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1. Introduction and preliminaries

Fixed point theory, famous due to its vast applications in various areas of engineering, physics and
mathematical sciences, has become an interesting area for many researchers. For non-linear analysis,
techniques of fixed point act as a pivotal tool. Banach [9] made huge involvement in this area by
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introducing the concept of contraction mapping for a complete metric type space to find fixed point of
the stated function.

The classical Banach contraction theorem [9] has been studied by many mathematicians and
researchers in different ways, see [1, 2, 4, 11, 12, 15, 17, 26]. During these generalizations, different
fixed point theorems were studied for different contractive mappings or sometimes studied after
metric space extension. Bakhtin [7] and Czerwick ( [13, 14]) introduced a generalized metric with
respect to the structure named b-metric space.

Definition 1.1. [2, 14] Consider D , 0 with a real number t > 1. The functional hb : D × D→ [0,∞)
satisfying the following conditions:

(1) hb(d, e) = 0 ⇐⇒ d = e,

(2) hb(d, e) = hb(e, d),

(3) hb(d, f ) ≤ t[hb(d, e) + hb(e, f )],

for all d, e, f ∈ D, called b-metric. Also we call the pair (D, hb) a b-metric space.

A b-metric is an usual metric in case of t = 1. So, the category of b -metric spaces is appreciably
greater than that of classic metric spaces. For instance, see [13, 14, 25, 27, 30]. Many other extensions
of this space were used in related literature as platforms for fixed point results, see [3, 8, 16, 18, 29].

Azam et al. [2] was the first one who introduced and presented the notion complex valued metric
space, with more generalized form than a metric space. Ullah et al. gave in [31] the concept of complex
valued extended b-metric space, which is extension of notion b-metric space which was introduced by
Kamran et al. [19]. For examples and applications see [6, 31].

Consider set of complex numbers C and d1, d2 ∈ C. Since we cannot compare in usual way two
complex numbers let us add to the complex set C the following partial order -, known in related
literature as lexicographic order

d1 - d2 ⇐⇒ Re(d1) ≤ Re(d2) or (Re(d1) = Re(d2) and Im(d1) ≤ Im(d2).

Considering the previous definition, we may say that d1 - d2 if one of the next conditions are
satisfied:

(1) Re(d1) < Re(d2) and Im(d1) < Im(d2);

(2) Re(d1) < Re(d2) and Im(d1) = Im(d2);

(3) Re(d1) < Re(d2) and Im(d1) > Im(d2);

(4) Re(d1) = Re(d2) and Im(d1) < Im(d2);

in continuation of generalizations of metric spaces, another form of b-metric space was introduced and
presented by Rao et al. [28] in 2013 and named as complex valued b-metric space. This idea was also
studied and generalized by many mathematicians and researchers.

Definition 1.2. [28] Let D , 0 and also consider t > 1, where t is a real number. A functional
hb : D × D→ C, holding the following properties:
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(CBM1) 0 - hb(d, e) and hb(d, e) = 0 ⇐⇒ d = e,
(CBM2) hb(e, d) = hb(d, e),
(CBM3) hb(d, f ) - t[hb(d, e) + hb(e, f )].
for all d, e, f ∈ D, is denoted by complex valued b-metric on D and the pair (D, hb) is said to be
complex valued b-metric space.

Further recall the definition of complex valued extended b-metric given by Ullah et al. in [31].

Definition 1.3. [31] Let D , 0 and ϑ : D × D → [1,∞). The function he : D × D → C satisfying the
following conditions:
(CEB1) 0 - he(d, e) and h(d, e) = 0 ⇐⇒ d = e,
(CEB2) he(d, e) = he(e, d),
(CEB3) he(d, f ) - ϑ(d, f )[he(d, e) + he(e, f )],
for all d, e, f ∈ D, is known as c.v. extended b-metric. And the pair (D, he) is called a c.v. extended
b-metric space.

Example 1.1. [31] Let D , 0 and ϑ : D × D→ [1,∞) be defined as:

ϑ(d, e) =
1 + d + e

d + e
.

Further, let

(1) he(d, e) = i
de , for all d, e ∈ (0, 1];

(2) he(d, e) = 0 ⇐⇒ d = e, for all d, e ∈ (0, 1];

(3) he(0, e) = he(e, 0) = i
e , for all e ∈ (0, 1].

So, (D, he) is here a complex valued (c.v.) extended b-metric space.

In [23] Maliki et al. introduced the idea of controlled metric and gave few important fixed point
theorems with respect to this new type of metric. Several researchers proved fixed point theorems using
this idea (see [5, 20, 21, 24]).

Definition 1.4. ( [23]) Let D , 0 and ϑ : D × D → [1,∞). The functional hcm : D × D → [0,∞) is
called controlled metric type if, the given conditions holds:
(CMT1) hcm(d, e) = 0 ⇐⇒ d = e,
(CMT2) hcm(d, e) = hcm(e, d),
(CMT3) hcm(d, f ) ≤ ϑ(d, e)hcm(d, e) + ϑ(e, f )hcm(e, f ),
for all d, e, f ∈ D. Also the pair (D, hcm) is said controlled metric type space.

Now moving towards the main definition/concept, in which we have generalized the idea of
controlled metric spaces in complex valued spaces as follows.

Definition 1.5. Let D , 0 and consider ϑ : D × D → [1,∞). The functional hcvc : D × D → [0,∞) is
called complex valued controlled metric type space if, the following conditions holds:
(CMT1) 0 - hcvc(d, e) also hcvc(d, e) = 0 ⇐⇒ d = e,
(CMT2) hcvc(d, e) = hcvc(e, d),
(CMT3) hcvc(d, f ) - ϑ(d, e)hcvc(d, e) + ϑ(e, f )hcvc(e, f ),
for all p, q, r ∈ D, Then, the pair (D, hcvc) is known as a complex valued controlled metric type space.
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Example 1.2. Let D = [0,∞) and ϑ : D × D→ [1,∞) be defined as

ϑ(d, e) =

{
1, if d, e ∈ [0, 1],
1 + d + e, otherwise.

and hcvc : D × D→ [0,∞) defined as follows

hcvc(d, e) :=
{

0, d = e
i, d , e

Then (D, hcvc) is here a complex valued (c.v.) controlled metric type space.

Remark 1.1. If we take ϑ(d, e) = t ≥ 1, for all d, e ∈ D, then (D, hcvc) is c.v.(complex valued) b-metric
space, which means that every complex valued b-metric space is a complex valued controlled metric
type space.

Example 1.3. Let D = V∪W with V = {( 1
n )|n ∈ N}, W is set of positive integer and ϑ : D×D→ [1,∞)

be defined for all d, e ∈ D as
ϑ(d, e) = 5k

where k > 0 and hcvc : D × D→ C defined as follows

hcvc(d, e) :=


0, ⇐⇒ d = e
2ki, i f d, e ∈ V
ki
2 , otherwise

where k > 0.
Now, the conditions (CCMT1) and (CCMT2) hold. Also (CCMT3) hold under the given following

cases.
Case 1. If d = e and e = f .
Case 2. If d = e , f or if d , e = f or if d = f , e or if d , e , f .

