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Abstract: In this paper, a deterministic and stochastic model for hepatitis C with different types of
virus genomes is proposed and analyzed. Some sufficient conditions are obtained to ensure the stability
of the deterministic equilibrium points. We perform a stochastic extension of the deterministic model
to study the fluctuation between environmental factors. Firstly, the existence of a unique global positive
solution for the stochastic model is investigated. Secondly, sufficient conditions for the extinction of
the hepatitis C virus from the stochastic system are obtained. Theoretical and numerical results show
that the smaller white noise can ensure the persistence of susceptible and infected populations while
the larger white noise can lead to the extinction of disease. By introducing the basic reproduction
number R0 and the stochastic basic reproduction number Rs

0, the conditions that cause the disease to
die out are indicated. The importance of environmental noise in the propagation of hepatitis C viruses
is highlighted by these findings.
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1. Introduction

Hepatitis C is a disease caused by a virus that infects the liver. The virus, called hepatitis C virus
or HCV, is just one of the hepatitis viruses. Global statistics estimate that nearly 350 million people
worldwide are infected with HCV, which significantly affects human health, especially the liver [16].
Mathematical models are currently a useful way to assess the transmissibility of many infectious
diseases, predict future morbidity, and assess the efficacy of prevention and therapy [1, 11, 14, 17,
21, 34–36, 42, 46]. Many successful mathematical models investigating fundamental hepatitis C viral
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dynamics have been produced in recent decades, including Feng et al. [12], Lestari et al. [23] and Li
et al. [24] to cite only a few. Moneim and Mosa [31, 32], constructed a mathematical model to study
the spread of HCV-subtype 4a amongst the Egyptian population. They divided the population into
three groups, susceptible class, S (t), the hepatitis C subtype 4a infective class, I1 and the HCV from
all other subtype classes, I2. They assumed that all types of the class I2 could mutate to I1 at a constant
rate µ > 0. A few years after the appearance of [31, 32], effective treatment for the hepatitis C virus
appeared. For this, we will add to the mathematical model another class (R(t)), which represents those
who have been cured of this virus. Following [8,18,19,39,47], the saturated incidence rate will replace
the bilinear incidence rate. The hepatitis C virus becomes as follows.

dS
dt

= A −
k1S I1

a + S
−

k2S I2

a + S
− bS ,

dI1

dt
=

k1S I1

a + S
+ µI1I2 − bI1 − γI1,

dI2

dt
=

k2S I2

a + S
− µI1I2 − bI2 − δI2,

dR
dt

= γI1 + δI2 − bR,

(1.1)

where A denotes the recruitment rate of susceptible individuals, a expresses the half-saturation constant
for susceptible individuals with HCV. γ and δ are the recovery rates, k1 is the transmission rate of virus
C when susceptible individuals S (t) contact with corresponding infected I1(t) individuals, and k2 is
the transmission rate when S (t) contact with corresponding I2(t) individuals. Following [31, 32], we
assume that the population is mixing in a homogenous manner, i.e., every person has the same chance
of coming in contact with an infected person also we assume that the birth and death rates are equal
and positive constant rate b .

The deterministic HCV system (1.1) ignores the possible importance of environmental noise. In
reality, stochastic effects can be important during the transmission of hepatitis C viruses, because
various cells and infective virus particles react differently in the same environment. Consequently, the
deterministic models do not provide an adequate understanding of viral dynamics due to the stochastic
behavior of viruses and the complexity of the immune system. The primary purpose of this paper is to
propose and analyze a deterministic and stochastic model of HCV. The paper is arranged as follows:
In Section 2, the dynamics of the deterministic system are verified. The stochastic extension of the
deterministic model is performed in Section 3, and the existence of a unique global positive solution
for the stochastic model is investigated, and the sufficient conditions for the extinction of the hepatitis C
virus from the stochastic system are obtained. In Section 4, some numerical simulations are presented
to verify the obtained theoretical results. Finally, Section 5 contains the conclusion.

