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Abstract: In this paper, cluster synchronization in finite/fixed time for semi-Markovian switching
complex dynamical networks (CDNs) with discontinuous dynamic nodes is studied. Firstly, the global
fixed-time convergence principle of nonlinear systems with semi-Markovian switching is developed.
Secondly, the novel state-feedback controllers, which include discontinuous factors and integral terms,
are designed to achieve the global stochastic finite/fixed-time cluster synchronization. In the framework
of Filippov stochastic differential inclusion, the Lyapunov-Krasovskii functional approach, Takagi-
Sugeno(T-S) fuzzy theory, stochastic analysis theory, and inequality analysis techniques are applied,
and the global stochastic finite/fixed time synchronization conditions are proposed in the form of linear
matrix inequalities (LMIs). Moreover, the upper bound of the stochastic settling time is explicitly
proposed. In addition, the correlations among the obtained results are interpreted analytically. Finally,
two numerical examples are given to illustrate the correctness of the theoretical results.
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1. Introduction

As we all know, complex dynamical networks (CDNs) generally are described by graphs, where
the states are seen as nodes, and the communication information between nodes is denoted as an
edge. In CDNs, each node has unique dynamic behavior, and the whole network can present different
complex dynamics. In the past decades, CDNs have become a hot spot in various fields because they
can represent multifarious real systems, such as biological networks, the World Wide Web, neural
networks, genetic networks, ecosystems, social networks, biomolecular networks, and so forth [1–4].
CDNs consists of a large set of interconnected nodes, where each node is a basic unit with specific
dynamic behavior, including stability, dissipativity, passivity and synchronization.

As a typical dynamic behavior of CDNs, synchronization is a fascinating phenomenon, which
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has important practical significance and broad application prospects. For example, after a great
speech, the applause of the audience can change gradually from chaos to consensus. Therefore,
the synchronization issue has attracted attention from many scholars in various fields: biomedicine,
engineering technology, information communication and so on. Recently, there have many
different synchronization patterns, such as phase synchronization [5], exponential synchronization [6],
projective synchronization [7], finite-time synchronization [8], and fixed-time synchronization [9].
In these types of synchronization, all coupled nodes tend to present a common state as the network
evolves, which is called complete synchronization. Nevertheless, complete synchronization of the
entire network is not desirable or even possible. Therefore, cluster synchronization occurs in the
application, that is, the nodes in the network are divided into several clusters, and the nodes in the same
cluster are synchronized, while those nodes in different clusters are not synchronized. In recent years,
a growing amount of attention has been paid to cluster synchronization in networks. In [10], cluster
stochastic synchronization of complex networks was investigated, and a quantized controller was
designed to realize the synchronization of CDNs within a settling time. The cluster synchronization
problem for a class of CDNs with coupled time delays was discussed in [11].

It is worth noting that the above types of synchronization are asymptotic synchronization. However,
compared with asymptotic synchronization, states can realize synchronization in finite time, in which
the settling time is dependent on the initial states. Therefore, finite-time synchronization can only
be utilized in a situation where the initial conditions are known. In comparison with finite-time
synchronization, the stochastic settling time of fixed-time synchronization [12–16] is regardless of
initial conditions. Recently, the finite-time and fixed-time cluster synchronization problems for
CDNs have attracted increasing attention due to rapid convergence and better robustness to suppress
uncertainties and disturbances. The problem of finite-time cluster synchronization for nonlinear CDNs
with hybrid couplings based on aperiodically intermittent control was discussed in [17]. The authors
in [18] studied the fixed-time cluster synchronization problem for a class of directed community
networks with discontinuous nodes via periodically or aperiodically switching control. In [19], the
cluster stochastic synchronization of CDNs via a fixed-time control scheme was discussed. The authors
in [20] studied the fixed/preassigned-time cluster synchronization problem for multi-weighted CDNs
with stochastic disturbances based on quantized adaptive pinning control.

As we all know, there are still a host of stochastic or unknown factors in the actual systems.
Therefore, it is of great practical significance to study the dynamic properties of stochastic systems.
Markovion jump systems are suitable for characterizing and modeling different types of systems with
abrupt changes [21] and were extensively studied in many aspects, such as stability analysis, static
output feedback controller design, and H∞ filtering problems [22–28]. For singular Markovian jump
systems, there are abundant conclusions: especially, the issue of static output feedback control was
studied in [29–32]. Unfortunately, the sojourn time in the Markovian jump model used in [33] is
subject to the exponential distribution with the memoryless property, which is hard to promise in many
practical systems [34]. It is worth mentioning that the sojourn-time in a semi-Markovian switching
process [35] can be supposed to obey other probability distributions, such as the Weibull distribution
or the Gaussian distribution. Hence, the investigation of semi-Markovian switching CDNs is of
great theoretical value and practical significance. In [36], finite-time H∞ synchronization for CDNs
with semi-Markovian jump topology was discussed. The event-triggered synchronization for semi-
Markovian switching CDNs with hybrid couplings and time-varying delays was discussed in [37].
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In reality, fuzzy logic has a close relationship with the synchronicity and complexity of CDNs. As
an extremely important method proposed by Takagi and Sugeno, the fuzzy control approach provides
a systematic method for studying the nonlinear systems by expressing a specific nonlinear system as
a fuzzy sum of linear subsystems. For instance, in [38], fuzzy differential equations were used to
describe the existing vague concepts of uncertainty components. The fuzzy logic theory [39] has been
widely accepted as a simple and feasible method to deal with nonlinear systems. Hence, it is necessary
to investigate the fuzzy CDNs. Among various fuzzy systems, one of the most important models is the
Takagi-Sugeno (T-S) fuzzy system [40], which has been shown to approximate any smooth nonlinear
system to any specified accuracy. In the past decade, T-S fuzzy systems have developed rapidly:
fault detection, H∞ control, sampling systems, networked control systems and so on (see [41–45] and
references therein). Recently, the research of T-S fuzzy networks has become a hot research topic.
In [46], the issue of reliable mixed H∞ passive control for T-S fuzzy delayed networks based on a
semi-Markovian jump model was concerned by using the LMI method. Synchronization and robust
stability of T-S fuzzy networks with time-varying delay were discussed in [47] and [48]. In [49],
global exponential synchronization of Takagi-Sugeno fuzzy CDNs with multiple time-varying delays
and stochastic perturbations was studied via delayed impulsive distributed control. It is worth pointing
out that, there is no relevant result about global stochastic finite/fixed-time cluster synchronization for
discontinuous semi-Markovian switching T-S fuzzy CDNs currently.

Motivated by the aforementioned discussions, in this paper our objective is to investigate the global
stochastic finite/fixed-time cluster synchronization for discontinuous semi-Markovian switching T-S
fuzzy CDNs. By employing Filippov discontinuous theory, the Lyapunov stability theory, Lyapunov-
Krasovskii functional approach and stochastic analysis techniques, the global finite/fixed-time cluster
synchronization conditions are addressed in the form of LMIs. The innovations of this paper compared
with the existing results are summarized below:

(1) It is the first time to investigating the global stochastic finite/fixed-time cluster synchronization
for T-S fuzzy CDNs with discontinuous activations under semi-Markovian switching.

(2) A principle of the global stochastic stability in fixed time for the nonlinear system with semi-
Markovian switching is developed; see Lemma 2.

(3) A fuzzy switching state-feedback discontinuous controller is designed to achieve the global
finite/fixed time cluster synchronization.

(4) The stochastic finite/fixed-time cluster synchronization conditions are obtained in terms of
LMIs.

(5) The upper bounds of the setting time of stochastic finite/fixed time cluster synchronization are
explicitly evaluated.

The rest of this paper is organized as follows. In Section 2, some useful lemmas, definitions, and
system models are provided. In Section 3, some criteria for the global stochastic finite/fixed-time
cluster synchronization of T-S fuzzy semi-Markovian CDNs with discontinuous nodes are established,
and the upper bound of stochastic settling time is explicitly proposed. In Section 4, two numerical
simulations are provided to illustrate the effectiveness of the theoretical results. Finally, the conclusion
is given in Section 5.
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Table 1. Notations.

Symbol Meaning
R and N Sets of real numbers and nonnegative integers

Rn×m and Rn Set of n × m matrices and n-dimensional vectors
Z+, Z̄+ and R̄+ {z ∈ Z : z > 0}, {z ∈ Z : z ≥ 0} and {z ∈ R : z > 0}

IN N-dimensional identify matrix
diag{· · · } Block diagonal matrix

A > 0 (A < 0) Positive (Negative) definite matrix
λmax(A)(λmin(A)) Maximal (Minimal) eigenvalue of A

AT (A−1) Transpose(Inverse) of matrix A
||x||2 Euclidean norm of x
Pr{·} Probability
E· Mathematical expectation
⊗ Kronecker product
L Infinitesimal operator

2. Materials and methods

2.1. Preliminaries

In this subsection, the fixed-time stochastic stability principle for the nonlinear semi-Markovian
switching system is presented, and some useful definitions and lemmas are provided for the analysis
of the main objective.

The three stochastic processes [35] are described as follows:
(1) Stochastic process {ρk}k∈Z̄+

takes values in N in which ρk denotes the index of the system mode
at the kth transition.

(2) Stochastic process {tk}t∈Z̄+
takes values in R̄+, in which tk is the time at the kth transition.

Moreover, t0 = 0, tk increases monotonically with k.
(3) Stochastic process {hk}t∈Z̄+

takes values in R̄+, in which hk = tk − tk−1, refers to the sojourn time
of mode rk−1 between the (k − 1)th transition and kth transition, and h0 = 0.

Then, we introduce the semi-Markovian process as follows:

Definition 1. ([35]) Stochastic process ρ(t) = ρk, t ∈ [tk, tk+1), is said to be a homogeneous semi-
Markovian process if the following two conditions hold for ı,  ∈ N , t0, t1, . . . , tk ≥ 0:

i) Pr{ρk+1 = , hk+1 ≤ h | ρk, . . . , ρ0, tk, . . . , t0} = Pr{ρk+1 = , hk+1 ≤ h | ρk},
ii) The probability Pr{ρk+1 = , hk+1 ≤ h | ρk = ı} is independent on k,

hold, where h is sojourn time.