SubCase 1. If d ∈ V and e, f ∈ W.
SubCase 2. If e ∈ V and d, f ∈ W.
SubCase 3. If f ∈ V and d, e ∈ W.
SubCase 4. If d, e ∈ V and f ∈ W.
SubCase 5. If d, f ∈ V and e ∈ W.
SubCase 6. If e, f ∈ V and d ∈ W.
SubCase 7. If d, e, f ∈ V.
SubCase 8. If d, e, f ∈ W. Then (D, hcvc) is here a complex valued controlled metric type space.

Remark 1.2. If ϑ(d, e) = ϑ(e, f ),(as in above example) for all d, e, f ∈ D, then (D, hcvc) is complex
valued extended b-metric space. From which we can conclude that every complex valued extended
b-metric space is a complex valued controlled metric space. But converse may not true in general.

We will put in evidence the previous remark by the following example.

Example 1.4. Let D = {1, 2, 3} and hcvc : D × D→ C defined as follows

hcvc(1, 1) = hcvc(2, 2) = hcvc(3, 3) = 0,
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hcvc(1, 2) = hcvc(2, 1) = 4 + 4i,

hcvc(2, 3) = hcvc(3, 2) = 1 + 2i,

hcvc(1, 3) = hcvc(3, 1) = 1 − i,

and ϑ : D × D→ [1,∞) be defined as

ϑ(1, 1) = ϑ(2, 2) = ϑ(3, 3) = 3,

ϑ(1, 2) = ϑ(2, 1) = 2,

ϑ(2, 3) = ϑ(3, 2) = 4,

ϑ(1, 3) = ϑ(3, 1) = 1.

From above defined functions, the conditions (CCMT1) and (CCMT2) hold. Also (CCMT3) hold
under the following cases.
Case 1. If d = f the condition (CCMT3) hold immediately.
Case 2. If d = 1 and f = 3 (same as f = 1 and d = 3) and e = 2

hcvc(d, f ) = |hcvc(1, 3)| = |1 − i| - |12 + 16i| = |2(4 + 4i) + 4(1 + 2i)|
- 2|(4 + 4i)| + 4|(1 + 2i)| = ϑ(1, 2)hcvc(1, 2) + ϑ(2, 3)hcvc(2, 3)
= ϑ(d, e)hcvc(d, e) + ϑ(e, f )hcvc(e, f ).

Case 3. If d = 1 and f = 2 (same as f = 1 and d = 2) and e = 3

hcvc(d, f ) = |hcvc(1, 2)| = |4 + 4i| - |5 + 7i| = |1(1 − i) + 4(1 + 2i)|
- 1|(1 − i)| + 4|(1 + 2i)| = ϑ(1, 3)hcvc(1, 3) + ϑ(3, 2)hcvc(3, 2)
= ϑ(d, e)hcvc(d, e) + ϑ(e, f )hcvc(e, f ).

Case 4. If d = 2 and f = 3 (same as f = 3 and d = 2) and e = 1

hcvc(d, f ) = |hcvc(2, 3)| = |1 + 2i| - |9 + 7i| = |2(4 + 4i) + 1(1 − i)|
- 2|(4 + 4i)| + 1|(1 − i)| = ϑ(2, 1)hcvc(2, 1) + ϑ(1, 3)hcvc(1, 3)
= ϑ(d, e)hcvc(d, e) + ϑ(e, f )hcvc(e, f ).

For contradiction to complex valued (c.v.) extended b-metric, we have the following inequality:

|hcvc(1, 2)| = |4 + 4i| � |4 + 2i|

= 2|(1 − i) + (1 + 2i)|
= ϑ(1, 2)[hcvc(1, 3) + hcvc(3, 2)].

In conclusion, (D, hcvc) is a complex valued controlled metric space. It can also be seen that it is
not complex valued extended b-metric space.

For complex valued controlled (c.v.c.) metric type spaces, we now define Cauchy sequence and also
convergent sequence as below.
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Definition 1.6. Consider (D, hcvc) is a complex valued controlled (c.v.c)metric space with {dn}n≥0 a
sequence in D and d ∈ D. Then

(i) A sequence {dn} in D is convergent and converges to d ∈ D if for every 0 ≺ c ∈ C ∃ a natural
number N so that hcvc(dn, d) ≺ c for every n ≥ N. Then we say limn→∞ dn = d or dn → d as n→ ∞.

(ii) If, for every 0 ≺ c where c ∈ C ∃ a natural number N so that hcvc(dn, dn+m) ≺ c for every m ∈ N
and n > N. Then {dn} is said to be Cauchy sequence in (D, hcvc).

(iii) Complex valued controlled (c.v.c) metric type space (D, hcvc) is said to be Complete, if every
Cauchy sequence in D is convergent in D.

Definition 1.7. Consider (D, hcvc) be a complex valued controlled (c.v.c.) metric space. Let d ∈ D and
0 ≺ c

(i) Define the open ball as B(d, c) is B(d, c) = {e ∈ D, hcvc(d, e) ≺ c}. Moreover, the family of open
balls forms a basis of some topology τhcvc on D.

(ii) The functional/mapping Υ : D→ D is called continuous at p ∈ D if ∀ 0 ≺ c, ∃ 0 ≺ δ∗ such that
Υ(B(d, δ∗)) ⊆ B(Υd, c).

Obviously, if Υ is taken continuous at d in the complex valued controlled (c.v.c.) metric spaces
(D, hcvc) then dn → d implies Υdn → Υd as n→ ∞.

One can prove the following lemmas for the specific case of complex valued controlled (c.v.c)
metric space, in a similar way as in [28].

Lemma 1.1. Let (D, hcvc) be a complex valued controlled (c.v.c) metric space and assume a sequence
{dn} ∈ D. Then {dn} is Cauchy sequence ⇐⇒ |hcvc(dm, dn)| → 0 as m, n→ ∞, where m, n ∈ N.

Proof. Let {dn} be a sequence which is Cauchy in D, then for every ε � 0, ∃ n0 ∈ N such that

hcvc(dm, dn) ≺ ε, for all m, n > n0. (1)

Since ε ∈ C, ∃ a, b ∈ R such that ε = a + ib. We consider δ∗ = |ε | =
√

a2 + b2, and taking the
modulus on both sides of (1), we have |hcvc(dm, dn)| ≺ δ∗.

Further, using the concept of limit, we have |hcvc(dm, dn)| → 0 as m, n→ ∞, where m, n ∈ N.
Conversely, suppose that |hcvc(dm, dn)| → 0 as m, n → ∞, where m, n ∈ N. Then, result that

|hcvc(dm, dn)| ≺ δ∗, for every δ∗ > 0.
Since hcvc(dm, dn) ∈ C, ∃ ε ∈ C such that δ∗ = |ε |. Then, we have hcvc(dm, dn) ≺ ε, for every ε > 0.

Thus, ∃ n0 ∈ N such that m, n > n0, {dn} is a complex valued Cauchy sequence. �

Lemma 1.2. Suppose (D, hcvc) be a complex valued controlled (c.v.c) metric space and {dn} be sequence
in D. Then {dn} converges to d ⇐⇒ |hcvc(dn, d)| → 0 as n→ ∞.

Proof. Letting m→ ∞ in proof of the above lemma, we can get the conclusion. �

Remark 1.3. While taking ϑ(d, e) = ϑ(e, f ) for all d, e, f ∈ D, then a complex valued controlled metric
space is reduced to a complex valued extended b-metric space.