2. Dynamics of deterministic system

In the following, two critical parameters R01, and R02, can be used to classify the dynamics of the
hepatitis C virus model (1.1). The threshold parameter R01 defined by R01 = Ak1

ρ(A+ab) , ρ = b + γ. While
the threshold parameter R02 defined by R02 = Ak2

θ(A+ab) , θ = b + δ. Using the next generation method, one
can obtain the basic reproduction number R0 defined by R0 = max {R01,R02}.

The hepatitis C virus model (1.1) has the following four equilibrium points:
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(1) The disease-free equilibrium point E0 =
(

A
b , 0, 0, 0

)
, which always exists. At this point, all

individuals are susceptible, and there is no infection present in the population.

(2) The equilibrium point E1 = (S 1, I11, 0,R1), where

S 1 =
aρ

k1 − ρ
, I11 =

(a + S 1)(A + ab)
ak1

(R01 − 1), R1 =
γ(a + S 1)(A + ab)

abk1
(R01 − 1).

E1 exists if k1 > ρ and R01 > 1.

(3) The equilibrium point E2 = (S 2, 0, I22,R2), where

S 2 =
aθ

k2 − θ
, I22 =

(a + S 2)(A + ab)
ak2

(R02 − 1), R2 =
δ(a + S 2)(A + ab)

abk2
(R02 − 1).

E2 exists if k2 > θ and R02 > 1.

(4) The coexistence equilibrium point E3 = (S 3, I13, I23,R3), where

S 3 =
−β +

√
β2 + 4abA
2b

, I13 =
1
µ

(
k2S 3

a + S 3
− θ

)
, I23 =

1
µ

(
ρ −

k1S 3

a + S 3

)
, R3 =

1
µ

(γI13 + δI23),

β = ab − A +
ρk2
µ
−

θk1
µ

. The coexistence equilibrium point E3 exists if k2S 3
θ(a+S 3) > 1 and k1S 3

ρ(a+S 3) < 1.

The boundedness of the solutions of model (1.1) is given as follows. Let (S (t), I1(t), I2(t),R(t)) be any
solution of system (1.1) with non-negative initial conditions and assume that the total population size
N(t) = S (t) + I1(t) + I2(t) + R(t), then dN

dt + bN = A, consequentially N(t) = A
b + N(0)e−bt, thus it follows

that 0 ≤ N(t) ≤ A
b , as t → ∞.

The locally asymptotically stable equilibrium points of system (1.1) are now investigated. The
Jacobian matrix is given as follows:

J =


−

k1 aI1
(a+S )2 −

k2aI2
(a+S )2 − b −

k1S
a+S −

k2S
a+S 0

k1aI1
(a+S )2

k1S
a+S + µI2 − ρ µI1 0

k2aI2
(a+S )2 −µI2

k2S
a+S + µI1 − θ 0

0 γ δ −b

 .
The eigenvalues of J(E0) are −b, −b, ρ(R01 − 1), and θ(R02 − 1). Thus, E0 is locally asymptotically
stable if R0 < 1. The eigenvalues of J(E1) are λ1 = −b and λ2 = k2S 1

a+S 1
− µI11 − θ. The other roots are

determined by

λ2 + (
k1aI11

(a + S 1)2 + b)λ +
k2

1aS 1I11

(a + S 1)3 = 0.

The eigenvalues λ3 and λ4 have negative real parts. Thus, if k2S 1
(µI11+θ)(a+S 1) < 1 then the equilibrium point

E1 is locally asymptotically stable. The eigenvalues of J(E2) are λ1 = −b and λ2 = k1S 2
(a+S 2) + µI22 − ρ.

The other roots are determined by

λ2 + (
k2aI22

(a + S 2)2 + b)λ +
k2

2aS 2I22

(a + S 2)3 = 0.
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The eigenvalues λ3 and λ4 have negative real parts. Thus, if k1S 2
(a+S 2) + µI22 < ρ then the equilibrium

point E2 is locally asymptotically stable. The stability of the coexistence equilibrium point E3 =

(S 3, I13, I23,R3) is investigated as follows
The first eigenvalues of J(E3) is λ1 = −b. The other roots are determined by

λ3 + c1λ
2 + c2λ + c3 = 0, (2.1)

where

c1 =
a (ab + k1I13 + k2I23) + 2abS 3 + bS 2

3

(a + S 3) 2 ,

c2 =
I23

(
ak2

2S 3 + µ2I13 (a + S 3) 3
)

+ ak2
1S 3I13

(a + S 3) 3 ,

c3 =
µ2I13I23

(
a (ab + k1I13 + k2I23) + 2abS 3 + bS 2

3

)
(a + S 3) 2 .

c1c2 − c3 =
aS 3

(
k2

1I13 + k2
2I23

) (
a (ab + k1I13 + k2I23) + 2abS 3 + bS 2

3

)
(a + S 3) 5 .