In this paper, the network model described by the continuous-time and discrete-state homogeneous
semi-Markovian process with right continuous trajectories is established. Based on Definition 1, state
ρ(t) takes values in N , and transition rate matrix Π(h) = (πı (h))N×N is characterized by

Pr{ρk+1 = , hk+1 ≤ h + δ | ρk = ı, hk+1 > h} =

{
πı (h)δ + o(δ), ı , ,

1 + πıı(h)δ + o(h), ı = 
(2.1)
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where δ > 0, lim
δ→0

o(δ)
δ

= 0, for ı ,  (ı,  ∈ N), πı (h) ≥ 0 is the transition rate from mode ı at time t to

mode  at time t + δ, and πıı(h) = −
∑N

=1, ,ı πı (h), for ı ∈ N .
Generally, the transition rate Πı (h) is bounded, i.e., π

ı 
≤ πı (h) ≤ π̄ı , where π

ı 
and π̄ı  are positive

constants. As a consequence, πı (h) can always be written as πı (h) = πı  + 4πı , where πı (h) =
1
2 (π̄ı  + π

ı 
) , |4πı | ≤ λı  with λı  = 1

2 (π̄ı  − πı ).
Consider the following semi-Markovian switching system:

ẋ(t) = g(x(t), t, ρ(t)), x(0) = x0, ρ(0) = ρ0, (2.2)

where x(t) ∈ Rn is the state vector of the system, g: Rn × R̄+ × N → Rn is a continuous nonlinear
function, ρ(t) is the continuous-time semi-Markovian process, and ρ0 is the initial mode. Assume that,
for any x0 ∈ Rn, ρ0 ∈ N , there exists a global solution with the initial state x0 and initial mode ρ0,
which is defined as x(t, x0, ρ0) for system (2.2).

Definition 2. ([36]) For any x0 ∈ Rn, ρ0 ∈ N , if there exists a stochastic function T : Rn → (0,+∞),
which is called the stochastic settling-time function, such that the solution x(t, x0, ρ0) of system (2.2)
satisfies

lim
t→T (x0)

E{‖ x(t, x0, ρ0) ‖} = 0,

when t ≥ E{T (x0, ρ0)}, ‖ x(t, x0, ρ0) ‖≡ 0, then system (2.2) is said to be globally stochastic stable in
finite time.

Definition 3. ([36]) If system (2.2) is globally stochastic stable in finite time, and E{T (x0, ρ0)} is
bounded, namely, ∃Tmax > 0 such that E{T (x0, ρ0)} ≤ Tmax for ∀x0 ∈ Rn, then system (2.2) is said
to be globally stochastic stable in fixed time.

In the present paper, we suppose that V : R̄+ × Rn × N → R is a continuous and differential
functional, x(t) ∈ Rn, and ρ(t) is a continuous-time and discrete-state semi-Markovian process. Then,
the infinitesimal operator of stochastic functional V(t, x(t), ρ(t)) is given by

LV(t, x(t), ı) =Vt(t, x(t), ı) + Vx(t, x(t), ı)ẋ(t) +

N∑
=1

πı (h)V(t, x(t), ),

where ı,  ∈ N , Vt(t, x(t), ρ(t)) =
∂V(t,x(t),ρ(t))

∂t , Vx(t, x(t), ρ(t)) = (∂V(t,x(t),ρ(t))
∂xi1

, . . . , ∂V(t,x(t),ρ(t))
∂xin

)>.

Lemma 1. ([41]) Let V(t, x(t), ρ(t)) ∈ C2,1(R+×Rn×N ; R+) be positive definite and radially unbounded.
If there exists a continuous function ℵ : (0,+∞)→ R for v ∈ (0,+∞), such that

i) LV(t, x(t), ρ(t)) ≤ −ℵ(V(t, x(t), ρ(t))),
ii) for any 0 ≤ s < +∞,

∫ s

0
1
ℵ(v)dv < +∞,

iii) for v > 0, ℵ̇(v) ≥ 0

hold, then system (2.2) is globally stochastic finite-time stable in probability. Moreover, the stochastic
settling time Tε satisfies

Tε ≤

∫ V(0,x0,ρ0)

0

1
ℵ(v)

dv.
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In this paper, we consider ℵ(v) = kvµ − θv for all v ∈ (0,+∞), and θ
k v1−µ < µ ,where µ ∈ (0, 1) and

k > 0, θ > 0; then

Tε ≤
ln(1 − θ

k V1−µ(0, x0, ρ0))
θ(µ − 1)

.

Lemma 2. Let x(t) = x(t, x0, ρ0) be the solution of system (2.2) with initial value x0 ∈ Rn {0} and initial
mode ρ0 ∈ N . If there exists a continuous stochastic functional V : Rn × N → R+, such that

i) V(x, ρ) > 0, x , 0, and V(0, ρ) = 0,
ii)V(x, ρ)→ +∞, as‖x‖ → +∞,
iii)LV(x(t), ρ(t)) ≤ −αVξ(x(t), ρ(t)) − βVη(x(t), ρ(t)) − c

hold, then, system (2.2) is globally stochastic stable in fixed time, and the upper bound Tmax of the
stochastic settling time can be calculated explicitly by

E{T (x0, ρ0)} ≤ Tmax =
1
c

(
(

c
α

)
1
ξ

ξ

1 − ξ
+ (

c
β

)
1
η

η

η − 1

)
,

where α, β > 0 and 0 < ξ < 1, η > 1.

Proof. The proof is divided into two cases.
Case 1: In this case, we prove that system (2.2) is globally stochastic stable in finite time.
Let φ(V) =

∫ V

0
1
T(θ)dθ, where T(θ) = αθξ + βθη + c. Obviously, φ(V) > 0, and φ(V) = 0 if and only

if V = 0.
Set T (x0, ρ0) = φ(V(x0, ρ0)). In the following, we claim that there exists t1 ∈ (0,E{T (x0, ρ0)}), such

that E{‖ x(t, x0, ρ0) ‖2} = 0. Otherwise, E{‖ x(t, x0, ρ0) ‖2} , 0 on (0,E{T (x0, ρ0)}).
By the formula dV(x(t), ρ(t)) = LV(x(t), ρ(t))dt, it follows from condition iii) that

E {φ(V(x(T (x0, ρ0)), ρ(T (x0, ρ0))))} − E{φ(V(x0, ρ0))}

= E

{∫ V(x(T (x0,ρ0)),ρ(T (x0,ρ0))))

V(x0,ρ0)
dφ(V)

}
= E

{∫ V(x(T (x0,ρ0)),ρ(T (x0,ρ0))))

V(x0,ρ0)

1
T(V(x(t), ρ(t)))

dV(x(t), ρ(t))
}

= E

{∫ T (x0,ρ0)

0

LV(x(t), ρ(t))
T(V(x(t), ρ(t)))

dt
}

≤ −E

{∫ T (x0,ρ0)

0
dt

}
= −E

{
T (x0, ρ0)

}
,

i.e,

E{φ(V(x(T (x0, ρ0)), ρ(T (x0, ρ0))))} ≤ E{φ(V(x0, ρ0))} − E{T (x0, ρ0)} = 0, (2.3)

which yields that E{φ(V(x(T (x0, ρ0)), ρ(T (x0, ρ0))))} = 0 by the positive definiteness of φ(V). This
leads to a contradiction.
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Next, we prove that E{‖ x(t, x0, ρ0) ‖2} = 0 for all t ≥ t1. If it does not hold, then there exists t2 ≥ t1,
such that E{‖ x(t, x0, ρ0) ‖2} , 0. Let

t3 = sup{t ∈ [t1, t2) : E{‖ x(t, x0, ρ0) ‖2} = 0}.

Obviously, t1 < t3 < t2, E{‖ x(t, x0, ρ0) ‖2} = 0, and E{‖ x(t, x0, ρ0) ‖2} , 0 for any t ∈ (t3, t2].
Analogous to the proof of (2.3), we can get

E{φ(V(x(T (x(t2), ρ(t2))))} ≤ −(t2 − t3) < 0.

It contradicts with the non-negativity of φ. Therefore, for all t > t1, E{‖ x(t, x0, ρ0) ‖2} = 0. This
implies that system (2.2) is globally stochastic stable in finite time.

Case 2: In this case, we show that E{T (x0, ρ0)} is bounded.

E{T (x0, ρ0)} =E {φ(V(x0, ρ0))} = E

{∫ V(x0,ρ0)

0

1
αθξ + βθη + c

dθ
}
≤ E

{∫ +∞

0

1
αθξ + βθη + c

dθ
}

≤

{∫ s1

0

1
αθξ + βθη + c

dθ
}

+

{∫ s2

s1

1
αθξ + βθη + c

dθ
}

+

{∫ +∞

s2

1
αθξ + βθη + c

dθ
}

≤

∫ s1

0

1
αθξ

dθ +

∫ s2

s1

1
c

dθ +

∫ +∞

s2

1
βθη

dθ

=
1

α(1 − ξ)
s1−ξ

1 +
s2 − s1

c
+

1
β(η − 1)

s1−η
2 ,

where s1, s2 are arbitrary positive numbers. This derives that E{T (x0, ρ0)} is bounded for any x0 ∈ Rn

and ρ0 ∈ N .
On the basis of Cases 1 and 2, we can conclude that system (2.2) is globally stochastic stable in

fixed time.
In the following, we develop an accurate estimation for E{T (x0, ρ0)}. To do so, set

g(s1, s2) =
1

α(1 − ξ)
s1−ξ

1 +
s2 − s1

c
+

1
β(η − 1)

s1−η
2 ;

then 
gs1(s1, s2) = 1

α
s−ξ1 −

1
c = 0,

gs2(s1, s2) = 1
c −

1
β
s−η2 = 0, s1, s2 > 0,

and we obtain that the stationary point (s1, s2) = (( c
α
)

1
ξ , ( c

β
)

1
η ), which shows that g(s1, s2) reaches its

minimum value gmin,

gmin =
1
c

((
c
α

)
1
ξ

ξ

1 − ξ
+ (

c
β

)
1
η

η

η − 1
).