Lemma 1.3. Let (D, hcvc) be a complex valued controlled(c.v.c) metric space. Then a sequence {dn} in
D is Cauchy sequence, such that dm , dn, whenever m , n. Then {dn} converges to at most one point.
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Proof. Consider the sequence {dn} with two limit points d∗ and e∗ ∈ D and lim
n→∞

hcvc(dn, d∗) = 0 =

lim
n→∞

hcvc(dn, e∗). Since {dn} is Cauchy, from (CCMT3), for dm , dn, whenever m , n, we can write

|hcvc(d∗, e∗)| - [ϑ(d∗, dn)|hcvc(d∗, dn)| + ϑ(dn, e∗)|hcvc(dn, e∗)|]→ 0 as n→ ∞.

We get |hcvc(d∗, e∗)| = 0, i.e., d∗ = e∗. Thus, {dn} converges to at most one point. �

Remark that, in general an usual b-metric is not considered a continuous functional. Concerning
this aspect we will discuss next, the continuity of the complex valued controlled metric with respect to
the partial order -.

Lemma 1.4. For a given complex valued controlled space (D, hcvc), the complex valued controlled
(c.v.c) metric function hcvc : D × D→ C is continuous, with respect to the partial order “ - ”.

Proof. Choosing any two arbitrary complex numbers y and x, such that y � x, then we should show
that the set h−1

cvc(x, y) given by

h−1
cvc(x, y) := {(d, e) ∈ D × D|y � hcvc(d, e) � x},

is open in the product topology on D × D. A basis for this product topology is the collection of all
cartesian products of open balls in (D, hcvc).

Then, let (d, e) ∈ h−1
cvc(x, y). We choose ε = 1

100 min(hcvc(d, e) − x, y − hcvc(d, e)). Then, for any point
(ζ, σ) ∈ B(d, ε) × B(e, ε) we have

hcvc(ζ, σ) � hcvc(ζ, d) + hcvc(d, e) + hcvc(e, σ) ≺ 2ε + hcvc(d, e) ≺ y

and
x � hcvc(d, e) − 2ε ≺ hcvc(ζ, σ) + hcvc(d, ζ) − ε + hcvc(e, σ) − ε ≺ hcvc(ζ, σ).

Then it results in (d, e) ∈ B(p, ε) × B(e, ε) ⊆ h−1
cvc(x, y). Then, any point (d, e) ∈ h−1

cvc(x, y) ⊆ D × D is
surrounded by some open set included in h−1

cvc(x, y).
Then, the complex valued metric hcvc(d, e) is continuous in the complex valued controlled (c.v.c)

metric space (D, hcvc), with respect to the partial order ” - ”. �

According with this result, let us give the following lemma.

Lemma 1.5. Consider (D, hcvc) be a complex valued controlled(c.v.c) metric type space. Limit of every
convergent sequence in D is unique, if the functional hcvc : D × D→ C is continuous.

The next graph shows the relations between the recently generalizations of complex valued metric
space.
metric space → b- metric space→ extended b-metric space → controlled metric space
↓ ↓ ↓ ↓

c.v.metric space → c.v.b- metric space→ c.v.extend b-metric space → c.v.controlled metric space

In this paper, CVC-metric space will be the notation of complex valued controlled (c.v.c) metric
space. Also, N∗ := N − {0} is notation of the set for all natural nonzero numbers. Then, for operator Υ,
FixΥ := {d∗ ∈ D | d∗ = Υ(d∗)} will be the set of fixed points.
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In this paper, we give the notion of complex valued controlled metric space. We will also prove the
Banach contraction principle, Kannan and Fisher rational type fixed point theorems in the settings of
complex valued controlled metric. Few examples and an application are presented to sustain our main
results.

2. Banach type fixed point result on CVC-metric space

For this section let us give a Banach type contraction principle related to the complex valued
controlled metric space.

Theorem 2.1. Let (D, hcvc) be a complete CVC-metric space and Υ : D→ D be a continuous mapping
such that

hcvc(Υd,Υe) - λhcvc(d, e), (2)

for all d, e ∈ D, where 0 < λ < 1. For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
x→∞

ϑ(dx+1, dx+2)
ϑ(dx, dx+1)

ϑ(dx+1, dm) <
1
λ
, (3)

In addition, for every d ∈ D the limits

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exists and are finite. (4)

Then Υ has a unique fixed point.

Proof. Suppose the sequence {dn = Υnd0}. From (2) we get

hcvc(dn, dn+1) - λhcvc(dn−1, dn) - ... - λnhcvc(d0, d1)∀n ≥ 0.

∀ n < m, where n and m are natural numbers, we have

hcvc(dn, dm) - ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)hcvc(dn+1, dm)
- ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)ϑ(dn+1, dn+2)hcvc(dn+1, dn+2)
+ ϑ(dn+1, dm)ϑ(dn+2, dm)hcvc(dn+2, dm)
- ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)ϑ(dn+1, dn+2)hcvc(dn+1, dn+2)
+ ϑ(dn+1, dm)ϑ(dn+2, dmϑ(dn+2, dn+3)hcvc(dn+2, dn+3)
+ ϑ(dn+1, dm)ϑ(dn+2, dmϑ(dn+3, dm)hcvc(dn+3, dm)

- ... - ϑ(dn, dn+1)hcvc(dn, dn+1) +

m−2∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)hcvc(dl, dl+1)

+

m−1∏
k=n+1

ϑ(dk, dm)hcvc(dm−1, dm)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−2∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1)
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+

m−1∏
k=n+1

ϑ(dk, dm)λm−1hcvc(d0, d1)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−2∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1)

+

m−1∏
k=n+1

ϑ(dk, dm)λm−1ϑ(dm−1, dm)hcvc(d0, d1)

= ϑ(dn, dn+1λ
nhcvc(d0, d1) +

m−1∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−1∑
l=n+1

l∏
j=0

α(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1).

Also, using ϑ(d, e) ≥ 1. Let

S u =

u∑
l=0

l∏
j=0

ϑ(d j, dm)ϑ(dl, dl+1)λl.

Hence we have
hcvc(dn, dm) - hcvc(d0, d1)[λnϑ(dn, dn+1) + (S m−1, S n)]. (5)

By (3) and applying the ratio test, we get that lim
m,n→∞

S n exists and so the real sequence {S n} is Cauchy.

At the end, taking the limit in the inequality (5) when m, n→ ∞ we found that

lim
m,n→∞

hcvc(dn, dm) = 0. (6)

Results {dn} is Cauchy sequence in the complete CVC-metric space(D, hcvc); then {dn} converges to
a d∗ ∈ D. We now show that d∗ is fixed point of Υ.

By the continuity of Υ we obtain

d∗ = lim
n→∞

dn+1 = lim
n→∞

Υdn = Υ( lim
n→∞

dn) = Υd∗.

For uniqueness of fixed point, we suppse that Υ has two fixed points, d∗, e∗ ∈ FixΥ. Thus we have

hcvc(d∗, e∗) = hcvc(Υd∗,Υe∗) - ϑhcvc(d∗, e∗).

which holds unless hcvc(d∗, e∗) = 0; so d∗ = e∗. Hence Υ has a unique fixed point. �

If we avoid the continuity condition of the mapping Υ in the previous theorem we get a new general
result as follows.