It is clear that c1, c2, c3 > 0 and c1c2 − c3 > 0. It follows from the Routh-Hurwitz criterion that all roots
of (2.1) have negative real parts. Thus, the equilibrium point E3 is locally asymptotically stable.

3. Dynamics of stochastic model

In this section, we will perform a stochastic extension of model (1.1). The hepatitis virus C
deterministic model (1.1) will be extended to include the environmental noise as follows.

dS =

[
A −

k1S I1

a + S
−

k2S I2

a + S
− bS

]
dt + σ1S dW1,

dI1 =

[
k1S I1

a + S
+ µI1I2 − bI1 − γI1

]
dt + σ2 I1 dW2,

dI2 =

[
k2S I2

a + S
− µI1I2 − bI2 − δI2

]
dt + σ3 I2 dW3,

dR =
[
γI1 + δI2 − bR

]
dt + σ4 R dW4,

(3.1)

where W = {W1,W2,W3,W4, t ≥ 0} represents the four-dimensional standard Brownian motions with
Wi(0) = 0 and σ2

i (i = 1, 2, 3, 4) denote the intensities of the white noise. The white noise is defined
in a complete probability space (Ω,Ft≥0,P) with a filtration Ft≥0 satisfying the usual conditions. In
many applications, the solution of the Itô stochastic differential equation must preserve the positivity
of the solutions [9, 10, 37]. According to Theorem 2.2 and Corollary 1 in [9], the solutions of (3.1)
emanating from nonnegative initial data (almost surely) remain nonnegative as long as they exist. The
next theorem gives another approach according to [30] to prove the existence and uniqueness of a
positive global solution of the system (3.1). This approach has recently been used in many papers, and
one can highlight [4–7, 13, 17, 20, 22, 27, 28, 33, 38, 40–45, 48].
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Theorem 1. For any given initial value (S (0), I1(0), I2(0),R(0)) ∈ R4
+, there exists a unique solution

(S (t), I1(t), I2(t),R(t)) of system (3.1) for t ≥ 0 and the global positive solution remains in R4
+ with

probability one.

Proof. Firstly, one can consider the local solution (S (t), I1(t), I2(t),R(t)) of system (3.1) for t ∈ [0, τe),
where τe is the explosion time [30]. By making the transformation of variables

x(t) = ln S (t), y(t) = ln I1(t), z(t) = ln I2(t), w = ln R(t).

Using Itô formula, one can change system (3.1) as follows

d x(t) =

[
A
ex −

k1ey

a + ex −
k2ez

a + ex − b −
σ2

1

2

]
dt + σ1 dW1,

d y(t) =

[
k1ex

a + ex + µez − ρ −
σ2

2

2

]
dt + σ2 dW2,

d z(t) =

[
k2ex

a + ex − µey − θ −
σ2

3

2

]
dt + σ3 dW3,

d w(t) =

[
γey−w − δez−w − b −

σ2
4

2

]
dt + σ4 dW4.

(3.2)

For X0 = (x0, y0, z0,w0) ∈ R4
+, the coefficients of system (3.2) satisfy the local Lipschitz conditions,

consequently, there exists a unique local solution (S (t), I1(t), I2(t),R(t)) = (ex(t), ey(t), ez(t), ew(t)) on
[0, τe). To ensure that this solution is global, one needs to prove that τe = ∞ a.s. Let s0 > 0 be
sufficiently large for every coordinate (S (0), I1(0), I2(0),R(0)) in the interval [ 1

s0
, s0]. For each integer

s > s0, we define the stopping time

τs = inf
{

t ∈ [0, τe) : min {S (t), I1(t), I2(t),R(t)} < (
1
s
, s) or max {S (t), I1(t), I2(t),R(t)} < (

1
s
, s)

}
.