Thus, E{T (x0, ρ0)} ≤ gmin. The proof is complete.

Remark 1. It should be noted that, fixed-time stability problem of systems was widely studied [50–
52]. However, there is no result with respect to the settling-time in the published literature, which
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can be derived by Lyapunov functional V(t) satisfying LV(x(t)) ≤ −αVξ(x(t)) − βVη(x(t)) − c. In
this paper, on the basis of the conditions of Lemma 2, global fixed-time stability is discussed with
respect to nonlinear systems (2.2) with stochastic switching, and the upper bound of the settling time
is proposed. Furthermore, since Lemma 2 is independent of a specific stochastic process in reality, the
semi-Markovian process ρ(t) in system (2.2) can be related to any stochastic process.

2.2. System model description

In this paper, we consider a class of CDNs with semi-Markovian switching and time-varying delay,
which can be described by

ẋi(t) = − A(ρ(t))xi(t) + B(ρ(t)) fi(xi(t)) + c1

N∑
j=1

d(ρ(t))i jΓ1(ρ(t))x j(t)

+ c2

N∑
j=1

q(ρ(t))i jΓ2(ρ(t))x j(t − τ(t)) + ui(t),

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))> ∈ Rn is the state vector of the ith node, ρ(t) is a semi-
Markovian switching process, and fi : R × Rn × Rn → Rn is a nonlinear vector-valued function.
A(ρ(t)) = diag{a1(ρ(t)), a2(ρ(t)), . . . , an(ρ(t))} is a diagonal matrix with positive entries ai(ρ(t)),
B(ρ(t)) ∈ Rn×n, τ(t) represents time-varying delay in CDNs, and c1 and c2 are coupling strengths.
Γ1(ρ(t)) = diag{δ1

1(ρ(t)), δ2
1(ρ(t)), . . . , δn

1(ρ(t))} and Γ2(ρ(t)) = diag{δ1
2(ρ(t)), δ2

2(ρ(t)), . . . , δn
2(ρ(t))}

represent the inner-coupling matrices among the clusters, respectively. D(ρ(t)) = (di j(ρ(t)))N×N and
Q(ρ(t)) = (qi j(ρ(t)))N×N are non-delayed and time-varying delayed out-coupling configuration matrices
that stand for the topological structure; ui(t) is the control input.

Divide N nodes into Ω clusters, i.e, {1, 2, . . . ,N} = K1 ∪ K2 ∪ . . . ∪ KΩ, Kω
⋂
Kh = ∅, where

h, ω ∈ {1, 2, . . . ,Ω}. For convenience, set K1 = {1, 2, . . . , ν1}, K2 = {ν1 + 1, ν1 + 2, . . . , ν2}, KΩ =

{νΩ−1 + 1, νΩ−1 + 2, . . . , νΩ}, and v0 = 0, vΩ = N.
Then, the outer coupling matrix D can be characterized by the following block form:

D(ρ(t)) =


D11(ρ(t)) D12(ρ(t)) . . . D1Ω(ρ(t))
D21(ρ(t)) D22(ρ(t)) . . . D2Ω(ρ(t))

...
...

. . .
...

DΩ1(ρ(t)) DΩ2(ρ(t)) . . . DΩΩ(ρ(t))

 ,
where each diagonal block Dωω = (di j(ρ(t)))(νω−νω−1)×(νω−νω−1) represents the interactions in the
community Kω. Here, for i, j ∈ Kω, i , j, di j(ρ(t)) > 0 are satisfied, dii(ρ(t)) = −

∑νω
j=νω−1+1 di j(ρ(t)),

and each non-diagonal block Dωh = di j(ρ(t)))(νω−νω−1)×(νh−νh−1) represents the interactions between the
communities Kω and Kh, which are satisfied

∑νh
j=νh−1+1 di j(ρ(t)) = 0, i ∈ Kω, j ∈ Kh, h , ω. Similarly,

Q(ρ(t)) has the same properties as D(ρ(t)).
(A1) For i = 1, 2, . . . ,N, fi : Rn → Rn is continuous except on a countable set of isolated points σk,

each of which has a finite left limit fi(σ−k ) and right limit fi(σ+
k ) , respectively. Moreover, fi has at most

a finite number of jump discontinuous points in every compact interval of R.
Under the assumption (A1), for the ωth cluster (1 ≤ ω ≤ Ω), we define fνω−1+1 = fνω−1+2 =

. . . = fνω = fω; fω is undefined at the points where fω is discontinuous, and c̄o[ fω(x)] =

AIMS Mathematics Volume 7, Issue 7, 11942–11971.
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(c̄o[ fω1(xi1)], c̄o[ fω2(xi2)], . . . , c̄o[ fωn(xin)]), where c̄o[∗] denotes the closure of the convex hull of set ∗.
It follows that c̄o[ fωl] = [min{ fωl(x−il), fωl(x+

il)},max{ fωl(x−il), fω(x+
il)}], i ∈ Kω.

(A2) for each i = 1, 2, . . . ,N, l = 1, 2, . . . , n, there exist positive constants Lωlε, zωl, ε = 1, 2, . . . , n,
such that

| fωl(x(t)) − fωl(y(t)) |≤
n∑
ε=1

Lωlε | xε(t) − yε(t) | +zωl. (2.4)

(A3) τ(t) is a bounded and continuously differentiable function, meeting 0 < τ̇(t) < ϑ ≤ 1 and
0 ≤ τ(t) ≤ τ.

Definition 4. A function x : [0,T )→ Rn, T ∈ (0,+∞), is a Filippov solution of CDNs on [−τ,T ) if:
(i) x(t) is continuous on [−τ,T ] and absolutely continuous on [0,T ),
(ii) there is φω(t) ∈ c̄o[ fω(xi(t))], which is a measurable function, such that

φ(t) = (φω1(t), φω2(t), . . . , φωn(t))>: [−τ,T )→ Rn, for a.e. t ∈ [0,T ),

ẋi(t) = − A(ρ(t))xi(t) + B(ρ(t))φω(xi(t)) + c1

N∑
j=1

d(ρ(t))i jΓ1(ρ(t))x j(t)

+ c2

N∑
j=1

q(ρ(t))i jΓ2(ρ(t))x j(t − τ(t)) + ui(t),

(2.5)

where i ∈ Kω, φω satisfying system (2.5) is called an output solution associated with the state xi(t).

Let sω, ω = 1, 2, . . . ,Ω, denotes the target trajectories defined by

ṡω(t) = −A(ρ(t))sω(t) + B(ρ(t))φω(sω(t)), (2.6)

which may be equilibrium points, periodic orbits or even chaotic attractors.
Analogous to Definition 4, the solution of system (2.6) in the Filippov sense can be given as follows:

Definition 5. A function s(t) : [0,T )→ Rn, T ∈ (0,+∞), is defined as a solution of CDNs on [0,T ) if
(i) s(t) is absolutely continuous on [0,T ),
(ii) given φ̄(t) ∈ c̄o[ fω(sω(t))], there exists a measurable function φ̄(t) = (φ̄1(t), φ̄2(t), . . . , φ̄n(t))>

:[0,T )→ Rn, such that, for almost all t ∈ [0,T ),

ṡi(t) = − A(ρ(t))sω(t) + B(ρ(t))φ̄ω(sω(t)). (2.7)

Define ei(t) = xi(t) − sω(t), i ∈ Kω, as the synchronization errors. Then, taking (2.5) with (2.7), in
the Filippov sense, the error dynamic system can be written as

ėi(t) = − A(ρ(t))ei(t) + B(ρ(t))φ̂ω(ei(t)) + c1

N∑
j=1

d(ρ(t))i jΓ1(ρ(t))e j(t)

+ c2

N∑
j=1

q(ρ(t))i jΓ2(ρ(t))e j(t − τ(t)) + ui(t),

(2.8)

where i ∈ Kω, φ̂ω(t) = φω(t) − φ̄ω(t), φω(t) ∈ c̄o[ fω(xi(t))], φ̄ω(t) ∈ c̄o[ fω(sω(t))].
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For simplicity, we denote A(ρ(t)), B(ρ(t)), Γ1(ρ(t)), Γ2(ρ(t)), D(ρ(t)), Q(ρ(t)) by Aρ, Bρ, Γ1
ρ, Γ2

ρ, Dρ,
Qρ for ρ(t) ∈ N . Then, system (2.8) can be rewritten as

ėi(t) = −Aρei(t) + Bρφ̂ω(ei(t)) + c1

N∑
j=1

dρ,i jΓ
1
ρe j(t) + c2

N∑
j=1

qρ,i jΓ
2
ρe j(t − τ(t)) + ui(t), i ∈ Kω. (2.9)

Moreover, a T-S fuzzy model can be described by a set of fuzzy IF-THEN rules that characterize
local relations of a nonlinear system in the state space. The l-th rule for semi-Markovian switching
CDNs in (2.9) is represented as

Fuzzy rule l: IF ∅1 is Ml1, ∅2 is Ml2,. . .,∅s is Mls,
THEN:

ėi(t) = −Al
ρei(t) + Bl

ρφ̂ω(ei(t)) + c1

N∑
j=1

dl
ρ,i jΓ

1
ρe j(t) + c2

N∑
j=1

ql
ρ,i jΓ

2
ρe j(t − τ(t)) + ui(t), i ∈ Kω, (2.10)

where l = 1, 2, . . . ,m, where m is the number of IF-THEN rules. The premise variables ∅1, ∅2, . . . ∅s are
proper state variables, and Mlp(p = 1, 2, . . . , s) is the fuzzy set that is characterized by the membership
function. Using the singleton fuzzifier, product fuzzy inference, and a weighted average defuzzifier,
the final output of the T-S fuzzy system is inferred as follows:

ėi(t) =

m∑
l=1

hl(∅(t))[−Al
ρei(t) + Bl

ρφ̂ω(ei(t)) + c1

N∑
j=1

dl
ρ,i jΓ

1
ρe j(t) + c2

N∑
j=1

ql
ρ,i jΓ

2
ρe j(t − τ(t))] + ui(t), i ∈ Kω,

(2.11)

where ∅(t) = (∅1(t), ∅2(t), . . . , ∅s(t))>, hl(∅(t)) =
wl(∅(t))∑m

l=1 wl(∅(t))
, wl(∅(t)) =

∏s
p=1 Mlp(∅p(t)), wl(∅(t)) ≥ 0, and∑m

l=1 wl(∅(t)) ≥ 0. It is clear that
m∑

l=1

hl(∅(t)) = 1, hl(∅(t)) ≥ 0,

for all t ∈ R+, where hl(∅(t)) can be regarded as the normalized weight of the IF-THEN rules. In this
paper, we will denote hl(∅(t)) = hl for simplicity.