Theorem 2.2. Let (D, hcvc) be a complete CVC-metric space and Υ : D→ D be a mapping such that

hcvc(Υd,Υe) - ϑhcvc(d, e), (7)
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for all d, e ∈ D, where 0 < ϑ < 1. For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
. (8)

In addition, for every d ∈ D the limits

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (9)

Then Υ has a unique fixed point.

Proof. Using similar steps as we did in the proof of Theorem 2.1, and taking into account Lemma 1.4,
we find a Cauchy sequence {dn} in the complete CVC-metric space (D, hcvc). Then the sequence {dn}

converges to a d∗ ∈ D. We shall prove that d∗ is a fixed point of Υ. The triangular inequality follows
that

hcvc(d∗, dn+1) - ϑ(d∗, dn)hcvc(d∗, dn) + ϑ(dn, dn+1)hcvc(dn, dn+1).

Using (8), (9) and (31), we get
lim
n→∞

hcvc(d∗, dn+1) = 0. (10)

Using again the triangular inequality and (7),

hcvc(d∗,Υd∗) - ϑ(d∗, dn+1)hcvc(d∗, dn+1) + ϑ(dn+1,Υd∗)hcvc(dn+1,Υd∗)
- ϑ(d∗, dn+1)hcvc(d∗, dn+1) + λϑ(dn+1,Υd∗)hcvc(dn,Υd∗).

Taking the limit n → ∞ and by (9) and (32) we found that hcvc(d∗,Υd∗) = 0. Remark that, in view
of Lemma 1.3, the sequence {dn} converges uniquely at the point d∗ ∈ D. �

We illustrate this theorem with the help of following example.

Example 2.1. Consider D = {0, 1, 2} and let hcvc : D × D→ C be a symmetric metric given by

hcvc(d, d) = 0, for each d ∈ D

and
hcvc(0, 1) = 1 + i, hcvc(0, 2) = 4 + 4i, hcvc(1, 2) = 1 + i.

Also, let ϑ : D × D→ [1,∞) be a symmetric function and

ϑ(0, 0) = 2, ϑ(0, 1) =
3
2
, ϑ(0, 2) =

4
3
,

ϑ(1, 1) =
4
3
, ϑ(1, 2) =

5
4
, ϑ(2, 2) =

6
5
.

It’s easy to remark that we have a CVC- metric space.
Let us consider the self map Υ on D as follows Υ(0) = 0 ,Υ(1) = 0, Υ(2) = 0.
Choosing λ = 2

5 , for both cases from the definition of ϑ(d, e) it is clearly that (7) holds. Also, for
any d0 ∈ D the condition(8) is satisfied.

Case 1. If d = e = 0, d = e = 1, d = e = 2, the results hold immediately.
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Case 2. If d = 0, e = 1, we have
hcvc(Υd,Υe) = hcvc(Υ0,Υ1) = hcvc(2, 2) = 0 - 2

5 (1 + i) = λ(hcvc(0, 1)) = λ(hcvc(d, e)).
Case 3. If d = 0, e = 2, we have

hcvc(Υd,Υe) = hcvc(Υ0,Υ2) = hcvc(2, 2) = 0 - 2
5 (4 + 4i) = λ(hcvc(0, 2)) = λ(hcvc(d, e)).

Case 4. If d = 1, e = 2, we have
hcvc(Υd,Υe) = hcvc(Υ1,Υ2) = hcvc(2, 2) = 0 - 2

5 (1 + i) = λ(hcvc(1, 2)) = λ(hcvc(d, e)).
Then all hypothesis of Theorem (2.2) hold; then Υ has a unique fixed point, which is d∗ = 0.

Further, let us give another example to put in evidence that, the complex valued controlled space is
larger than the one of controlled metric space.

Example 2.2. Let D = C and hcvc : D × D→ C be a metric defined as follows

hcvc(d, e) =

{
0, if d = e,
|d − e| + |d − e|i, otherwise.

with d, e ∈ C defined as d = b∗+c∗i and e = d∗+e∗i, for every b∗, c∗, d∗, e∗ ∈ R+−0, with |d| =
√

b∗2 + c∗2

and R+ − {0} represents the set of real positive nonzero numbers.
Let ϑ : D ×D→ [1,+∞) be a function defined as ϑ = 1 + |d + e|2 and let Υ : D→ D be a mapping

defined by Υd = di. It is quite easy to check that (D, hcvc) is a complete complex valued controlled
(c.v.c.) metric space. Next, we will verify the hypothesis of Theorem 2.1. First, we calculate the values
of hcvc(Υd,Υe) and hcvc(d, e).

hcvc(Υd,Υe) = |di − ei| + |di − ei|i

= |(b∗i − c∗) − (d∗i − e∗)| + |(b∗i − c∗) − (d∗i − e∗)|i
= |(b∗ − d∗)i + (e∗ − c∗)| + |(b∗ − d∗)i + (e∗ − c∗)|i

=
√

(b − d)2 + (e − c)2 + i
√

(b − d)2 + (e − c)2.

hcvc(d, e) = |d − e| + |d − e|i

= |(b∗ − c∗i) − (d∗ − e∗i)| + |(b∗ − c∗i) − (d∗ − e∗i)|i
= |(b∗ − d∗) + (c∗ − e∗)i| + |(b∗ − d∗) + (c∗ − e∗)i|i

=
√

(b∗ − d∗)2 + (c∗ − e∗)2 + i
√

(b∗ − d∗)2 + (c∗ − e∗)2.

Moreover,

ϑ(d, e) = 1 + |d + e|2 = 1 + |(b∗ + c∗i) + (d∗ + e∗i)|2

= 1 + |(b∗ + d∗) + (c∗ + e∗)i|2

= 1 +
√

(b∗ + d∗)2 + (c∗ + e∗)22 > 1.

Since b∗, c∗, d∗, e∗ ∈ R+ − {0} it is obviously that (e∗ − c∗)2 = (c∗ − e∗)2. Then we get

hcvc(Υd,Υe) =
√

(b∗ − d∗)2 + (e∗ − c∗)2 + i
√

(b∗ − d∗)2 + (q∗ − c∗)2

=
√

(b∗ − d∗)2 + (c∗ − e∗)2 + i
√

(b∗ − d∗)2 + (c∗ − e∗)2
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- [1 +
√

(b∗ + d∗)2 + (c∗ + e∗)22]
√

(b∗ − d∗)2 + (c∗ − e∗)2 + i
√

(b∗ − d∗)2 + (c∗ − e∗)2

= ϑ(d, e)hcvc(d, e).

Then, all hypothesis of Theorem (2.1) hold; then, Υ has a unique fixed point d = 0 + 0i.

Corollary 2.1. Let (D, hcvc) be a complete CVC-metric space and Υ : D→ D be a continuous mapping
such that

hcvc(Υnd,Υne) - λhcvc(d, e), (11)

for all d, e ∈ D, where 0 < λ < 1. For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
, (12)

In addition, for every d ∈ D the limits

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (13)

Then ϑ has a unique fixed point.

Proof. From Theorem 2.1 we have that Υn has a unique fixed point f . Since Υn(Υ f ) = Υ(Υn f ) = Υ f
results Υ f is a fixed point of Υn. Therefore, Υ f = f by the uniqueness of a fixed point of Υn. Therefore,
f is also a fixed point of Υ. Since the fixed point of Υ is also a fixed point of Υn, then the fixed point
of Υ is unique. �

3. Kannan type fixed point results on CVC-metric space

The main result of this section is a Kannan type fixed point theorem for the case of complex
valued controlled metric space.