(3.3)
From (3.3), one can note that τs is increasing as s→ ∞. Assume τ∞ = lims→∞ τs, then τ∞ ≤ τe almost
sure. In the next, one needs to verify that τ∞ = ∞. If this is not true, then there exists a constant
T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T ) ≥ ε. As a result, there exists an integer s1 ≥ s0 such that
P(τs ≤ T ) ≥ ε, s ≥ s1. Define the following C2 positive definite function V1(S , I1, I2,R) as

V1(S , I1, I2,R) = (S + 1 − lnS ) + (I1 + 1 − lnI1) + (I2 + 1 − lnI2) + (R + 1 − lnR).

Using Itô’s formula, one obtains

dV1 =

[
(S − 1)

(
A
S
−

k1I1

a + S
−

k2I2

a + S
− b

)
+ (I1 − 1)

(
k1S

a + S
+ µI2 − ρ

)
+(I2 − 1)

(
k2S

a + S
− µI1 − θ

)
+ (1 −

1
R

)(γI1 + δI2 − bR) +
1
2

4∑
i=1

σ2
i

]
dt

+σ1(S − 1)dW1 + σ2(I1 − 1)dW2 + σ3(I2 − 1)dW3 + σ4(R − 1)dW4

≤

A + 2b + ρ + θ +
1
2

4∑
i=1

σ2
i +

(
k1

a
+ µ + γ

)
I1 + (

k2

a
+ δ)I2

 dt

+σ1(S − 1)dW1 + σ2(I1 − 1)dW2 + σ3(I2 − 1)dW3 + σ4(R − 1)dW4.
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Using the inequality x ≤ 2(x + 1 − lnx), for any x > 0, one obtains

dV1 ≤

[
A + 2b + ρ + θ +

1
2

4∑
i=1

σ2
i + 2 (S + 1 − lnS ) + 2

(
k1

a
+ µ + γ

)
(I1 + 1 − lnI1)

+2(
k2

a
+ δ) (I2 + 1 − lnI2) + 2 (R + 1 − lnR)

]
dt + σ1(S − 1)dW1 + σ2(I1 − 1)dW2

+σ3(I2 − 1)dW3 + σ4(R − 1)dW4,

which means that

dV1 ≤ K(1 + V1)dt + σ1(S − 1)dW1 + σ2(I1 − 1)dW2 + σ3(I2 − 1)dW3 + σ4(R − 1)dW4, (3.4)

where K = max {K1,K2}, K1 = A + 2b + ρ + θ + 1
2

∑4
i=1 σ

2
i and K2 = max

{
2, 2( k1

a + µ + γ), 2( k2
a + δ)

}
.

For t1 ≤ T , integrating both sides of (3.4) from 0 to t1 ∧ τs and then taking the expectation leads to

EV1 (S (t1 ∧ τs), I1(t1 ∧ τs), I2(t1 ∧ τs),R(t1 ∧ τs))

≤V1 (S (0), I1(0), I2(0),R(0)) + KE
∫ t1∧τs

0
(1 + V1) dt

≤V1 (S (0), I1(0), I2(0),R(0)) + KT + K
∫ t1∧τs

0
EV1 (S (t1 ∧ τs), I1(t1 ∧ τs), I2(t1 ∧ τs),R(t1 ∧ τs)) dt.

Following [25, 26, 29, 44], applying Grownwall’s inequality, one gets

EV1 (S (t1 ∧ τs), I1(t1 ∧ τs), I2(t1 ∧ τs),R(t1 ∧ τs)) ≤ [V1 (S (0), I1(0), I2(0),R(0)) + K T ] eKT = K3.

The rest of the proof is similar to [25, 26, 29] and hence is omited here. This complete the proof. �

The above theorem shows that the stochastic HCV system (3.1) have positive global solution remain
in R4

+ with probability one. The non-explosion characteristic in an epidemic model is essential but
often insufficient. Hence, one needs to indicate that the solution will be ultimately bounded with a
large probability. In the following, we will establish the stochastically ultimate boundedness property
of the HCV system (3.1).

