'(Z,) are presented in the matrix (2.1). O
In particular if /, = 0, we have the sequel consequence of Theorem 2.4.

Corollary 2.5. For n = p", m > 2 is a positive integer, the D?-spectrum of I(Z,) contains of the
eigenvalue 2N — p' — 3 having multiplicity ¢(p%’"‘i) — 1, wherei =1,...,m — 1, and the eigenvalue
N + (p%’"‘1 —p)) =2 fori=m,...,2m — 1. The other D%-eigenvalues of T(Z,) are the eigenvalues of
the matrix (2.3).

Proof. The proper divisor set of nis {p, p3, ..., p?""'}, we see that the vertex p! is connected to p] in

T,forany j>2m —iwherel <i<2m—1and j#1i. Asndoesnotdivide(p’i)z,fori: 1,....m-1,
o)

G, - {Kﬂp%m,-) fori=1,2,...,m—-1, 02

qu(p%m—i) fOI‘ l =m,..., 2m - 1

. 2m—1
From Eq (2.2), it follows that n; = ¢(pf’"‘l), wherei=1,...,2m—1and N = } n,. Also, by definition
i=1
of nl we get
2m—1
I’l,l =2ny +2n3+ -+ 2N 0 + Moy = 2 Z n; — Noyyu—1.
i=2

Similarly, we obtain

2m—1 i
n =2 E nj—anm_j, fori=1,....m—-1,
j=1 j#i =1
and
2m
!’
nl' -_

-1 2m—1—-i
nj+ E nj, fori=m,...,2m-1.
=1 j=1

By Eq (2.2), we note that n; = K(p(p%m—l), so by Theorem 2.2, we see that

2m—1
yi=2n +n, —r —/llk—4:22n,~—n2m_1 -0-0-4=2N-¢(p;))-4=2N—-p, -3
i=1
is the / DC-eigenvalue with multiplicity ¢(p?™') — 1. Fori = 2,3,...,m — 1, proceeding as above with
n=KkK g(p2iys WE get |
yi=2N =) ¢(p))-4=2N-p| -3,
=1
2m—i

having multiplicities ¢(p] — 1, where we use the property Y, ¢(p}) = p} — 1 is used. Similarly, for
i=1

i=m,....2m—1,with G; = Ky, r; = #(p?™) — 1 and A4 = —1, the other D%-eigenvalues are
yi:Zni+n;—ri—/lik—4

AIMS Mathematics Volume 7, Issue 7, 12635-12649.
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=20(p*" )+ n; —p(P" T+ 1+ 1 -4

2m—1 2m—1-i
= E n; + Z n;— 2
=1 =1

=N+ =P -2,

having multiplicities ¢(p3™~') — 1. The rest D2-eigenvalues are of the subsequent matrix:

d, 20(p3m2) -0 20(p™Y) 29(p™) 20(p7Y) --- 29(pD) P(p1)
2¢(pi™ Y d> ce 20(pTY) 20(p) 20T o+ nawmes (1)
20(p7" ") 20(p7") oo duar 2007 (PTTH - d(PD) B(p1)
20(pmhy 20(pPm) oo (™Y dw (P - (PP B(p1) (2.3)
20(p1" Yy 20(p7") oo (P B(PT due1 - d(PD) B(p1)
20(p7™ Y d(pimD) - (P e (PP o dawa B(p1)
20(p7™ Y @(pimD o p(P™H e (P - d(PD) dae
4n; +n. — 4, fori=1,2,....m—-1,
where d; = ! O

dni+n, —2r;—4=2n+n, -2, fori=mm+1,....2m- 1.

The topological indices are molecular descriptors used in the developments of quantitative structure
activity relationships (QSARs), where molecular activities are related to the chemical structures of
graphs. There are several well known topological indices, one such is the Wiener index introduced by
Harry Wiener and has applications in chemical graph theory and computer networks (see [4, 14]).

As sum of the eigenvalues of D¢(G) is equal to twice the Wiener index, that is, Trace(D¢(G)) = 2W,
thus, we compute the Wiener index of I'(Z,) using Theorem 2.4 and Corollary 2.5. First, we shall
compute the Wiener index of F(Zp%m).