In order to obtain the main results in this paper, the following lemmas are given.

Lemma 3. ([8]) For any vector x, y ∈ Rn, scalar δ > 0 and positive definite matrix Q ∈ Rn×n,

2x>y ≤ δx>Qx + δ−1y>Q−1y.

Lemma 4. ([50]) Let ϕ1, ϕ2, . . . , ϕn ≥ 0, 0 < p ≤ 1, and q > 1. Then,
n∑

i=1

ϕ
p
i ≥ (

n∑
i=1

ϕi)p,

n∑
i=1

ϕ
q
i ≥ n1−q(

n∑
i=1

ϕi)q.

Lemma 5. ([51]) Let ψ1, ψ2, . . . , ψn ≥ 0, 0 < p < q. Then,

(
n∑

i=1

ψ
p
i )

1
p ≥ (

n∑
i=1

ψ
q
i )

1
q .
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Lemma 6. ([53]) (Schur complement) Given constant matrices Ξ1, Ξ2 and Ξ3, where Ξ1 = Ξ>1 and
Ξ2 > 0,

Ξ1 + Ξ>3 Ξ−1
2 Ξ3 < 0,

if and only if (
Ξ1 Ξ>3
Ξ3 −Ξ2

)
< 0.

3. Main results

3.1. Stochastic finite-time cluster synchronization for semi-Markovian switching T-S fuzzy CDNs with
discontinuous dynamic nodes

In this section, by designing state-feedback controllers with the discontinuous terms, we consider
the global stochastic cluster synchronization in finite time for semi-Markovian switching T-S fuzzy
CDNs under the case τ(t) = τ. The global stochastic finite-time cluster synchronization conditions are
addressed in the form of LMIs.

Then, system (2.11) can achieve global stochastic finite time stability under the following controller:

u1
i (t) = − Kρei(t) − Hρsign(ei(t))λ2

min(Pρ) −
1
2
ηρ
λmax(Pρ)
λ2

min(Pρ)
sign(ei(t)) | ei(t) |α

−
1
2
ηρ(

∫ t

t−τ
e>i (s)Mρei(s)ds)

1+α
2

ei(t)
‖ei(t)‖2

,

where 0 < α < 1, Kρ = diag{kρ1, kρ2, . . . , kρn}, Hρ = diag{hρ1, hρ2, . . . , hρn} and Mρ =

diag{mρ1,mρ2, . . . ,mρn} are the controller gain matrices, kρε , hρε and mρε ε = 1, 2, . . . , n are non-
negative constants to be designed, and ηρ is a tunable constant.

Note that controller u1
i (t) is discontinuous, which is a special case of assumption (A1). Then, there

exists a measurable function S ign(ei(t)) ∈ c̄o[sign(ei(t))] such that

ξ1
i (t) = − Kρei(t) − HρS ign(ei(t)) −

1
2
ηρ
λmax(Pρ)
λ2

min(Pρ)
S ign(ei(t)) | ei(t) |α

−
1
2
ηρ(

∫ t

t−τ
e>i (s)Mρei(s)ds)

1+α
2

ei(t)
‖ei(t)‖2

,

where ξ1
i (t) ∈ c̄o[u1

i (t)],

c̄o[sign(ei(t))] =


1, ei(t) > 0,
[-1,1], ei(t) = 0,
−1, ei(t) < 0.

(3.1)

The designed controller described by the T-S fuzzy model is composed of a set of fuzzy rules.
Fuzzy rule l: IF ∅1 is Ml1, ∅2 is Ml2,. . .,∅s is Mls, THEN
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ξ1
i (t) = − Kl

ρei(t) − Hl
ρS ign(ei(t)) −

1
2
ηρ
λmax(Pρ)
λ2

min(Pρ)
S ign(ei(t)) | ei(t) |α

−
1
2
ηρ(

∫ t

t−τ
e>i (s)Mρei(s)ds)

1+α
2

ei(t)
‖ei(t)‖2

.

(3.2)

The state-feedback controller is deduced as

ξ1
i (t) =

m∑
l=1

hl

[
− Kl

ρei(t) − Hl
ρS ign(ei(t)) −

1
2
ηρ
λmax(Pρ)
λ2

min(Pρ)
S ign(ei(t)) | ei(t) |α

−
1
2
ηρ(

∫ t

t−τ
e>i (s)Mρei(s)ds)

1+α
2

ei(t)
‖ei(t)‖2

]
.

(3.3)

Theorem 1. Suppose that assumptions A1 and A2 are satisfied. For any ρ ∈ N , if there exist positive
definite matrices Pρ, Mρ, Oρ, Hρ and positive scalars ζ, ηρ, such that the following LMIs hold,Z ⊗ | PρBl

ρ | + | PρBl
ρ |
>

2

 − IN ⊗ Hl
ρ

 < 0,

N∑
k=1

πρk(IN ⊗ Mk) − ηρ(IN ⊗ Mρ) < 0,
(3.4)

Φ =


Φ11 0 Φ13

∗ Φ22 0
∗ ∗ Φ33

 < 0, (3.5)

then system (2.11) can achieve global stochastic stability in finite time. Moreover, the upper bound of
the stochastic settling time is given by

Tε =
2 ln(1 − b

aV
1−α

2 (0, x0, ρ0))
a(1 − α)

, (3.6)

where Φ11 =
∑N

k=1,k,ρ

(
πρk(IN ⊗ Pk) +

λ2
ρk

4 (IN ⊗ Oρk)
)

+ πρρ(IN ⊗ Pρ) − (IN ⊗ PrAl
ρ) + (L ⊗

|PρBl
ρ |+|PρBl

ρ |
>

2 ) +

c1(Dl
ρ⊗PρΓ

1
ρ)+c2

1
2ζ(Ql

ρ⊗PρΓ
2
ρ)(Q

l
ρ⊗PρΓ

2
ρ)
>− (IN ⊗Kl

ρ),Φ22 = c2
ζ

(IN ⊗ In)− (IN ⊗Mρ),Φ13 =
{
IN ⊗ (Pρ−

P1), . . . , IN ⊗ (Pρ − Pρ−1), IN ⊗ (Pρ − Pρ+1), . . . , IN ⊗ (Pρ − PN)
}
, Φ33 =

{
IN ⊗ Oρ,1, . . . , IN ⊗ Oρ,ρ−1, IN ⊗

Oρ,ρ+1, . . . , IN ⊗ Oρ,N

}
, Z = diag{z1, . . . , z1︸    ︷︷    ︸

ν1

, . . . , zΩ, . . . , zΩ︸     ︷︷     ︸
νΩ−νΩ−1

}, L = diag{L1, . . . , L1︸     ︷︷     ︸
ν1

, . . . , LΩ, . . . , LΩ︸       ︷︷       ︸
νΩ−νΩ−1

}, a =

min{ηρλ
− 1+α

2
max (Pρ), ηρλmin(Pρ)}, b = {ηρ,

λmax(Mρ)
λmin(Pρ) }.

Proof. Consider the following stochastic Lyapunov-Krasovskii functional:

V(t, e(t), ρ) =

N∑
i=1

e>i (t)Pρei(t) +

N∑
i=1

∫ t

t−τ
e>i (s)Mρei(s)ds. (3.7)
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Calculating LV(t, e(t), ρ) along the trajectory of the error system (2.11), we have

LV(t, e(t), ρ) =

Ω∑
ω=1

∑
i∈Kω

e>i (t)Pρ

( m∑
l=1

hl

[
− Al

ρei(t) + Bl
ρφ̂ω(t) + c1

N∑
j=1

dl
ρ,i jΓ

1
ρe j(t)

+ c2

N∑
j=1

ql
ρ,i jΓ

1
ρe j(t − τ)

]
+ ξ1

i

)
+

N∑
i=1

e>i (t)(
N∑

k=1

πρk(h)Pk)ei(t)

+

N∑
i=1

N∑
k=1

πρk(h)
∫ t

t−τ
e>i (s)Mkei(s)ds +

N∑
i=1

e>i (t)Mρei(t) −
N∑

i=1

e>i (t − τ)Mρei(t − τ).

(3.8)

Substituting (3.3) into (3.8), we obtain that

LV(t, e(t), ρ) =

m∑
l=1

hl

[ Ω∑
ω=1

∑
i∈Kω

−2e>i (t)PρAl
ρei(t) +

Ω∑
ω=1

∑
i∈Kω

e>i (t)PρBl
ρφ̂ω(t)

+ c1

Ω∑
ω=1

∑
i∈Kω

N∑
j=1

e>i (t)dl
ρ,i jΓ

1
ρe j(t) + c2

Ω∑
ω=1

∑
i∈Kω

N∑
j=1

e>i (t)ql
ρ,i jΓ

2
ρe j(t − τ)

−

Ω∑
ω=1

∑
i∈Kω

e>i (t)Kl
ρPρei(t) −

Ω∑
ω=1

∑
i∈Kω

Hl
ρS ign(ei(t))ei(t) − ηρ

λmax(Pρ)
λ2

min(Pρ)

N∑
i=1

e>i (t)Pρ | ei(t) |α

−

N∑
i=1

ηρPρ(
∫ t

t−τ
e>i (s)Mρei(s)ds)

1+α
2

]
+

N∑
i=1

e>i (t)Mρei(t) +

N∑
i=1

e>i (t)(
N∑

k=1

πρk(h)Pρ)ei(t)

+

N∑
i=1

N∑
k=1

πρk(h)
∫ t

t−τ
e>i (s)Mkei(s)ds −

N∑
i=1

e>i (t − τ)Mρei(t − τ).