Lemma 2. Let N(t) = S (t)+I1(t)+I2(t)+R(t), then for any given initial value (S (0), I1(0), I2(0),R(0)) ∈
R4

+, the following inequality holds:
lim
t→∞

N(t) < ∞ a.s.

Proof. It follows from HCV model (3.1) that

dN(t) = (A − bN(t))dt + σ1S (t)dW1(t) + σ2I1(t)dW2(t) + σ3I2(t)dW3(t) + σ4R(t)dW4(t) (3.5)

Then, the solution of Eq (3.5) has the following form

N(t) =
A
b

+

(
N(0) −

A
b

)
e−bt + M(t),

AIMS Mathematics Volume 7, Issue 7, 11905–11918.
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where

M(t) =

∫ t

0
e−b(t−s)σ1S (s)dW1(s) +

∫ t

0
e−b(t−s)σ2I1(s)dW2(s) +

∫ t

0
e−b(t−s)σ3I2(s)dW3(s)

+

∫ t

0
e−b(t−s)σ4R(s)dW4(s),

which is a contiuous local martingal with M(0) = 0, almost surely. Define Λ(t) = A
b [1 − e−bt] and

U(t) = N(0)[1 − e−bt], then we have N(t) = N(0) + Λ(t) − U(t) + M(t). Clearly, Λ(t) and U(t) are
continuous adapted increasing process on t ≥ 0 with Λ(0) = U(0) = 0. Then by Theorem 3.9 in [30],
we have limt→∞ N(t) < ∞ a.s. �

Remark 3. It follows from the first equation of HCV system (3.1) that

S (t) − S (0) = At − b
∫ t

0
S (s)ds −

∫ t

0

k1S (s)I1(s)
a + S (s)

−

∫ t

0

k2S (s)I2(s)
a + S (s)

+ σ1

∫ t

0
S (s)dW1(s),

and it follows that

〈S (t)〉 ≤ lim
t→∞

[
A
b
−

S (t) − S (0)
t

+
σ1

t

∫ t

0
S (s)dW1(s)

]
≤

A
b
.

Theorem 4. If σ2
1

2 + 1
2 < b, k1 +

σ2
2

2 + 1
2 < ρ, k2 +

σ2
3

2 + 1
2 < θ, σ

2
4 + 1

2 < b, then the solutions of (3.1)
are stochastically ultimate bounded.

Proof. For (S (t), I1(t), I2(t),R(t)) ∈ R4
+, define the following function

V2(S (t), I1(t), I2(t),R(t)) = S (t)2 + I1(t)2 + I2(t)2 + R(t)2.

By Itô formula, one has

dV2(S , I1, I2,R) = LV2(S , I1, I2,R)dt + 2σ1S 2dW1 + 2σ2I2
1dW2 + 2σ3I2

2dW3 + 2σ4R2dW4,

where

LV2(S , I1, I2,R) =2
(
AS −

k1S 2I1

a + S
−

k2S 2I2

a + S
− bS 2

)
+ 2I2

1

(
k1S

a + S
+ µI2 − ρ

)
+ 2I2

2

(
k2S

a + S
− µI1 − θ

)
+ 2(γI1R + δI2R − bR2) + σ2

1S 2 + σ2
2I2

1 + σ2
3I2

2 + σ2
4R2

≤(σ2
1 − 2b + 1)S 2 +

(
2k1 + σ2

2 − 2ρ + 1
)

I2
1 +

(
2k2 + σ2

3 − 2θ + 1
)

I2
2 +

(
σ2

4 − 2b + 1
)

R2

−
[
S (t)2 + I1(t)2 + I2(t)2 + R(t)2

]
+ 2

(
AS + µI2

1 I2 + γI1R + δI2R
)
.

Assume f (S (t), I1(t), I2(t),R(t)) = (σ2
1 − 2b + 1)S 2 +

(
2k1 + σ2

2 − 2ρ + 1
)

I2
1 +

(
2k2 + σ2

3 − 2θ + 1
)

I2
2 +(

σ2
4 − 2b + 1

)
R2 + 2

(
AS + µI2

1 I2 + γI1R + δI2R
)
. According to Lemma 2 and Remark 3, one can find

that the function f (S (t), I1(t), I2(t),R(t)) has an upper bound.
Let N1 = sup f (S (t), I1(t), I2(t),R(t)) + 1. As a result

dV2(S , I1, I2,R) = (N1 − V2)dt + 2σ1S 2dW1 + 2σ2I2
1dW2 + 2σ3I2

2dW3 + 2σ4R2dW4.