From Corollary 2.5, the spectrum of F(Zp%m) consists

2)

{(2N — p1 = 3)EON QN — p2 - BTN N — prt - 301
(2N = 1 — pmew=1l o — pmel _ iD=l N - pm=2 _ -1l (N - 2)[¢<p1>—1]}
together with the eigenvalues of the matrix (2.3), where
2m—1
N=) "= > ¢d=n—gm—1=p"—¢(pi"—-1=p"" 1.
i=1 1,n#dn
Now, the trace of the matrix (2.3)isdy +dr + -+ d,—1 +d,, + dypi1 - - - + doppr + do,,—1, Where

d = 4n,-+n;.—4, fori=1,...,m—1,
U ldnien—2r—4=2m+n -2, fori=mm+1,...,2m-1.
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2m—1 )
Also, dy = 4ny+ny =4 = 4¢(p1") +2 3 ¢(p"™) = ¢(p1) —4 = 2N + 2¢(p""") = py = 3. Similarly,
i=2
other d;’s are
g = 2N+2¢)(p?’””')—p"1 -3 fori=2,3,....m—1,
l 2N +¢(pi™y—-p. =1 fori=m,...,2m—1.

Therefore, the trace of the matrix DQ(F(Zp%m)) is given by:

Trace(DA(T(Z,2n)) = 2N = p} = 3)(@(pi"™) = 1) + 2N = p| = D@G(p" ) = 1)
+4N +26(p7" ) + ¢(p" ) = pi - p - 4.
Thus the Wiener index of F(Zp%m) is %Trace(DQ(F(Zp%m))).
Proceeding as above, the Wiener index of F(Zplvlplvz) can be found from its D¢-spectrum given in
1 2

Theorem 2.4.
Similar to Theorem 2.4 and Corollary 2.5, the D?-spectrum of F(szlpzz) can be discussed, when
172

both /; and /, are odd and when one of them is even and other is odd.
The following result demonstrates the DC-eigenvalues of zero divisor graphs of some local rings.
But before proceeding further, we need the following results.

Theorem 2.6. [7] The spectrum of D2(K,) is given below:
{@n-2),(n -2}

and that of D%(K,;) is given by:

{Sn — 8+ /9(a — b)* + 4ab
2

,@n-b-H*N 2n-a- 4)“’-”}

where n = a + b.

A complete split graph, represented by CS ., is a graph that consists of a clique on w vertices
while an independent set on the rest of n — w vertices, so that any vertex of the clique is connected with
each vertex of the independent set.

Theorem 2.7. [16] The D2-eigenvalues of CS ,,_., are given as:

{(n — )l (2p — @ — 4)lnme1 (Sn — 2w -6+ Vdwn — 6w? + 8w — 3n — 2)} .

| =

Theorem 2.8. [Theorems 6 and 7, [1]] For a finite commutative ring R, if all the possible vertices of
I'(R) (or T'(R)) have the equal degrees, then either R = F X F or Z(R)* = {0}, for some finite field F.

Theorem 2.9. Suppose R is a finite commutative ring with unity 1(# 0). We have

(i) If IRl = p}, where p, is any prime, then the D2-spectrum of T'(R) is either {(2p, —4), (p; — 3)/*~2}
or{(7p; —11),(3p; — 7)[2171—3]}’

AIMS Mathematics Volume 7, Issue 7, 12635-12649.
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(ii) If R is local having order p3, then the D2-spectrum of I (R) is either {(2p; — 3), (p] — 3)Pi-21} or

2 S5p?—2p; -9+ \/9p§—2op§+2p§+12p1+1
{(21,% ~py = S (g2 3y, - }

Zy, [x
Proof. (i) If R is local, then either R = Z,» or R = (p 1 E)] and in either case, I'(R) is a complete graph
X
whose order is p; — 1. Thus, by Theorem 2.6, we get

DY (R), x) = (x = 2p; + 4)(x — py + 3",

Therefore, spec(I'(R)) is as desired. If R is reduced, then R = Z, X Z,, , and hence I'(R) is complete
bipartite. Thus, by Theorem 2.6, we get

DO(T(R), x) = (x = (Sp1 =9 £ 2(p1 — 1)) (x = 3p1 + 7)™,

Thus, the DQ—spectrum 1s as desired.

