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1. Introduction

Fixed point theory has been the topic of extensive recent research due to the growing interest
in its applications in various theoretical and applied fields, such as fractal theory, game theory,
and mathematical modeling, the theory of approximation, nonlinear analysis, variational and linear
inequalities, integral equations, differential equations, and dynamic systems.

The primary goal of fixed point theoretical basis is to improve and extend the conditions imposed on
the spaces or applications under consideration. Several authors proved the Banach contraction principle
in various generalized metric spaces. Bakhtin [3] introduced the concept of b-metric space and proved
some fixed point theorems for some contraction mappings in this space. Other generalizations have
been proven in the quasi-metric space introduced by Wilson [12]. This concept has many recent
applications in both pure and applied mathematics. For example, the Hamilton-Jacobi equations [7],
rate-independent plasticity models [5], shape memory alloys [8] and material failure models [11].
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Several authors have made search in other directions, for example weaken assumptions or consider
different contractions, see [1, 2] . Ma et al. [6] established the concept of a C∗-algebra valued metric
space and demonstrated certain fixed point theorems in 2014. They also used their results to determine
the existence and uniqueness of solution for an integral type operator. Mlaiki et al. [9], have recently
introduced the class of C∗-algebra valued partial b-metric spaces, which extends the class of partial
metric spaces in C∗-algebra as well as the class of b-metric spaces in C∗-algebra.

Inspired by all the above concepts, we introduce the class of C∗-algebra valued b-asymmetric
metric spaces and establish certain fixed point theorems. We present our non-trivial examples with
an application whose C∗-algebra is noncommutative and an application for a certain integral equation.

2. Preliminaries

Let us recall some basic definitions. A is a unitary C∗-algebra with a unit IA provided with a
involution such that a∗∗ = a and (ab)∗ = b∗a∗ for all a and b in A and a complete multiplicative norm
such that ‖a∗‖ = ‖a‖ and ‖a∗a‖ = ‖a‖2 for all a inA. Ah is the set of all elements a satisfying a∗ = a, and
A+ is the set of positive elements of A, i.e., the elements a ∈ Ah having the spectrum σ(a) contained
in [0,+∞).

Note that A+ is a cone in the normed space A [10] , which infers a partial order ≤ on Ah by a ≤ b if
and only if b − a ∈ A+.

The following lemma will used to proof our main results.

Lemma 2.1. [10] Suppose that A is a unital C∗−algebra with a unit IA.

(i) A+ = {a∗a : a ∈ A};

(ii) if a, b ∈ Ah, a ≤ b, and x ∈ A, then x∗ax ≤ x∗bx;

(iii) for all a, b ∈ Ah, if 0A ≤ a ≤ b then ‖a‖ ≤ ‖b‖;

(iv) 0 ≤ a ≤ IA ⇔ ‖a‖ ≤ 1.

3. Motivation

Let A = L∞(R) = { f : R→ C | ‖ f ‖∞ < ∞}. Note that

(i) f
σ
−→ f : t → f (t) is the involution

(ii) (A, ‖ ‖∞, σ) is a C∗-algebra

(iii) ≤ denotes the partial order on A ( f ≤ g⇔ Re( f ) ≤ Re(g) and Im( f ) ≤ Im(g)).

Let a and b be two real numbers such that a < b , X be the set of stepped functions defined on
the interval [a, b] i.e., X = { f : [a, b] → R | ∃ c0 = a < c1 . . . < cn = b and f |[ci,ci+1[ = fi ∈ R}.
Define d : X × X −→ A by

d( f , g)(t) =


n∑

i=1
( f − g)2 .χ{ f>g}∩Ii(t) + 5 ( f − g)2 .χ{ f6g}∩Ii(t), if t ∈ [a, b] ,

0, if t < [a, b] ,
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where {Ii}n = ([ci, ci+1[)06i6n is a subdivision adapted to f and g and χ{ f6g} indicator function of a set
{ f 6 g} = {t ∈ R/ f (t) 6 g(t)}. Note that d satisfies the following:

(i) d( f , g) = 0⇔ f = g

(ii) d is asymmetric. We can take
{

f (t) = 2
g(t) = 3

⇒ d( f , g)(t) = 5 and d(g, f )(t) = 1

(iii) d( f , g) ≤ b
[
d( f , h) + d(h, f )

]
for all g, f , h ∈ X and a certain b ∈ A+ with ‖b‖ > 1.