AIMS Mathematics Volume 7, Issue 7, 11905–11918.



11912

By Itô formula, one obtains

d(etV2) ≤ etN1dt + et
[
2σ1S 2dW1 + 2σ2I2

1dW2 + 2σ3I2
2dW3 + 2σ4R2dW4

]
.

Integrating both sides of the above equation from 0 to t and then taking expectations, one gets

etV2(S (t), I1(t), I2(t),R(t)) ≤ V2(S (0), I1(0), I2(0),R(0)) + N1et − N1,

hence
lim
t→∞

sup E[|X(t)|2] ≤ N1.

Using Chebyshev’s inequality, one can obtains

P[|X(t)| ≥ H] ≤
E[|X(t)|2]

H2 ,

where H =
√

N1√
ε
, ε > 0. Then

lim
t→∞

sup P[|X(t)| ≥ H] ≤
N1

H2 = ε.

This completes the proof. �

In the following, we will establish the conditions for extinction of hepatitis C virus from the
stochastic system (3.1). The threshold parameter Rs

01 defined by Rs
01 = k1

ρ+
σ2

2
2

, while the threshold

parameter Rs
02 defined by Rs

02 = k2

θ+
σ2

3
2

and the threshold parameter Rs
03 defined by Rs

03 = k1+k2
ρ+θ

. The

stochastic basic reproduction number Rs
0 defined by Rs

0 = max
{
Rs

01,R
s
02,R

s
03

}
.

Theorem 5. The disease die out exponentially with probability one if Rs
0 < 1.

Proof. Let V3(I1, I2) = ln(I1 + I2). Using Itô formula, one obtains

d(V3(I1, I2)) =

[ 1
(I1 + I2)

(
k1S I1

a + S
+

k2S I2

a + S
− ρI1 − θI2

)
−

σ2
2I2

1

2(I1 + I2)2 −
σ2

3I2
2

2(I1 + I2)2

]
dt

+
σ2I1

(I1 + I2)
dW2 +

σ3I2

(I1 + I2)
dW3

≤
1

(I1 + I2)2

[( k1S
(a + S )

− ρ −
σ2

2

2

)
I2
1 +

(
k2S

(a + S )
− θ −

σ2
3

2

)
I2
2 +

(
k1S

(a + S )
− ρ

)
I1I2

+

(
k2S

(a + S )
− θ

)
I1I2

]
dt +

σ2I1

(I1 + I2)
dW2 +

σ3I2

(I1 + I2)
dW3

≤
1

(I1 + I2)2

[(
k1 − ρ −

σ2
2

2

)
I2
1 +

(
k2 − θ −

σ2
3

2

)
I2
2 + (k1 − ρ) I1I2

+ (k2 − θ) I1I2

]
dt +

σ2I1

(I1 + I2)
dW2 +

σ3I2

(I1 + I2)
dW3

≤

[
(ρ +

σ2
2

2
)
(
Rs

01 − 1
)

+ (θ +
σ2

3

2
)
(
Rs

02 − 1
)

+ (ρ + θ)
(
Rs

03 − 1
)]

dt

+
σ2I1

(I1 + I2)
dW2 +

σ3I2

(I1 + I2)
dW3

≤

[
2(ρ + θ) +

σ2
2

2
+
σ2

3

2

] (
Rs

0 − 1
)

dt +
σ2I1

(I1 + I2)
dW2 +

σ3I2

(I1 + I2)
dW3,
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using integration from 0 to t, one obtains

ln (I1(t) + I2(t)) ≤ ln (I1(0) + I2(0)) +

[
2(ρ + θ) +

σ2
2

2
+
σ2

3

2

] (
Rs

0 − 1
)

t

+

∫ t

0

σ2I1

2(I1 + I2)
dW2 +

∫ t

0

σ3I2

2(I1 + I2)
dW3.