F, [x, F, [x
(i1) If R is local and |R| = pf, then R is isomorphic to any of the subsequent: nlx ] Ep ]

(y? T ()
Zp% [x] Zp% [x] B . F, [x,¥]
57, Or — where § € Z, is a non-square element. If R = - then Z*(R) =
(p1x,x?) (p1x, x> = 3p1) (x,y)
F, [x,
{uy} U {ux} U {xu + yu'}, where u’,u € F, \ {0}. Therefore, F( é’l[ )2}]) = p% — 1, and for every
X,y
, 22 1x]
u,v € Z*(R), we have uv = 0. Thus, I'(R) = K. Also, if R = ﬁ, then Z*(R) = {xu} U {p u},
! P1X, X
. Fplxy]  Zplx]
where u € Z, \ {0}, so I'(R) = K> ;. Thus in either case, when R = 5— or X then
! (x,y) (p1x, x*)
. 2 2 2_2 . F[)] [x] . ..
D2-spectrum of I'(R) is {2p7 —3).(p - 3)lPi=21} Next, if R = &) then Z*(R) can be partitioned
X

into two subsets; Z; = {ux*lu € F,, \ {0}} and Z, = {ax + bx* | a € F,, \ {0},b € Z,}. Then Z

induces a clique having p; — 1 vertices while Z, is an independent subset. Further, for every z; € Z;

Z2[x]
P

and z, € Z,, we have z;zp = 0. Finally, if R = —,
(p1x, x* = 5p1)

Z,3[x]
(p1x, X2 = 5p1)
where, S| = {up, |u€Z, \ {0} and S, = {ux} U{up, + u'x|u,u’ € Z, \{0}}. Then, V s;,s] € S, and
$2,55 € §», we have s15] = 0, 515, = 0 and s,5, # 0. Thus, in each of these cases, I'(R) is a complete
split graph CS . Therefore, by Theorem 2.7, D2-spectrum of I'(R) is {(2p7 — 3), (p} — 3)lpi-2ly

2 S5p?—2p -9+ \/9p§—20p§+2p§+ 12p; + 1
or {(219? - p1 =Sl (pt = 3)p2, 5 } O

where § is a non-square element in

Zp,, then the vertex set of F( ) can be expressed as disjoint union of the sets §; and S,

p1—-Lpi-pi

Theorem 2.10. Suppose R is a finite commutative ring. If either T'(R) (or T(R)) is
regular, then the DP-spectrum of T(R) is either {(2|Z*(R)| — 4),(Z*(R)| — 3)Z®I-2]} o
{71z ®) - 11), Blz* (R)| - T)!2# B3I}
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Proof. 1f either I'(R) (or 1:(R)) is regular, then using Theorem 2.8, either Z(R)> = 0 or there is a field

F such that R = F x F. If Z(R)*> = 0, then ['(R) = K7+ (r)-1, then by Theorem 2.6, the D2-spectrum of

I'(R) is obtained by replacing n by |Z*(R)| — 1. Further, if R = F X F, then I'(R) = Kjz_;s-1, and hence

D?-spectrum of T'(R) is {(7|Z*(R)| — 11), B|Z*(R)| — 7)12Z ®I=31}, O
If a graph G contains a cycle that transverses each vertex, then G 1s said to be Hamiltonian.

Theorem 2.11. Suppose R = R, X R, is a finite commutative ring whose zero divisor graph is
Hamiltonian, then the D?-spectrum is given as:

1
{5|R| — 18 \/ SOIRP = 41R) = 32RIR>| + 1), QIR] + R - 1)['Rf'-l]} ,

where i, j € {1,2}, and i # j.

Proof. We prove that both R; and R, must be integral domains. If not, let Z; = {0} X Z*(R,) and
Z, = (Ry — Z(Ry)) X Z*(R,). Then, Z, is independent while there is z; € Z; and z; € Z, such that
7122 = 0. Now, a Hamiltonian cycle in I'(R) containing all vertices of Z, and therefore containing a
matching among Z; and Z,. Since, Z, is an independent set, it means |Z,| < |Z;|. This means that
IRy — Z(Ry)| < 1, implying that the only unit in R, is the identity element. Thus, R; = HZ’; for some
k € N. Consider 7/ = (1,1,---,1,0) € Ry, then (', 1) € V(I'(R, X R;)) is the only vertex which is
connected to 7”7 = (0,0,---,0, 1,0), which is the contradiction with the fact that I'(R) is Hamiltonian.
As aresult, both R; and R, are integral domains. Now, as R is finite, so I'(R) = Kg,-1,&,-1- Therefore,
by Theorem 2.6, the D?-spectrum of I'(R) is