Theorem 3.1. Let (D, hcvc) be a complete CVC-metric space and Υ : D→ D be a continuous mapping
such that

hcvc(Υd,Υe) - γ(hcvc(d,Υd) + hcvc(e,Υe)), (14)

for all d, e ∈ D, where 0 ≤ γ < 1
2 . For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
, where λ =

γ

1 − γ
. (15)

In addition, assume for every d ∈ D that the limits

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (16)

Then Υ has a unique fixed point.

Proof. For d0 ∈ D, consider a sequence {dn = Υnd0}. If there exists d0 ∈ N for which dn0+1 = dn0 , then
Υdn0 = dn0 . So everything will be trivially satisfied. Now we assume that dn+1 , dn for all n ∈ N. By
using (2) we get

hcvc(dn, dn+1) = hcvc(Υdn−1,Υdn)
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- γ(hcvc(dn−1,Υdn−1) + hcvc(dn,Υdn))
= γ(hcvc(dn−1, dn) + hcvc(dn, dn+1)),

which implies hcvc(dn, dn+1) - ( γ

1−γ )hcvc(dn−1, dn) = λhcvc(dn−1, dn). In the same way

hcvc(dn−1, dn) = hcvc(Υdn−2,Υdn−1)
- γ(hcvc(dn−2,Υdn−2) + hcvc(dn−1,Υdn−1))
= γ(hcvc(dn−2, dn−1) + hcvc(dn−1, dn)),

which implies hcvc(dn−1, dn) - ( γ

1−γ )hcvc(dn−2, dn−1) = λhcvc(dn−2, dn−1).
Continuing in the same way, we have

hcvc(dn, dn+1) - λhcvc(dn−1, dn) - λ2hcvc(dn−2, dn−1) - ... - λnhcvc(d0, d1).

Thus, hcvc(dn, dn+1) - λnhcvc(d0, d1) for all n ≥ 0. For all n < m, where n and m are natural numbers, we
have

hcvc(dn, dm) - ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)hcvc(dn+1, dm)
- ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)ϑ(dn+1, dn+2)hcvc(dn+1, dn+2)
+ ϑ(dn+1, dm)ϑ(dn+2, dm)hcvc(dn+2, dm)
- ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)ϑ(dn+1, dn+2)hcvc(dn+1, dn+2)
+ ϑ(dn+1, dm)ϑ(dn+2, dmϑ(dn+2, dn+3)hcvc(dn+2, dn+3)
+ ϑ(dn+1, dm)ϑ(dn+2, dmϑ(dn+3, dm)hcvc(dn+3, dm)

- ... - ϑ(dn, dn+1)hcvc(dn, dn+1) +

m−2∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)hcvc(dl, dl+1)

+

m−1∏
k=n+1

ϑ(dk, dm)hcvc(dm−1, dm)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−2∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1)

+

m−1∏
k=n+1

ϑ(dk, dm)λm−1hcvc(d0, d1)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−2∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1)

+

m−1∏
k=n+1

ϑ(dk, dm)λm−1ϑ(dm−1, dm)hcvc(d0, d1)

= ϑ(dn, dn+1λ
nhcvc(d0, d1) +

m−1∑
l=n+1

l∏
j=n+1

ϑ(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−1∑
l=n+1

l∏
j=0

α(d j, dm)ϑ(dl, dl+1)λlhcvc(d0, d1).
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Further, using ϑ(d, e) ≥ 1. Let

S u =

u∑
l=0

l∏
j=0

ϑ(d j, dm)ϑ(dl, dl+1)λl.

Hence we have
hcvc(dn, dm) - hcvc(d0, d1)[λnϑ(dn, dn+1) + (S m−1, S n)], (17)

Condition (3), by aplying the ratio test, ensures that lim
m,n→∞

S n exists and so the sequence {S n} is a

Cauchy sequence. If we apply the limit of the inequality (17) for m, n→ ∞, we can deduce that

lim
m,n→∞

hcvc(dn, dm) = 0.

Then {dn} is a Cauchy sequence in the complete CVC-metric space (D, hcvc). This means the
sequence{dn} converges to some d∗ ∈ D. We now show that d∗ is a fix point of Υ.

By the continuity of Υ we obtain

d∗ = lim
n→∞

dn+1 = lim
n→∞

Υdn = Υ( lim
n→∞

dn) = Υd∗.

For the uniqueness assume that Υ has two fix points d∗, e∗ ∈ FixΥ. Thus,

hcvc(d∗, e∗) = hcvc(Υd∗,Υe∗) - γ[hcvc(d∗,Υd∗) + hcvc(e∗,Υe∗)] - γ[hcvc(d∗, d∗) + hcvc(e∗, e∗)] = 0.

Since hcvc(d∗, e∗) = 0 then d∗ = e∗. Hence Υ has a unique fixed point. �

If we consider Υ a mapping not necessary continuous, we get the following general fixed point
result.

Theorem 3.2. Let (D, hcvc) be a complete CVC-metric space and Υ : D→ D be a mapping such that

hcvc(Υd,Υe) - γ(hcvc(d,Υd) + hcvc(e,Υe)) (18)

for all d, e ∈ D where 0 ≤ γ < 1
2 . For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
, where λ =

γ

1 − γ
. (19)

In addition, assume for every d ∈ D that the limits

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (20)

Then Υ has a unique fixed point.

Proof. Using similar steps as followed in the proof of Theorem 3.1 and taking into account Lemma 1.4,
we find a Cauchy sequence {dn} in the complete CVC-metric space (D, hcvc). Then the sequence {dn}

converges to a d∗ ∈ D. We must prove that d∗ is a fixed point of Υ.
Using the triangular inequality we get

hcvc(d∗, dn+1) - ϑ(d∗, dn)hcvc(d∗, dn) + ϑ(dn, dn+1)hcvc(dn, dn+1)

AIMS Mathematics Volume 7, Issue 7, 11879–11904.



11893

Using (3), (4) and (31) we deduce
lim
n→∞

dcvc(d∗, dn+1) = 0.

Using again the triangular inequality and (2) we obtain

hcvc(d∗,Υd∗) - ϑ(d∗, dn+1)hcvc(d∗, dn+1) + ϑ(dn+1,Υd∗)hcvc(dn+1,Υd∗)
- ϑ(d∗, dn+1)hcvc(d∗, dn+1) + ϑ(dn+1,Υd∗)[γ(hcvc(dn, dn+1) + hcvc(d∗,Υd∗))].

Taking the limit as n → ∞ and by (4) and (32) we deduce that hcvc(d∗,Υd∗) = 0. Remark that, in
view of Lemma 1.3, the sequence {dn} converges uniquely at the point d∗ ∈ D. �

Further we will present some special cases concerning this new type of results. We will show that
there exists a close connections between CVC-metric space and other different types of spaces.

Corollary 3.1. Let (D, he) be a complete complex valued extended b-metric space and Υ : D → D be
a continuous mapping such that

he(Υd,Υe) - γ(he(d,Υd) + he(e,Υe)) (21)

for all d, e ∈ D, where 0 ≤ γ < 1
2 . For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
, where λ =

γ

1 − γ
. (22)

In addition to this, suppose that for every d ∈ D, we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exists and are finite. (23)

Then Υ has a unique fixed point.