(3.9)

Employing Lemma 3, there is a positive constant ζ satisfying

2c2

v∑
m=1

∑
i∈Cm

N∑
j=1

e>i (t)ql
ρ,i jΓ

2
r e j(t − τ) = 2c2e>(t)(Ql

ρ ⊗ PρΓ
2
ρ)e(t − τ)

≤
c2

ζ
e>(t − τ)(IN ⊗ Ine(t − τ)) + c2ζe>(t)[Ql

ρ ⊗ PρΓ
2
ρ][Q

l
ρ ⊗ PρΓ

2
ρ]
>e(t).

(3.10)

In addition, by means of assumptions (A1) and (A2), we have

Ω∑
ω=1

∑
i∈Kω

e>i (t)PρBl
ρφ̂ω(t) =

Ω∑
ω=1

∑
i∈Kω

n∑
ε=1

n∑
l=1

| e>il (t) || PρBl
ρ | φ̂ωε(t)

≤

Ω∑
ω=1

∑
i∈Kω

| e>i (t) | PρBl
ρ | Lω | ei(t) | +

Ω∑
ω=1

∑
i∈Kω

| PρBl
ρ || e

>
i (t) | zω
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≤

Ω∑
ω=1

∑
i∈Kω

 | PρBl
ρ | + | PρBl

ρ |
>

2

 Lωe>i (t)ei(t) +

Ω∑
ω=1

∑
i∈Kω

zω
| PρBl

ρ | + | PρBl
ρ |
>

2
| e>i (t) |

=

L ⊗
| PρBl

ρ | + | PρBl
ρ |
>

2

 e>i (t)ei(t) +

Z ⊗ | PρBl
ρ | + | PρBl

ρ |
>

2

 | e>i (t) |,

(3.11)

where Z = diag{z1, . . . , z1︸    ︷︷    ︸
ν1

, . . . , zΩ, . . . , zΩ︸     ︷︷     ︸
νΩ−νΩ−1

}, L = diag{L1, . . . , L1︸     ︷︷     ︸
ν1

, . . . , LΩ, . . . , LΩ︸       ︷︷       ︸
νΩ−νΩ−1

}.

For ρ, k ∈ N , considering πρk = πρk + 4πρk, 4πρρ =
∑N

k=1,k,ρ 4πρk and employing Lemma 6, the
following inequality holds:

N∑
k=1

πρk(h)Pk =

N∑
k=1

πρkPk +

N∑
k=1,k,ρ

4πρkPk + 4πρρPρ

=

N∑
k=1

πρkPk +

N∑
k=1,k,ρ

4πρk(Pk − Pρ)

=

N∑
k=1

πρkPk +

N∑
k=1,k,ρ

[
1
2
4πρk(Pk − Pρ) +

1
2
4πρk(Pk − Pρ)]

≤

N∑
k=1

πρkPk +

N∑
k=1,k,ρ

[
λ2
ρk

4
Oρk + (Pk − Pρ)O−1

ρk (Pk − Pρ)].

(3.12)

For simplicity, let e(t) = [e>1 (t), e>2 (t), . . . , e>N(t)]>; by using the Kronecker product and substituting
(3.10)-(3.12) into (3.9), it holds that

LV(t, e(t), ρ) ≤
m∑

l=1

hl

[
e>(t)

( N∑
k=1

πρk(IN ⊗ Pk) +

N∑
k=1,k,ρ

[λ2
ρk

4
(IN ⊗ Oρk) + (IN ⊗ (Pk − Pρ)O−1

ρk (Pk − Pρ))
])

e(t)

− e>(t)(IN ⊗ PρAl
ρ)e(t) + c1e>(t)(Dl

ρ ⊗ PρΓ
2
ρ)e(t) +

c2

2ζ
e>(t − τ)(IN ⊗ In)e(t − τ)

+ (L ⊗
| PρBl

ρ | + | PρBl
ρ |
>

2
)e>(t)e(t) + (Z ⊗

| PρBl
ρ | + | PρBl

ρ |
>

2
) | e(t) |

+
c2ζ

2
e>(t)[Ql

ρ ⊗ PρΓ
2
ρ][Q

l
ρ ⊗ PρΓ

2
ρ]
>e(t) − e>(t)(IN ⊗ PρKl

ρ)e(t) − (IN ⊗ Hl
ρ) | e(t) |

−

N∑
i=1

ηρ
λmax(Pρ)
λmin(Pρ)

| ei(t) |α| ei(t) | −ηρλmin(Pρ)
N∑

i=1

(
∫ t

t−τ
e>i (t)Mρei(t))

1+α
2

]

+ e>(t)(IN ⊗ Mρ)e(t) +

N∑
i=1

N∑
k=1

πρk

∫ t

t−τ
e>i (s)Mkei(s)ds − e>(t − τ)(IN ⊗ Mρ)e(t − τ)

+ ηρ

N∑
i=1

∫ t

t−τ
e>i (t)Mρei(t) − ηρ

N∑
i=1

∫ t

t−τ
e>i (t)Mρei(t).

(3.13)
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By virtue of (3.4), (3.13) is rewritten as

LV(t, e(t), ρ) ≤EΦE − ηρ
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei(t) |α| ei(t) | −λmin(Pρ)
N∑

i=1

ηρ

(∫ t

t−τ
e>i (s)Mρei(s)ds

) 1+α
2

+ ηρ

N∑
i=1

∫ t

t−τ
e>i (s)Mρei(s)ds +

λmin(Mρ)
λmin(Pρ)

N∑
i=1

e>i (t)Pρei(t),

(3.14)

where E = [e(t), e(t− τ)]>. Φ =

(
Φ̂11 0
∗ Φ22

)
, in which, Φ̂11 =

∑N
k=1,k,ρ

(
πρk(IN ⊗ Pk) +

λ2
ρk

4 (IN ⊗Oρk)
)
+

πρρ(IN ⊗ Pρ) +
∑N

k=1,k,ρ IN ⊗
(
(Pk − Pρ)O−1

ρk (Pk − Pρ)
)
− (IN ⊗ PρAl

ρ) + (L⊗
|PρBl

ρ |+|PρBl
ρ |
>

2 ) + c1(Dl
ρ ⊗ PρΓ

1
ρ) +

c2ζ

2 (Ql
ρ ⊗ PρΓ

2
ρ)(Q

l
ρ ⊗ PρΓ

2
ρ)
> − (IN ⊗ Kl

ρ), Φ22 = c2
ζ

(IN ⊗ In) − (IN ⊗ Mρ).
It should be noted that there exist nonlinear terms (Pk − Pρ)O−1

ρk (Pk − Pρ) in matrix Φ. As we
know, it’s difficult to solve matrix inequalities with nonlinear terms. To this end, we denote Φ11 =[∑N

k=1,k,ρ
(
πρk(IN ⊗ Pk) +

λ2
ρk

4 (IN ⊗ Oρk)
)

+ πρρ(IN ⊗ Pρ) − (IN ⊗ PρAl
ρ) +

(
L ⊗

|PρBl
ρ |+|PρBl

ρ |
>

2

)
+ c1(Dl

ρ ⊗

PρΓ
1
ρ) +

c2ζ

2 (Ql
ρ ⊗ PρΓ

2
ρ)(Q

l
ρ ⊗ PρΓ

2
ρ)
> − (IN ⊗ Kl

ρ)
]
. It is easy to see that, Φ̂11 = Φ11 +

∑N
k=1,k,ρ(IN ⊗(

(Pk − Pρ)O−1
ρk (Pk − Pρ)

)
. By Lemma 6 and (3.12), we get

Φ̂ =

(
Φ̂11 0
∗ Φ22

)
+ diag{

m∑
k=1,k,ρ

IN ⊗ ((Pk − Pρ)O−1
ρk (Pk − Pρ))} =


Φ11 0 Φ13

∗ Φ22 0
∗ ∗ Φ33

 < 0,

where Φ13 = {IN ⊗ (Pρ − P1), . . . , IN ⊗ (Pρ − Pρ−1), IN ⊗ (Pρ − Pρ+1), . . . , IN ⊗ (Pρ − PN)}, Φ33 =

{IN ⊗ Oρ1, . . . , IN ⊗ Oρρ−1, IN ⊗ Oρρ+1, . . . , IN ⊗ OρN}.
According to Lemma 4, we have

(
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei(t) |α| ei(t) |) =
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei j(t) |α+1,

(
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei j(t) |α+1)
1

1+α ≥ (
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei j(t) |2)
1
2 ,

(
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei j(t) |α+1) ≥ (
λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei j(t) |2)
1+α

2 ≥ λ
− 1+α

2
min (Pρ)(

N∑
i=1

ei(t)Pρei(t))
1+α

2 .