(5IRI — 18 = VI/209RP — 4IR| = 32IR\[IRo| + 1), 2IR| + R}l = DIF1),
where i, j € {1,2},and i # j. O

3. Minimal distance signless Laplacian energy for zero divisor graphs of Z,

Suppose M,,(C) is the set of all n X n square matrices over the complex field C. For M € M, (C),
the square roots of the eigenvalues of M*M or MM* are called the singular values, where M* is the
complex conjugate of M. As MM* is positive semi-definite, so the singular values of M are non-
negative, denoted by s(M) > s,(M) > --- > s,(M). The trace norm of M € M, (C) is specified as the
sum of singular values, that is,

IMll, = s1(M) + 5:(M) + - - - + s,(M),
and the sum of the first k singular values is the Ky Fan k-norm, that is,
1Ml = s1(M) + s2(M) + - - - + s, (M).

|[M]|; is the largest singular value of M and is called the spectral norm. It is obvious that for a Hermitian
matrix M, s;(M) = |4;(M)|, and for a positive semi-definite matrix M, s;(M) = A;(M), where the
eigenvalues of M are ,;(M),i=1,...,n.

The trace norm of the symmetric matrix D¢(G)— , 1s studied under the name distance signless
Laplacian energy of G in the algebraic graph theory, where I, is the identity matrix. For the symmetric

2W(G
o,
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matrix D2(G) — 229, we have s;(D2G) - 2X21,) = |4(DYG) — 22],)| and the trace norm
(distance signless Laplacian energy or D¢-energy) [11] of G is given below:

n

DSLE(G) = Z y

i=1

Q_M‘_
n

i

3.1

b
Suppose o is the largest positive integer such that ye > @ and S4(G) = Z v; 1s the Ky Fan

i=1

k-norm (sum of k largest D2-eigenvalues) of the matrix D2(G). Then using Z vi = 2W(G), Eq (3.1)
i=1
can be written in terms of Ky Fan k-norm [11] as shown below

[on ] )
DS LE(G) = 2(2 yi W] > max {Z%’(G) _2jW(G)
i=1

1<j<n n

i=1

For some latest works on DS LE(G), see [11,13].
Assume that G-uv is the connected graph attained from G by removing an edge uv. The next result
states that the D¢-spectrum of G decreases upon edge deletion.

Lemma 3.1. [6] Suppose G is a simple graph whose order and size are n and m, respectively, where
n<mand G = G — e is a connected graph attained from G by removing an edge. If y(G) > v>(G) >
o 2 Yu(G) and y((G') = y2(G') = - -- > v,(G) are respectively the D?-eigenvalues of G and G . Then
vi(G') > y«(G) satisfies for every 1 <i < n.

Lemma 3.2. [16] Consider I'(Z,) is the zero divisor graph. Then the following hold.

(i) The D?-spectrum of I(Z,) is 2p1 =4, (p, =321,
(ii) The D2-spectrum of F(Zp?) is

I
{(zpf = pi = S, = 3, 2 (5pF - 21 = 9% \Jopt = 20p} + 207 + 12p, + 1)} .

The following result says that F(Zp%) has minimal D?-energy among all the zero divisor graphs of
order p; — 1, where p; is prime.

Theorem 3.3. Suppose I'(R) is a zero divisor graph of ring R. Then

DSLE(T(R)) > 2(k(p1 4t p -1 2kW(R))’

the equality holds iff n = p?, where p; is prime.

Proof. As we know I'(Z,) is complete if and only if n = p%. Thus by Lemma 3.1, y;(R) > yi(F(Zp%))
Vi=1,2,...,n So,
SIT(R) 2 Si(I(Zy)) = k(py =3) + p1 - 1. (3.2)
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The equality holds if and only if n = p2. Let o > 0 such that y, > 2“2 Then using Eq (3.2) and the
definition of D?-energy, we get

u 20W(T(R)) / 2iW(R)
DSLE(T(R)) =2 (Z Y2(T(R) - —] =2max | Y y2(C(R) -
— n Isjn | 4= n
J .
2jWI'(R))
Q T
> 2 max (Zl YeT(Z,2) . }
2(b - HWIT(R))
=2(k(p1—3)+p1—1— " )
with equality as in (3.2). O
2WI(Z,2))
Since ————— = p;—2 and by Lemma 3.2, itis easy to see that & = p;—1. The next consequence

n
of Theorem 3.3 provides the D?-energy of I(Z,2).
Corollary 3.4. The D%-energy of F(Zp%) is

DSLE(T(Z,)) = PP —3p +2.