Proof. If we choose ϑ(d, e) = ϑ(e, f ) in Theorem 3.1 we get the conclusion. �

Corollary 3.2. Let (D, hb) be a complete complex valued b-metric space and Υ : D → D be a
continuous mapping such that

hb(Υd,Υe) - γ(hb(d,Υd) + hb(e,Υe)) (24)

for all d, e ∈ D, where 0 ≤ γ < 1
2 . For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
, where λ =

γ

1 − γ
. (25)

In addition to this, suppose that for every p ∈ D, we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (26)

Then Υ has a unique fixed point.

Proof. Taking ϑ(d, e) = ϑ(e, f ) = t > 1 in Theorem 3.1 we get the conclusion. �
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Corollary 3.3. Let (D, hcm) be a complete complex valued metric space and Υ : D→ D be a continuous
mapping such that

hcm(Υd,Υe) - γ(hcm(d,Υd) + hcm(e,Υe)) (27)

for all d, e ∈ D, where 0 ≤ γ < 1
2 . For d0 ∈ D we denote dn = Υnd0. Suppose that

max
m≥1

lim
l→∞

ϑ(dl+1, dl+2)
ϑ(dl, dl+1)

ϑ(dl+1, dm) <
1
λ
, where λ =

γ

1 − γ
. (28)

In addition, assume that for every d ∈ D, we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (29)

Then Υ has a unique fixed point.

Proof. Replacing ϑ(d, e) = ϑ(e, f ) = 1 in Theorem 3.1 we get the conclusion. �

Let us give the illustrative example as follows.

Example 3.1. Let us consider D = {0, 1, 2} and let hcvc : D × D → C be a symmetric metric given as
follows

hcvc(d, d) = 0 for each d ∈ D

and
hcvc(0, 1) = 1 + i, hcvc(0, 2) = 4 + 4i, hcvc(1, 2) = 1 + i.

Also, let ϑ : D × D→ [1,∞) be a symmetric function and

ϑ(0, 0) = 5, ϑ(0, 1) = 3, ϑ(0, 2) =
7
3
,

ϑ(1, 1) =
7
3
, ϑ(1, 2) = 2, ϑ(2, 2) =

9
5
.

Let us consider the self-map Υ on D as Υ(0) = Υ(1) = Υ(2) = 2.
Choosing γ = 2

5 , for both cases from the definition of ϑ it is clearly that (18) holds. Also, for any
p0 ∈ D the condition(19) is satisfied.
Case 1. If d = e = 0, d = e = 1, d = e = 2, then the results hold immediately.
Case 2. If d = 0, e = 1, we have
hcvc(Υd,Υe) = hcvc(Υ0,Υ1) = hcvc(2, 2) = 0 - 10

5 (1+ i) = 2
5 (4+4i+ (1+ i)) = γ(hcvc(0, 2)+hcvc(1, 2)) =

γ(hcvc(d,Υd) + hcvc(e,Υe)).
Case 3. If d = 0, e = 2, we have
hcvc(Υd,Υe) = hcvc(Υ0,Υ2) = hcvc(2, 2) = 0 - 8

5 (1 + i) = 2
5 (4 + 4i + 0) = γ(hcvc(0, 2) + hcvc(2, 2)) =

γ(hcvc(d,Υd) + hcvc(e,Υe)).
Case 4. If d = 1, e = 2, we have
hcvc(Υd,Υe) = hcvc(Υ1,Υ2) = hcvc(2, 2) = 0 - 2

5 (1 + i) = 2
5 ((1 + i) + 0) = γ(hcvc(1, 2) + hcvc(2, 2)) =

γ(hcvc(d,Υd) + hcvc(e,Υe)).
Then all hypothesis of Theorem (3.2) hold; then T has a unique fixed point, which is d∗ = 2.
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4. Fisher type fixed point result on CVC-metric space

In [20] D. Lateef gave some fixed point result for rational functions, Fisher type, in controlled
metric space. In this section let us present a generalisation of D. Lateef result in the settings of the
CVC-metric space.

Theorem 4.1. Let (D, hcvc) be a complete CVC-metric space and Υ : D → D be continuous mapping
such that

hcvc(Υd,Υe) - ξhcvc(d, e) + ς
hcvc(d,Υd)hcvc(e,Υe)

1 + hcvc(d, e)
, (30)

for all d, e ∈ D, where ξ, ς ∈ [0, 1) such that η =
ξ

1−ς < 1. For d0 ∈ D we denote dn = Υnd0. Suppose
that

max
m≥1

lim
i→∞

ϑ(di+1, di+2)
ϑ(di, di+1)

ϑ(di+1, dm) <
1
η
, (31)

In addition, suppose that for every p ∈ D we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (32)

Then Υ has a unique fixed point.

Proof. For d0 ∈ D consider the sequence {dn = Υnd0}. If there exists d0 ∈ N for which dn0+1 = dn0 , then
Υdn0 = dn0 . So everything will be trivially satisfied. Now we assume that dn+1 , dn for all n ∈ N. By
using (2), we get

hcvc(dn, dn+1) = hcvc(Υdn−1,Υdn)

- ξhcvc(dn−1, dn) + ς
hcvc(dn−1,Υdn−1)hcvc(dn,Υdn)

1 + hcvc(dn−1, dn)

= ξhcvc(dn−1, dn) + ς
hcvc(dn−1, dn)hcvc(pn, dn+1)

1 + hcvc(dn−1, dn)
- ξhcvc(pn−1, dn) + ςhcvc(dn, dn+1)

which implies

hcvc(dn, dn+1) - (
ξ

1 − ς
)hcvc(dn−1, dn) = ηhcvc(dn−1, dn)

In the same way

hcvc(dn−1, dn) = hcvc(Υdn−2,Υdn−1)

- ξhcvc(dn−2, dn−1) + ς
hcvc(dn−2,Υdn−2)hcvc(dn−1,Υdn−1)

1 + hcvc(dn−2, dn−1)

= ξhcvc(dn−2, dn−1) + ς
hcvc(dn−2, dn−1)hcvc(dn−1, dn)

1 + hcvc(dn−2, dn−1)
- ξhcvc(dn−2, dn−1) + ςhcvc(dn−1, dn)
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which implies

hcvc(dn−1, dn) - (
ξ

1 − ς
)hcvc(dn−2, dn−1) = η(dn−2, dn−1)

Continuing the same way, we have

hcvc(dn, dn+1) - ηhcvc(dn−1, dn) - η2hcvc(dn−2, dn−1) - ... - ηnhcvc(d0, d1). (33)

Thus, hcvc(dn, dn+1) - ηnhcvc(d0, d1) for all n ≥ 0. For all n < m, where n and m are natural numbers, we
have

hcvc(dn, dm) - ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)hcvc(dn+1, dm)
- ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)ϑ(dn+1, dn+2)hcvc(dn+1, dn+2)
+ ϑ(dn+1, dm)ϑ(dn+2, dm)hcvc(dn+2, dm)
- ϑ(dn, dn+1)hcvc(dn, dn+1) + ϑ(dn+1, dm)ϑ(dn+1, dn+2)hcvc(dn+1, dn+2)
+ ϑ(dn+1, dm)ϑ(dn+2, dmϑ(dn+2, dn+3)hcvc(dn+2, dn+3)
+ ϑ(dn+1, dm)ϑ(dn+2, dmϑ(dn+3, dm)hcvc(dn+3, dm)