(3.15)

Combining with (3.14) and (3.15), it follows that

LV(t, e(t), ρ) ≤ − ηρλ
− 1+α

2
min (Pρ)

 N∑
i

ei(t)Pρei(t)


1+α

2

− λmin(Pρ)ηρ
N∑

i=1

(∫ t

t−τ
e>i (s)Mρei(s)ds

) 1+α
2

+ ηρ

N∑
i=1

∫ t

t−τ
e>i (s)Mρei(s)ds +

λmax(Mρ)
λmin(Pρ)

N∑
i=1

e>i (t)Pρei(t)
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≤ − ηρλ
− 1+α

2
min (Pρ)

 N∑
i=1

ei(t)Pρei(t)


1+α

2

− ηρλmin(Pρ)

 N∑
i=1

∫ t

t−τ
e>i (s)Mρei(s)ds


1+α

2

+ ηρ

N∑
i=1

∫ t

t−τ
e>i (s)Mrei(s)ds +

λmax(Mρ)
λmin(Pρ)

N∑
i=1

e>i (t)Pρei(t)

≤ − a
( N∑

i=1

ei(t)Pρei(t) +

N∑
i=1

∫ t

t−τ
e>i (s)Mρei(s)ds

) 1+α
2

+ b
( N∑

i=1

e>i (t)Pρei(t) +

N∑
i=1

∫ t

t−τ
e>i (s)Mρei(s)ds

)
≤ − aV

1+α
2 (t, e(t), ρ) + bV(t, e(t), ρ),

(3.16)

where a = min{ηρλ
− 1+α

2
max (Pρ), ηρλmin(Pρ)}, b = {ηρ,

λmax(Mρ)
λmin(Pρ) }.

On the basis of Lemma 1, system (2.11) is globally stochastic finite-time stable. This means that
system (2.5) and (2.7) can achieve global stochastic finite-time synchronization, and the settling time
is estimated by

Tε =
2 ln(1 − b

aV
1−α

2 (0, x0, ρ0))
a(α − 1)

. (3.17)

This completes the proof.

Remark 2. It is seen from (3.17) that the stochastic cluster synchronization can be achieved in finite
time. However, the settling time depends on the initial value. This implies that, when the initial value
is unknown, the synchronization results in finite time have certain limitations.

3.2. Stochastic fixed-time cluster synchronization for semi-Markovian switching T-S fuzzy CDNs with
discontinuous dynamic nodes

In this subsection, the global stochastic fixed-time synchronization conditions for the considered
network systems (2.11) are achieved. To this end, the control law is designed as follows:

u2
i =


−Hρsign(ei(t)) − k1

ρ
λmax(Pρ)
λmin(Pρ) sign(ei(t)) | ei(t) |λ −k2

ρ
λmax(Pρ)
λ2

min(Pρ) sign(ei(t)) | ei(t) |µ

−ςρ
ei(t)
‖ei(t)‖2

− (
∫ t

t−τ(t)
e>i (s)Wρei(s)ds) ei(t)

‖ei(t)‖2
−$ρ(

∫ t

t−τ(t)
e>i (s)Mρei(s)ds)

µ+1
2

ei(t)
‖ei(t)‖2

−%ρ(
∫ t

t−τ(t)
e>i (s)Mρei(s)ds)

λ+1
2

ei(t)
‖ei(t)‖2

, ei(t) , 0,
0, ei(t) = 0,

(3.18)

where 0 < α < 1, Hρ = diag{hρ1, hρ2, . . . , hρn} is the controller gain matrix, hρε , ε = 1, 2, . . . , n are
nonnegative constants, Pρ,Wρ and Mρ are positive definite matrices, and k1

ρ, k2
ρ, ςρ and %ρ are tunable

constants.
Based on assumption (A1) and the IF-THEN rules, we redesign the T-S fuzzy state feedback
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controller with the discontinuity. Similar to (3.3), we get

ξ2
i =



∑m
l=1 hl

[
− Hl

ρS ign(ei(t)) − ςρ
ei(t)
‖ei(t)‖2

− k1
ρ
λmax(Pρ)
λmin(Pρ) S ign(ei(t)) | ei(t) |λ

−k2
ρ
λmax(Pρ)
λ2

min(Pρ) S ign(ei(t)) | ei(t) |µ −
(∫ t

t−τ(t)
e>i (s)Wρei(s)ds

)
ei(t)
‖ei(t)‖2

−$ρ(
∫ t

t−τ(t)
e>i (s)Mρei(s)ds)

µ+1
2

ei(t)
‖ei(t)‖2

− %ρ
(∫ t

t−τ(t)
e>i (s)Mρei(s)ds

) λ+1
2 ei(t)
‖ei(t)‖2

]
, ei(t) , 0,

0, ei(t) = 0.

(3.19)

Next, we will establish a set of sufficient conditions for system (2.11) to realize global stochastic
stability in fixed time in the presence of the designed controller (3.19).

Theorem 2. Suppose the assumptions (A1) − (A3) hold. If there exist scalars k1
ρ > 0, k2

ρ > 0, ςρ > 0,
%ρ > 0 and n × n real matrices Hρ, Pρ, Wρ,Oρ, Mρ > 0, ρ ∈ {1, 2, . . . ,N}, such that the following LMIs
holds,

∆ =


∆11 0 ∆13

∗ ∆22 0
∗ ∗ ∆33

 < 0, (3.20)

N∑
k=1

πρk(h)(IN ⊗ Pρ) − (IN ⊗ PρWρ) < 0,Z ⊗ | PρBl
ρ | + | PρBl

ρ |
>

2

 − (IN ⊗ MρHl
ρ) < 0,

(3.21)

then system (2.11) can achieve global stochastic stability in fixed time. Moreover, the upper bound of
the stochastic settling time is given by

E {T (x0, ρ0)} ≤ Tmax =
1
c

( c
γ

) 2
u+1 u + 1

1 − u
+

(
c
β

) 2
λ+1 λ + 1

λ − 1

 , (3.22)

where Ω11 =
∑N

k=1,k,ρ

(
πρk(IN⊗Pk)+

λ2
ρk

4 (IN⊗Oρk)
)
+πρρ(IN⊗Pρ)−(IN⊗PρAl

ρ)+(L⊗
|PρBl

ρ |+|PρBl
ρ |
>

2 )+ 1
2c2ζ(Ql

ρ⊗

PρΓ
2
ρ)(Q

l
ρ⊗PρΓ

2
ρ)
>+c1(Dl

ρ⊗PρΓ
1
ρ), Ω22 = c2

2ζ (IN⊗In)−(1−ϑ)(IN⊗Mr), Ω13 = [IN⊗(Pρ−P1), . . . , IN⊗(Pρ−

Pρ−1), IN⊗(Pρ−Pρ+1), . . . , IN⊗(Pρ−PN)], Ω33 = diag{IN⊗Oρ1, . . . , IN⊗Oρ(ρ−1), IN⊗Oρ(ρ+1), . . . , IN⊗OρN},

γ = min{k1
ρλ
−

1+µ
2

min (Pρ), λmin(Pρ)$ρ}, β = min[2kρ2(Nλmax)
1−λ

2 , λmin(Mρ)%ρN
1−λ

2 ], c = ςρλmin(IN ⊗ Pρ). Z
and L are the same as in Theorem 1.

Proof. Consider the following Lyapunov-Krasovskii functional:

V(t, e(t), ρ) =

N∑
i=1

e>i (t)Pρei(t) +

N∑
i=1

∫ t

t−τ(t)
e>i (s)Mρei(s)ds. (3.23)
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By assumption (A3), calculating LV(t, e(t), ρ) along the trajectory of the error system (2.11) gives

LV(t, e(t), ρ) =

Ω∑
ω=1

∑
i∈Kω

(
e>i (t)Pρ

m∑
l=1

hl

{
− Al

ρei(t) + Bl
ρφ̂ω(t) + c1

N∑
j=1

dl
ρ,i jΓ

1
ρe j(t) + c2

N∑
j=1

ql
ρ,i jΓ

2
ρe j(t − τ(t))

}
+ ξ2

i

)
+

N∑
i=1

e>i (t)(
N∑

k=1

πρk(h)Pρ)ei(t) −
N∑

i=1

(1 − ϑ)e>i (t − τ(t))Mρei(t − τ(t))

+

N∑
i=1

e>i (t)Mρei(t) +

N∑
k=1

N∑
i=1

πρk(h)
∫ t

t−τ(t)
e>i (s)Mρei(s)ds.

(3.24)

Substituting (3.19) into the above inequality, we can get

LV(t, e(t), ρ) =

m∑
l=1

hl

[
−

Ω∑
ω=1

∑
i∈Kω

e>i (t)PρAl
ρei(t) +

Ω∑
ω=1

∑
i∈Kω

e>i (t)PρBl
ρφ̂ω(t) + c1

Ω∑
ω=1

∑
i∈Kω

N∑
j=1

e>i (t)dl
ρ,i jPρΓ

1
ρe j(t)

+ c2

Ω∑
ω=1

∑
i∈Kω

N∑
j=1

e>i (t)ql
ρ,i jPρΓ

2
ρe j(t − τ(t)) −

N∑
i=1

e>i (t)PρHl
ρS ign(ei(t))

− k1
ρ

N∑
i=1

e>i (t)λmax(Pρ)S ign(ei(t)) | ei(t) |λ −k2
ρ

N∑
i=1

e>i (t)
λmax(Pρ)
λmin(Pρ)

S ign(ei(t)) | ei(t) |µ

− ςρ

N∑
i=1

e>i (t)Pρ

ei(t)
‖ ei(t) ‖2

+

N∑
i=1

e>i (t)Mρei(t) −
N∑

i=1

Pρ

(∫ t

t−τ(t)
e>i (s)Wρei(s)ds

)

− %ρ

N∑
i=1

Pρ

(∫ t

t−τ(t)
e>i (s)Mρei(s)ds

) λ+1
2

]
+

N∑
i=1

e>i (t)

 N∑
k=1

πρk(h)Pρ

 ei(t)

−

N∑
i=1

(1 − ϑ)e>i (t − τ(t))Mρei(t − τ(t)) +

N∑
k=1

N∑
i=1

πρk(h)
∫ t

t−τ(t)
e>i (s)Mρei(s)ds.