Applying strong law of large numbers for local martingales one gets

lim
t→∞

sup
ln (I1(t) + I2(t))

t
≤

[
2(ρ + θ) +

σ2
2

2
+
σ2

3

2

] (
Rs

0 − 1
)
< 0,

as a result, diseases I1(t) and I2(t) die out and tend to zero exponentially a.s., if Rs
0 < 1. �

Remark 6. Theorem 3 indicates that the disease die out exponentially a.s., if Rs
0 < 1 with the

consequence that the recover class R(t) also goes to extinction a.s.

4. Numerical simulations

In this part, the numerical results will be compared with the theorems formulated in the previous
sections. The interactions between populations classes will be simulated by the following parameters
[32]: N = 1000000, µ = 0.02, a = 1, b = 0.02, k1 = 0.00001, k2 = 0.00002, γ = 0.001, δ = 0.001.
To give some numerical finding to the HCV system (3.1), we use the Milstein method mentioned
in [2, 3, 15]. The stochastic hepatitis virus C system (3.1) reduces to the following discrete system

S ( j+1) = x j + h
(
A −

k1S jI1 j

a + S j
−

k2S jI2 j

a + S
− bS j

)
+ σ1S j

√
hε1 j +

σ2
1

2
S j

[
ε2

1 j − 1
]

h,

I1( j+1) = I1 j + h
(
k1S jI1 j

a + S j
+ µI1 jI2 j − bI1 j − γI1 j

)
+ σ2I1 j

√
hε2 j +

σ2
2

2
I1 j

[
ε2

2 j − 1
]

h,

I2( j+1) = I2 j + h
(
k2S jI2 j

a + S j
− µI1 jI2 j − bI2 j − δI2 j

)
+ σ3I2 j

√
hε3 j +

σ2
3

2
I2 j

[
ε2

3 j − 1
]

h,

R( j+1) = R j + h
(
γI1 j + δI2 j − bR j

)
+ σ4R j

√
hε4 j +

σ2
4

2
R j

[
ε2

4 j − 1
]

h,

(4.1)

where h is a positive time increment and εi j, (i = 1, 2, 3, 4) are independent random Gaussian variables
N(0, 1). One can note that for the given parameters, the value of the stochastic basic reproduction
number Rs

0 = 0.00095. As a result, the conditions of Theorem 5 are verified and the disease die out
exponentially with probability one if Rs

0 < 1. Figure 1 represents the dynamical behavior of model (3.1)
when the noise strength law (σi = 0.01). For k1 = k2 = 0.0308, the conditions of Theorem 5 are
verified as Rs

0 = 1.130769 > 1 as shown in Figure 2. It is shown that the trajectories of the stochastic
system (3.1) oscillates around the coexistence equilibrium of the deterministic system (1.1).
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Figure 1. Fluctuation in susceptible population with with Rs
0 = 0.00095 < 1.
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Figure 2. The evolution of infected and recovered individuals with Rs
0 = 1.3968 > 1.
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5. Conclusions

The novelty of this study is that we introduced a new compartment and saturated incidence rate into
the classical hepatitis C virus genome model. A deterministic and stochastic model for hepatitis C with
different types of virus genomes is proposed and analyzed. We perform a stochastic extension of the
deterministic model to study the fluctuation between environmental factors. Firstly, the existence of a
unique global positive solution for the stochastic model is investigated. Secondly, sufficient conditions
for the extinction of hepatitis C virus from the stochastic system are obtained. Theoretical results
are illustrated using numerical simulations. Theoretical and numerical results show that the smaller
white noise can ensure the persistence of susceptible and infected populations while the larger white
noise can lead to the extinction of populations. For the deterministic model, some sufficient conditions
are obtained to ensure the stability of the equilibrium points. The results show that when the basic
reproduction number R0 < 1, the deterministic model is asymptotic stable around the free disease
equilibrium point E0. By introducing the basic reproduction number R0 and the stochastic basic
reproduction number Rs

0, the conditions that cause the disease to die out are indicated. Biologically, it
can be noted that by social distancing with hepatitis C patients, this can lead to a fluctuation in the value
of k1 and k2, and thus Rs

0 becomes less than one, which leads to the disappearance of the epidemic.
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