- ... - ϑ(dn, dn+1)hcvc(dn, dn+1) +

m−2∑
l=n+1

(
l∏

j=n+1

ϑ(d j, dm))ϑ(dl, dl+1)hcvc(dl, dl+1)

+

m−1∏
k=n+1

ϑ(dk, dm)hcvc(dm−1, dm)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−2∑
l=n+1

(
l∏

j=n+1

ϑ(d j, dm))ϑ(dl, dl+1)λlhcvc(d0, d1)

+

m−1∏
k=n+1

ϑ(dk, dm)λm−1hcvc(d0, d1)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−2∑
l=n+1

(
l∏

j=n+1

ϑ(d j, dm))ϑ(dl, dl+1)λlhcvc(d0, d1)

+ (
m−1∏

k=n+1

ϑ(dk, dm))λm−1ϑ(dm−1, dm)hcvc(d0, d1)

= ϑ(dn, dn+1λ
nhcvc(d0, d1) +

m−1∑
l=n+1

(
l∏

j=n+1

ϑ(d j, dm))ϑ(dl, dl+1)λlhcvc(d0, d1)

- ϑ(dn, dn+1)λnhcvc(d0, d1) +

m−1∑
l=n+1

(
l∏

j=0

α(d j, dm))ϑ(dl, dl+1)λlhcvc(d0, d1).

Further, using ϑ(d, e) ≥ 1. Let

S u =

u∑
l=0

(
l∏

j=0

ϑ(d j, dm))ϑ(dl, dl+1)λl.
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Hence we have
hcvc(dn, dm) - hcvc(d0, d1)[ηnϑ(dn, dn+1) + (S m−1, S n)]. (34)

Condition (3), by using the ratio test, ensure that lim
m,n→∞

S n exists and hence, the real sequence {S n}

is a Cauchy sequence. Finally, if we apply the limit in the inequality (34) as m, n→ ∞, we deduce that

lim
m,n→∞

hcvc(dn, dm) = 0,

that is, {dn} is a Cauchy sequence in the complete CVC-metric space (D, hcvc). Then, the sequence {dn}

converges to an d∗ ∈ D. We shall show that d∗ is a fixed point of Υ.
By the continuity of Υ we obtain

d∗ = lim
n→∞

dn+1 = lim
n→∞

Υdn = Υ( lim
n→∞

dn) = Υd∗.

For uniqueness let us assume that d∗, e∗ ∈ FixΥ are two fixed points of Υ. Then we get

hcvc(Υd∗,Υe∗) - ξhcvc(d∗, e∗) + ς
hcvc(d∗,Υe∗)hcvc(d∗,Υe∗)

1 + hcvc(d∗, e∗)

- ξhcvc(d∗, e∗) + ς
hcvc(d∗, d∗)hcvc(e∗, e∗)

1 + hcvc(d∗, e∗)
- ξhcvc(d∗, e∗).

which holds hcvc(d∗, e∗) = 0; then d∗ = e∗. Hence Υ has a unique fixed point. �

If we consider a mapping Υ not continuous we get a more general result for rational type mapping
as follows.

Theorem 4.2. Let (D, hcvc) be a complete CVC-metric space and Υ : D→ D be a mapping such that

hcvc(Υd,Υe) - ξhcvc(d, e) + ς
hcvc(d,Υd)hcvc(e,Υe)

1 + hcvc(d, e)
, (35)

for all d, e ∈ D, where ξ, ς ∈ [0, 1) such that η =
ξ

1−ς < 1. For d0 ∈ D we denote dn = Υnd0. Suppose
that

max
m≥1

lim
i→∞

ϑ(di+1, di+2)
ϑ(di, di+1)

ϑ(di+1, dm) <
1
η
, (36)

In addition, assume that for every d ∈ D we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exist and are finite. (37)

Then Υ has a unique fixed point.

Proof. Using similar steps as in the proof of Theorem 4.1 and taking into account Lemma 1.4, we get
a Cauchy sequence {dn} which converges to an d∗ ∈ D. We must show that d∗ is a fixed point of Υ.
Using triangle inequality, we get

hcvc(d∗, dn+1) - ϑ(d∗, dn)hcvc(d∗, dn) + ϑ(dn, dn+1)hcvc(dn, dn+1).
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Using (3), (4) and (36), we deduce that

lim
n→∞

hcvc(d∗, dn+1) = 0.

Using again the triangular inequality and (2),

hcvc(d∗,Υd∗) - ϑ(d∗, dn+1)hcvc(d∗, dn+1) + ϑ(dn+1,Υ
∗)hcvc(dn+1,Υd∗)

- ϑ(d∗, dn+1)hcvc(d∗, dn+1) + ϑ(dn+1,Υd∗)[ξhcvc(dn, d∗) + ς
hcvc(dn,Υdn)hcvc(d∗,Υd∗)

1 + hcvc(dn, d∗)
]

= ϑ(d∗, dn+1)hcvc(d∗, dn+1) + ϑ(dn+1,Υd∗)[ξhcvc(dn, d∗) + ς
hcvc(dn, dn+1)hcvc(d∗,Υd∗)

1 + hcvc(dn, d∗)
].

For n → ∞ and using (4) and (37), we deduce that hcvc(d∗,Υd∗) = 0. Remark that, in view of
Lemma 1.3, the sequence {dn} converges uniquely at the point d∗ ∈ D. �

We illustrate this theorem giving the following example.

Example 4.1. Let us consider D = {0, 1, 2} and let hcvc : D × D→ C be a symmetric metric given as

hcvc(d, d) = 0 for each d ∈ D

and
hcvc(0, 1) = 1 + i, hcvc(0, 2) = 4 + 4i, hcvc(1, 2) = 1 + i.

Also, let ϑ : D × D→ [1,∞) be symmetric and be defined as

ϑ(0, 0) = 5, ϑ(0, 1) = 3, ϑ(0, 2) =
7
3
,

ϑ(1, 1) =
7
3
, ϑ(1, 2) = 2, ϑ(2, 2) =

9
5
.

As (D, hcvc) is complex valued controlled metric space, let us consider the self-map Υ on D as Υ(0) =

Υ(1) = Υ(2) = 1.
If we choose ξ = ς = 1

5 we have
Case 1. If d = e = 0, d = e = 1, d = e = 2 we have hcvc(Υd,Υe) = 0.
Case 2. If d = 0, e = 1, we have hcvc(Υd,Υe) = 0 - ξhcvc(d, e) + ς hcvc(d,Υd)hcvc(e,Υe)

1+hcvc(d,e) .
Case 3. If d = 0, e = 2,we have hcvc(Υd,Υe) = 0 - ξhcvc(d, e) + ς hcvc(d,Υd)hcvc(e,Υe)

1+hcvc(d,e) .
Case 4. If d = 1, e = 2, we have hcvc(Υd,Υe) = 0 - ξhcvc(d, e) + ς hcvc(d,Υd)hcvc(e,Υe)

1+hcvc(d,e) .
Clearly (35) holds. For any d0 ∈ D (36) is satisfied.
Then all hypothesis of Theorem (4.2) hold. Results that Υ has a unique fixed point, which is d∗ = 1.