The next result states that among the class of zero divisor graphs of order N = pi — 1 with
independence and clique number is p} — p; and p; — 1, respectively, the graph F(ZP?) of Ly has
the minimal trace norm.

Theorem 3.5. Assume that I'(R) is a zero divisor graph of R with independence number p% — p1, with
prime py. Then

2(p; = pHWI(R))
N b
where D = 9p} — 20p3 + 2p7 + 12p; + 1, and equality occurs iff T(R) = [(Z,).

DSLET(R) > 2| VD +2p* —3p> — p* +4p, -4 -

Proof. For n = p3, the only proper divisors of n are p; and p?, so by the definition of zero divisor graph,
I“(Zp?) =Ky 1VK 2, ie., F(Zp?) is the complete split graph with independence number p? — p;. Thus

by Lemma 3.1, yl.Q(F(R)) > yiQ(F(Zp?)) foralli=1,2,..., (p% -2), (p% —1). Also, by Lemma 3.2, the
D?-spectrum of [(Z,) is

1
{(zp% — p1 = 5P (p2 =32, 3 (Sp% -2p1 -9+ \/9p‘1‘ —-20p3 +2p + 12p; + 1)}

: e 2W 2 4 2 3 3 2 + +2
Besides, it is easy to see that — = Pi~ 2P _ Pyt P
N p-1

Since, 1 (5p$ —2p -9+ \/9p‘1‘ —20p} +2p7 + 12p; + 1) is the D%-spectral radius of [(Z,:) and is

2WI'R)
P

. Let o € N such that y¢ >

2p‘1‘—2p?—3p%+p1+2
pi—1

2w ) . .
always greater than " Again, 2pi—p; -5 > implies that p} —4p7+3 > 0,

which is true for p; > 3. Now, if

2p‘f—2pi’—3p%+p1+2
pi—1

I
5 (sp% ~2py =9~ \J9pt —20p% +2p% + 12p, + 1) <

b

AIMS Mathematics Volume 7, Issue 7, 12635-12649.



12647

then we obtain (p? — 1) \/9p‘1‘ —20p} +2p? + 12p; + 1 — p} —2p} + 8p7 — 5 > 0, the inequality is true
for p; > 3. Similarly, the smallest D9-eigenvalue p? — 3 is always less than average of the eigenvalues.
Thus, o = 1 + p} — p1 — 1 = p? — p; and by definition of the D%-energy, we have

psL =2( 3¢ - 270 2 2y {Z Y@ - 2]-%@)
_ z(Sp% 2y =94 VD4 (= pr— 2= pr— 5y 2P PxW(F(R)))
) 2(‘/5 +2p) = 3pi - pi+4Ap -4 - i p;W(F(R)))’
where D = 9p] — 20p; + 2p? + 12p; + 1 and the equality holds if and only if ['(R) = [(Z,). O

The trace norm of I'(Z p?) is obtained as a result of the previous theorem.

Corollary 3.6. The D%-energy of I'(Z p7) is given as:

2p‘1‘—7pf+pf+79+1

DSLE(T(Z,)) = A[9p" ~20p} +2p2 + 12p, + 1 + o
1

The parameter o is very well studied [12] for different types of matrices associated with graphs. It
is a very non trivial problem to characterize classes of graphs with particular o- and more interesting
is to relate it with the parameters of a graph. There are rare graphs, where o coincides with the
independence number of graph. From Theorem 3.5, we see that I'(Z 3) is one such family with o same
as the independence number.

4. Conclusions

The present article studies the distance signless Laplacian eigenvalues of the zero divisor graph
F(szl.p,z) and the results are more general than in [16]. However, there are still gaps in the articel as all
eigevalues of corresponding equitable quotient matrices cannot be found and in general the technique
cannot be used for finding the distance signless Laplcain eigenvalues of I'(Z,) as calculations become
very hectic and majority of non integral distance signless Lpalacian eigenvalues of the corresponding
matrix remains unknown. Some numerial methods may help in approximating the eigenvalue of
equitable quotient matrix.
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