(3.25)

By using the Kronecker product and substituting (3.10)-(3.12) into (3.25), we get

LV(t, e(t), ρ) =

m∑
l=1

hl

[
− e>(t)(IN ⊗ PρAl

ρ)e(t) +

L ⊗
| PρBl

ρ | + | PρBl
ρ |
>

2

 e>(t)e(t)

+

Z ⊗ | PρBl
ρ | + | PρBl

ρ |
>

2

 | e(t) | +c1e>(t)(Dl
ρ ⊗ PρΓ

1
ρ)e(t)

+
c2ζ

2
e>(t)(Ql

ρ ⊗ PρΓ
2
ρ)(Q

l
ρ ⊗ PρΓ

2
ρ)
>e(t) +

c2

2ζ
e>(t − τ(t))(IN ⊗ In)e(t − τ(t))

− (IN ⊗ PrHl
ρ) | ei(t) | −ςρ(IN ⊗ Pρ) − k1

ρ

N∑
i=1

λmax(Pρ) | ei(t) |λ+1

− k2
ρ

N∑
i=1

λmax(Pρ)
λmin(Pρ)

| ei(t) |µ+1 −(IN ⊗ Pρ)
(∫ t

t−τ(t)
e>(s)(IN ⊗Wρ)e(s)ds

)
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− %ρe>(t)(IN ⊗ Pρ)
( ∫ t

t−τ(t)
e>(s)(IN ⊗ Mρ)e(s)ds

) λ+1
2
]

+ e>(t)
( N∑

k=1

πρk(IN ⊗ Pk)

+

N∑
k=1,k,ρ

[λ2
ρk

4
(IN ⊗ Oρk) + (IN ⊗ (Pk − Pρ)O−1

ρk (Pk − Pρ))
])

e(t) + e>(t)(IN ⊗ Mρ)e(t)

− (1 − ϑ)e>(t − τ(t))(IN ⊗ Mρ)e(t − τ(t)) +

N∑
k=1

πρk(h)
∫ t

t−τ(t)
e>i (s)(IN ⊗ Mρ)e(s)ds.

(3.26)

In the light of (3.21), (3.26) is rewritten as

LV(t, e(t), ρ) ≤E∆E − 2ςρ(IN ⊗ Pρ) − k1
ρ

N∑
i=1

e>i (t)λmax(Pρ) | ei(t) |λ+1

− k2
ρ

N∑
i=1

e>i (t)
λmax(Pρ)
λmin(Pρ)

| ei(t) |µ+1 −%ρ(IN ⊗ Pρ)
(∫ t

t−τ(t)
e>(s)(IN ⊗ Mρ)e(s)ds

) λ+1
2

,

(3.27)

where E = [e(t), e(t − τ)]>, and ∆ =

(
∆̄11 0
∗ ∆22

)
, where ∆̄11 =

∑m
l=1 hl

[∑N
k=1,k,ρ(πρk(IN ⊗ Pk) +

λ2
ρk

4 (IN ⊗

Oρk)) + πρρ(IN ⊗ Pρ) +
∑N

k=1,k,ρ IN ⊗ ((Pk − Pρ)O−1
ρk (Pk − Pρ))− (IN ⊗ PρAl

ρ) + (L⊗
|PρBl

ρ |+|PρBl
ρ |
>

2 ) +
c2ζ

2 (Ql
ρ ⊗

PρΓ
2
ρ)(Q

l
ρ ⊗ PrΓ

2
ρ)
> + c1(Dl

ρ ⊗ PrΓ
1
ρ)
]
, ∆22 = c2

2ζ (IN ⊗ In) − (IN ⊗ Mρ).

For the nonlinear terms (Pk − Pρ)O−1
ρk (Pk − Pρ), the method in this part is similar to that in Theorem

1, so we can get

∆ =

(
∆̄11 0
∗ ∆22

)
+ diag{

∑
k=1.k,ρ

(IN ⊗ (Pk − Pρ)O−1
ρk (Pk − Pρ))} =


∆11 0 ∆13

∗ ∆22 0
∗ ∗ ∆33

 < 0,

where Ω13 = [IN ⊗ (Pρ − P1), . . . , IN ⊗ (Pρ − Pρ−1), IN ⊗ (Pρ − Pρ+1), . . . , IN ⊗ (Pρ − PN)], Ω33 =

[IN ⊗ Oρ1, . . . , IN ⊗ Oρ(ρ−1), IN ⊗ Oρ(ρ+1), . . . , IN ⊗ OρN].
In view of Lemma 4 and Lemma 5, it follows that

 N∑
i=1

λmax(Pρ)
λmin(Pρ)

| ei(t) |µ+1


1
µ+1

≥

(
λmax(Pρ)
λmin(Pρ)

| ei(t) |2
) 1

2

,

λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei(t) |µ+1≥

λmax(Pρ)
λmin(Pρ)

N∑
i=1

| ei(t) |2


1+µ
2

≥ λ
−

1+µ
2

min (Pρ)

 N∑
i=1

e>i (t)Pρei(t)


1+µ

2

,

$ρ

N∑
i=1

Pρ

(∫ t

t−τ(t)
e>i (s)Mρei(s)ds

) µ+1
2

≥ λmin(Pρ)$ρ

 N∑
i=1

∫ t

t−τ(t)
e>i (s)Mρei(s)ds


µ+1

2

.

(3.28)
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Moreover,

N∑
i=1

e>i (t)λmax(Pρ) | ei(t) |λ+1= λmax(Pρ)
N∑

i=1

(
e>i (t)ei(t)

) 1+λ
2

≥λmax(Pρ)
1−λ

2

N∑
i=1

(
e>i (t)Pρei(t)

) 1+λ
2

≥ (Nλmax(Pρ))
1−λ

2

( N∑
i=1

e>i (t)Prei(t)
) 1+λ

2

,

%ρ

N∑
i=1

Pρ

(∫ t

t−τ(t)
e>i (s)Mρei(s)ds

) λ+1
2

≥ λmin(Pρ)%ρN
1−λ

2

 N∑
i=1

∫ t

t−τ(t)
e>i (s)Mρei(s)ds


λ+1

2

.

(3.29)

Applying (3.29) and Lemma 4, it follows that

k1
ρλ
−

1+µ
2

min (Pρ)

 N∑
i=1

e>i (t)Pρei(t)


1+µ

2

+ λmin(Pρ)$ρ

 N∑
i=1

∫ t

t−τ(t)
e>i (s)Mρei(s)ds


1+u

2

≥γ

( N∑
i=1

e>i (t)Pρei(t)) + (
N∑

i=1

(
∫ t

t−τ(t)
e>i (s)Mρei(s)ds))


1+u

2

,

(3.30)

where γ = min{k1
ρλ
−

1+µ
2

min (Pρ), λmin(Pρ)$ρ}.
Similarly, based on (3.30) and Lemma 4, we can derive

k2
ρ(Nλmax(Pρ))

1−λ
2

 N∑
i=1

e>i (t)Pρei(t)


1+λ

2

+ λmin(Pρ)%rN
1−λ

2

 N∑
i=1

∫ t

t−τ(t)
e>i (s)Mρei(s)ds


λ+1

2

≥β

 N∑
i=1

e>i (t)Mρei(t) +

N∑
i=1

∫ t

t−τ(t)
e>i (s)Pρei(s)ds


λ+1

2

,

(3.31)

where β = min[2
3−λ

2 kρ2(Nλmax)
1−λ

2 , λmin(Mρ)%ρ(2N)
1−λ

2 ].
Then, according to (3.21), (3.22), (3.30) and (3.31), we can obtain that

LV(t, e(t), ρ) ≤ −γV
u+1

2 − βV
λ+1

2 − c, (3.32)

where c = ςρλmin(IN ⊗ Pρ).
On the basis of Definition 2 and Lemma 2, system (2.11) can achieve global stochastic stability in

fixed time under controller (3.19). Moreover,

Tmax =
1
c

[(
c
γ

)
2

u+1
u + 1
1 − u

+ (
c
β

)
2
λ+1
λ + 1
λ − 1

]. (3.33)

According to Lemma 2, the fixed-time cluster synchronization is finally realized. The proof is
completed.

Remark 3. It can be seen that the settling time of fixed-time synchronization does not depends on
the initial value. Compared with the finite time, fixed-time synchronization is more practical when the
initial value is arbitrarily selected.
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4. Simulation results

In this section, we provide two examples to illustrate the correctness of the obtained theoretical
results. Consider the T-S fuzzy semi-Markovian switching CDNs with 5 nodes, where the nodes are
divided into two groups, K1 = {x1, x2, x3} and K2 = {x4, x5}, and have two modes. The dynamical
equations are described by

ẋi(t) = − Aρxi(t) + Bρ fω(xi(t)) + c1

5∑
j=1

dρ,i jΓ
1
ρx j(t) + c2

5∑
j=1

qρ,i jΓ
2
ρx j(t − τ(t)) + ui(t), i ∈ Kω, (4.1)

where ω = 1, 2, r = 1, 2.
•Mode 1
Fuzzy rule 1: IF ∅1 is 0, THEN:

ẋi(t) = − A1
1xi(t) + B1

1 fω(xi(t)) + c1

5∑
j=1

d1
1,i jΓ

1
1x j(t) + c2

5∑
j=1

q1
1,i jΓ

2
1x j(t − τ(t)) + ui(t), i ∈ Kω.

Fuzzy rule 2: IF ∅1 is 1, THEN:

ẋi(t) = − A2
1xi(t) + B2

1 fω(xi(t)) + c1

5∑
j=1

d2
1,i jΓ

1
1x j(t) + c2

5∑
j=1

q2
1,i jΓ

2
1x j(t − τ(t)) + ui(t), i ∈ Kω.

•Mode 2
Fuzzy rule 1: IF ∅2 is 0, THEN:

ẋi(t) = − A1
2xi(t) + B1

2 fω(xi(t)) + c1

5∑
j=1

d1
2,i jΓ

1
2x j(t) + c2

5∑
j=1

q1
2,i jΓ

2
2x j(t − τ(t)) + ui(t), i ∈ Kω.

Fuzzy rule 2: IF ∅2 is 1, THEN:

ẋi(t) = − A2
2xi(t) + B2

2 fω(xi(t)) + c1

5∑
j=1

d2
2,i jΓ

1
2x j(t) + c2

5∑
j=1

q2
2,i jΓ

2
2x j(t − τ(t)) + ui(t), i ∈ Kω.