Corollary 4.1. Let (D, he) be a complete complex valued extended b-metric space and Υ : D → D be
continuous mapping such that

he(Dd,De) - ξhe(d, e) + ς
he(d,Dd)he(e,De)

1 + he(d, e)
,
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for all d, e ∈ D, where ξ, ς ∈ [0, 1) such that η =
ξ

1−ς < 1. For d0 ∈ D we denote dn = Dnd0. Suppose
that

max
m≥1

lim
i→∞

ϑ(di+1, di+2)
ϑ(di, di+1)

ϑ(di+1, dm) <
1
λ

In addition to this, suppose that for every d ∈ D, we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exists and finite.

Then Υ has a unique fixed point.

Proof. If we choose ϑ(d, e) = ϑ(e, f ) in Theorem 4.1 we get the conclusion. �

Corollary 4.2. Let (D, hb) be a complete complex valued b-metric space and Υ : D→ D be continuous
mapping such that

hb(Dd,De) - ξhb(d, e) + ς
hb(d,Dd)hb(e,De)

1 + hb(d, e)
,

for all d, e ∈ D, where ξ, ς ∈ [0, 1) such that η =
ξ

1−ς < 1. For d0 ∈ D we denote dn = Dnd0. Suppose
that

max
m≥1

lim
i→∞

ϑ(di+1, di+2)
ϑ(di, di+1)

ϑ(di+1, dm) <
1
λ

In addition to this, suppose that for every p ∈ D, we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exists and finite.

Then Υ has a unique fixed point.

Proof. If we choose ϑ(d, e) = ϑ(e, f ) = t > 1 in Theorem 4.1 we get the conclusion. �

Corollary 4.3. Let (D, hcm) be a complete complex valued metric space and Υ : D→ D be continuous
mapping such that

hcm(Dd,De) - ξhcm(d, e) + ς
hcm(d,Dd)hcm(e,De)

1 + hcm(d, e)
,

for all d, e ∈ D, where ξ, ς ∈ [0, 1) such that η =
ξ

1−ς < 1. For d0 ∈ D we denote dn = Dnd0. Suppose
that

max
m≥1

lim
i→∞

ϑ(di+1, di+2)
ϑ(di, di+1)

ϑ(di+1, dm) <
1
λ

In addition to this , suppose that for every d ∈ D, we have

lim
n→∞

ϑ(dn, d) and lim
n→∞

ϑ(d, dn) exists and finite.

Then Υ has a unique fixed point.

Proof. If we choose ϑ(d, e) = ϑ(e, f ) = 1 in Theorem 4.1 we get the conclusion. �
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5. Application to an integral type equation

During this section we suppose the following type of integral equation.

p(u) = x(u) +

u∫
0

R(u, v)g(v, p(v))dv, u ∈ [0, 1], p(u) ∈ D, (38)

where g(u, p(u)) : [0, 1] × R → R, x(u) : [0, 1] → R be two bounded and continuous functions and
R : [0, 1] × [0, 1]→ [0,∞) be a function such that R(u, ·) ∈ L1([0, 1]) for all u ∈ [0, 1].
In order to show the existence of solution for integral equation (38) we use Theorem 4.1. In this
situation, let we present the result as follows.

Theorem 5.1. Let D = C([0, 1],R) is the set of all continuous and real-valued functions which are
defined on [0, 1]. Also let Υ : D→ D be an operator of the form:

Dp(u) = x(u) +

∫ u

0
R(u, v)g(v, p(v))dv, u ∈ [0, 1], p(u) ∈ D. (39)

Suppose the following conditions hold:

(i) the functions g(u, p(u)) : [0, 1] × R→ R and x(u) : [0, 1]→ R are continuous;

(ii) R : [0, 1] × [0, 1]→ [0,∞) be a function with R(u, ·) ∈ L1([0, 1]) ∀ u ∈ [0, 1] we have:

‖

u∫
0

R(u, v)dv‖ < 1.

(iii) | g(u, p(u)) − g(u, q(u)) |≤ 1
ω·eiωu | p(u) − q(u) |, for all p, q ∈ D and ω ∈ (1, 1

λ
] with λ ∈ (0, 1).

Then the equation (38) has a unique solution.

Proof. Let D = C([0, 1],R) and hcvc : D × D→ C a complex valued metric such that,

hcvc(p, q) = ‖p‖∞ = sup
u∈[0,1]

| p(u) | e−iωu, with ω ∈ (1,
1
λ

], λ ∈ (0, 1) and i =
√
−1 ∈ C.

Let ϑu : D × D→ [1,∞) defined as follows, for every the same ω ∈ (1, 1
λ
] and λ ∈ (0, 1).

ϑu(p, q) =

{
1, if p, q ∈ [0, 1],
max{p(u), q(u)} + ω, otherwise.

It is easy to conclude that (D, hcvc) is a complete CVC-metric space. Then the problem (38) can be
again resumed to find the element p∗ ∈ D which one is a fixed point for the operator Υ.

Now we have the following estimation

| Υp(u) − Υq(u) | ≤|
∫ u

0
[R(u, v)g(v, p(v)) − R(u, v)g(v, q(v))]dv |
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≤

∫ u

0
| R(u, v)[g(v, p(v)) − g(v, q(v))] | dv

≤

(∫ u

0
R(u, v)dv

) ∫ u

0
| [g(v, p(v)) − g(v, q(v))] | dv

≤
1

τ · eiωu

∫ u

0
| p(v) − q(v) | dv

(∫ u

0
R(u, v)dv

)
=

eiωu

τ · eiωue−iωu

∫ u

0
| p(v) − q(v) | e−iωtdv

(∫ u

0
R(u, v)e−iωudv

)
.

Taking the supremum in the previous inequality we obtain

[ sup
u∈[0,1]

| Υp(u) − Υq(u) | e−iωu] ≤
1
ω

[ sup
u∈[0,1]

| p(u) − q(u) | e−iωu] ·
(∫ u

0
sup

u∈[0,1]
R(u, v)e−iωudv

)
.

Using the hypothesis (ii) we have

hcvc(Υp,Υq) = ‖Υp − Υq‖∞ ≤
1
ω
‖p − q‖∞ =

1
ω

hcvc(p, q).

It is easy to check that, for both cases of the expression of ϑ(p, q), when p, q ∈ [0, 1] and otherwise,
the conditions (3) and (4) are true. Then, for 0 < δ = 1

ω
< 1, all the hypothesis of Theorem 2.1 holds.

In this conditions we get that equation (38) has a unique solution. �

6. Conclusions

In this article the concept of complex valued controlled metric type space is introduced. We study
the connection between this new type of space and any other similar spaces with complex values,
as complex valued b-metric space, or extended complex valued space, proving by some illustrative
examples that our new type of space is larger than the others. The fixed point theory is used in our
paper by given some fixed point theorems for Banach, Kannan and Fisher contractions type. Moreover,
an application in integral equation type with complex values, is given to sustain our results.

Open questions

(1) A first open problem involve the concept of C∗-algebra valued metric spaces. This notion was
presented in 2014 by Ma et al. (see [22]), by interchanging the range set R by unital C∗-algebra,
giving more generalized class than that of metric spaces. Many other generalizations of such a
structure were given in related literature, and an interesting point would be to consider the case of
controlled C∗-algebra valued spaces and to obtain similar fixed point results in this space.

(2) We may also write the interesting results about the concept of cyclic contraction in view to obtain
some results for best proximity points in [10]. Similar results can be obtain for the case of CVC-
metric space.
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