Example 1. In this example, the effectiveness of Theorem 1 is verified. Consider the three-dimensional
T-S fuzzy semi-Markovian switching CDNs, where each node is described by Chua’s circuit. Set τ(t) =

τ = 1; the system parameters are given as follows: c1 = 1.065, c2 = 1.09545,

A1
1 = A2

1 = A1
2 = A2

2 =


−13.199 −13.989 0

1 −1 1
0 −13.797 −1.199

 ,
B1

1 = B2
1 = B1

2 = B2
2 =


6.8546639 0 0

0 0 0
0 0 0

 ,
AIMS Mathematics Volume 7, Issue 7, 11942–11971.
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Γ1
1 =


0.995 0 0

0 0.974 0
0 0 1.405

 ,Γ1
2 =


0.655 0 0

0 0.01 0
0 0 0.0086

 ,

D1
1 = D1

2 =


−7 1 2 2 2
1 −5 4 1 −1
1 4 −5 1 −1
−2 1 1 −2 2
2 −1 −1 2 −2


,D2

1 = D2
2 =


−3 2 1 −1 1
2 −6 4 2 −2
1 4 −5 −1 1
−1 2 −1 −3 3
1 −2 1 3 −3


,

Q1
1 = Q1

2 =


−5 1 4 1 −1
1 −4 2 1 1
4 −10 6 0 0
1 −1 0 −3 3
−1 1 0 3 −3


,Q2

1 = Q2
2 =


−5 2 3 2 −2
2 −6 4 −1 1
3 4 −7 −1 1
2 −1 −1 −5 5
−2 1 1 5 −5


.

Let f (xi(t)) = −0.5379xi(t) + 0.5(−1.577 + 0.5379)(|xi(t) + 1| − |xi(t) − 1|). It is easy to check that
assumptions A1 and A2 hold, and L11 = 0.05, L12 = 0.075, L21 = 0.3, L22 = 0.46, z11 = z12 = z21 =

z22 = 0.
Design the fuzzy weighting function: λ1(φ(t)) = cos2(t) and λ2(φ(t)) = sin2(t).
The transition rates of the semi-Markovian switching system in this mode are given.
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Figure 1. The semi-Markovian jumping switching signal ρ(t).

For mode 1: π11(h) ∈ (−4.26,−3.98), π12(h) ∈ (3.98, 4.26). For mode 2: π21(h) ∈

(−6.17,−5.89), π22(h) ∈ (5.89, 6.17). Then, we can get the parameters πρk,λρk, where ρ, k ∈ N = {1, 2},
π11 = −3.95, π12 = 3.95, λ11 = λ12 = 0.96, π21 = 6.1, π22 = −6.1, λ21 = λ22 = 0.07.

Take the controller gain parameters as η1 = 20.42, η2 = 0.53,

K1
1 =


15.879 0 0

0 19.826 0
0 0 21.577

 ,K2
1 =


15.879 0 0

0 19.826 0
0 0 21.577

 ,
AIMS Mathematics Volume 7, Issue 7, 11942–11971.
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K1
2 =


15.879 0 0

0 19.826 0
0 0 21.577

 ,K2
2 =


15.879 0 0

0 19.826 0
0 0 21.577

 ,
H1

1 =


10.97 0 0

0 18.7988 0
0 0 20.8

 ,H2
1 =


19.5479 0 0

0 12.355 0
0 0 25.577

 ,
H1

2 =


17.5879 0 0

0 19.9826 0
0 0 22.3577

 ,H2
2 =


13.2879 0 0

0 17.6826 0
0 0 27.577

 ,
M1 =


15.99059 0 0

0 15.99059 0
0 0 15.99059

 ,M2 =


28.959 0 0

0 28.959 0
0 0 28.959

 .
By using the MATLAB tools, it is illustrated that the conditions of Theorem 1 are satisfied, and

T = 7.55s. Meanwhile, the graph of semi-Markovian switch signals is displayed in Figure. 1. The
synchronization for nodes in the same group with their target trajectories is described in Figure. 2.
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Figure 2. Time evolution of states xi1, xi2, xi3, i = 1, 2, 3, 4, 5, and target trajectories of the
two clusters s1 j, s2 j, j = 1, 2, 3.

Example 2. In this example, the effectiveness of Theorem 2 is checked. For model (4.1), we consider
that the nodes are two-dimensional.

Set

A1
1 =

[
0.674 0

0 0.912

]
, A2

1 =

[
1.465 0

0 0.913

]
, A1

2 =

[
2.117 0

0 0.898

]
, A2

2 =

[
2.419 0

0 1.064

]
,

B1
1 =

[
3.086 1.214
1.171 1.197

]
, B2

1 =

[
2.287 1.109
1.215 2.124

]
, B1

2 =

[
1.798 0.815
1.017 1.803

]
, B2

2 =

[
3.521 1.214
1.027 2.612

]
,

D1
1 = D1

2 =


−4 2 2 −1 1
2 −3 1 −1 1
2 1 −3 2 −2
−1 −1 2 −2 2
1 2 −2 2 −2


,D2

1 = D2
2 =


−4 3 1 −2 2
3 −5 2 −1 1
1 2 −3 3 −3
−2 −1 3 −4 4
2 1 −3 4 −4


,
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Q1
1 = Q1

2 =


−7 6 1 −2 2
6 −8 2 4 −4
1 2 −3 −2 2
−2 4 −2 −5 5
2 −4 2 5 −5


,Q2

1 = Q2
2 =


−4 4 0 5 −5
4 −5 1 −2 2
0 1 −1 −3 3
5 −2 −3 −7 7
−5 2 3 7 −7


.

The membership functions are defined as follows:

h1(∅(t)) =
1 + sin2(t)

2
, h2(∅(t)) =

cos2(t)
2

.

The system parameters are given as :c1 = 0.38, c2 = 0.45, Γ1
1 = Γ1

2 = 0.75I2, Γ2
1 = Γ2

2 = 0.55I2;
f11 = 0.02(xi(t)) + 0.3sign(xi(t)), f12 = 0.14(xi(t)) + 0.42sign(xi(t)), i = 1, 2, 3; f21 = 0.17(xi(t)) +

0.38sign(xi(t)), f22 = 0.21(xi(t)) + 0.46sign(xi(t)), i = 4, 5. It is easy to verify that L11 = 0.02,
L12 = 0.014, z11 = 0.6, z12 = 0.84, L21 = 0.17, L22 = 0.21, z21 = 0.76, z22 = 0.62. Take τ(t) =

0.65 + 0.35 sin(t − 1). It is easy to check that ϑ = 0.35, τ1 = 0.3,τ2 = 1.
The transition rates with respect to the semi-Markovian process are given as follows:
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Figure 3. The semi-Markovian jumping switching signal ρ(t).

For mode 1:
π11(h) ∈ (−3.16,−2.47), π12(h) ∈ (2.47, 3.16).

For mode 2:
π21(h) ∈ (1.76, 2.54), π22(h) ∈ (−2.54,−1.76).

Accordingly,

π11 = −3.07, π12 = 3.07, π21 = 1.88, π22 = −1.88,
λ11 = λ12 = 0.69, λ21 = λ22 = 0.78.

Take the controller gain parameters as k1
1 = k2

1 = 0.95, k1
2 = k2

2 = 0.86, ς1 = ς2 = 10.8, $1 = $2 =

10.4, %1 = %2=12.8,λ=2.1, µ=0.5,

H1
1 =

[
3.415 0

0 2.115

]
,H1

2 =

[
1.928 0

0 2.107

]
,H2

1 =

[
3.601 0

0 2.191

]
,H2

2 =

[
2.121 0

0 1.587

]
,
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11966

W1 =

[
3.554 −0.427
−0.427 1.921

]
,W2 =

[
2.121 −0.848
−0.848 0.941

]
,M1 =

[
3.214 −0.248
−0.248 1.901

]
,M2 =

[
1.121 −0.454
−0.454 1.817

]
.

By solving LMIs (3.20)-(3.21),we can obtain that

P1 =

[
3.685 0.713
0.546 6.914

]
, P2 =

[
4.218 0.215
0.525 5.529

]
,O1 =

[
3.016 0.278
0.146 1.901

]
,O2 =

[
2.215 0.554
0.713 1.871

]
.
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Figure 4. Time evolution of states
xi1, i = 1, 2, 3, 4, 5, and target
trajectories si1, i = 1, 2, of the two
clusters.
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Based on the above parameters, it is easy to verify that the conditions of Theorem 2 hold. The
semi-Markovian switching T-S fuzzy CDNs with the above parameters can achieve global stochastic
fixed-time cluster synchronization. Based on (3.22), we can obtain that Tmax = 6.1226s.

In addition, the semi-Markovian process is presented in Figure 3. The state trajectories of nodes in
each cluster are depicted in Figures 4–7. displays this intra-cluster synchronization behavior. We can
easily see that the state trajectories of nodes in each cluster can reach globally stochastic fixed-time
synchronization. However, the synchronization goal cannot be achieved between different clusters.
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5. Conclusions

In this paper, we have investigated global stochastic cluster synchronization in finite/fixed time for
T-S fuzzy CDNs with semi-Markovian switching topologies and discontinuous activations. A new
lemma about global stochastic stability in fixed time for the nonlinear system with semi-Markovian
switching was developed. In addition, some novel T-S fuzzy state-feedback controllers were designed,
which involve double integral terms and discontinuous factors, to achieve the global stochastic
finite/fixed-time cluster synchronization objective. The global stochastic cluster synchronization
conditions have been addressed in the form of LMIs. Furthermore, the upper bound of the settling
time, which depends on the control gains and the chosen controller parameters, has been explicitly
calculated. Finally, numerical examples have been provided to illustrate the effectiveness and less
conservativeness of the theoretical results.

In the future, the following research works are considered:
1) stochastic cluster synchronization in pre-assigned time for T-S fuzzy discontinuous CDNs with

semi-Markovian switching,
2) stochastic synchronization in finite time for T-S fuzzy fractional CDNs with Markovian

switching.
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