We check the last assertion. Let ([ci, ci+1[)i be a subdivision adapted to g, f and h and t in X. We can
assume that t belongs in [c0, c1[ then f = f0; g = g0 and h = h0. We have 6 cases of which we are going
to treat three cases (see Table 1). The other cases are done in the same way.

Table 1. Indicator function.

Cases χ{ f>g} χ{ f>h} χ{h>g} χ{ f6g} χ{ f6h} χ{h6g}

f0 < h0 < g0 0 0 0 1 1 1
f0 < g0 < h0 0 0 1 1 1 0
h0 < f0 < g0 0 1 0 1 0 1

For the first case, we have{
d( f , g)(t) = 5( f0 − g0)2,

d( f , h)(t) + d(h, g)(t) = 5( f0 − h0)2 + 5(g0 − h0)2.

Since
( f0 − g0)2 ≤ 2

(
( f0 − h0)2 + (h0 − g0)2

)
,

then
d( f , g) ≤ 2IA

[
d( f , h) + d(h, f )

]
.

For the second case, we have{
d( f , g)(t) = 5( f0 − g0)2,

d( f , h)(t) + d(h, g)(t) = 5( f0 − h0)2 + (g0 − h0)2.

Since
0 < g0 − f0 < h0 − f0,

we have
d( f , g) ≤ 2IA

[
d( f , h) + d(h, f )

]
.

For the third case, we have{
d( f , g)(t) = 5( f0 − g0)2,

d( f , h)(t) + d(h, g)(t) = ( f0 − h0)2 + 5(g0 − h0)2.

Since
0 < g0 − f0 < g0 − h0,

we have
d( f , g) ≤ 2IA

[
d( f , h) + d(h, f )

]
.
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4. Main results

Definition 4.1. Let X be a nonempty set and b ∈ A+ where b � 1A. Suppose the mapping d : X×X → A
satisfies:

(i) 0A ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0A ⇔ x = y;

(ii) d(x, y) ≤ b
[
d(x, z) + d(z, y)

]
for all x, y, z ∈ X.

Then d is called a C∗-algebra valued b-asymmetric metric on X and (X,A, d) is called a C∗-algebra
valued asymmetric metric space.

It is obvious that a C∗-algebra-valued b-asymmetric metric space generalizes the concept of C∗-
algebra valued asymmetric metric space [4].

Example 4.1. We consider the C∗-algebra as R2 provided with the partial order

(x, y) ≤ (x
′

, y
′

)⇔ x ≤ x
′

y ≤ y
′

.

Let X = {a, b, c} (a, b and c are real numbers). We define d : X × X −→ R2
d(a, a) = d(b, b) = d(c, c) = (0, 0),
d(a, b) = d(b, a) = d(a, c) = d(c, a) = (1, 1),
d(b, c) = (5, 5) and d(c, b) = (2, 2).

d is a b-asymmetric metric with b = (3, 3) and not asymmetric metric
d(b, c) = (5, 5),
d(b, a) + d(a, c) = (2, 2),
d(b, c) ≤ (3, 3) [d(b, a) + d(c, a)] .

Proposition 4.1. Let (X,A, di) be a C∗-algebra valued bi-asymmetric metric space and i ∈ {1, 2}. Then
the mapping d : X × X → A defined by

d(x, y) = d1(x, y) + d2(x, y)

is b1 + b2-asymmetric metric.

Proof. It is easy to verify that d(x, y) = 0 ⇔ x = y. To verify condition (ii) of Definition 4.1, we have
(for all x, y, z ∈ A)

d(x, y) = d1(x, y) + d2(x, y)
≤ b1

[
d1(x, z) + d1(z, y)

]
+ b2

[
d2(x, z) + d2(z, y)

]
≤ (b1 + b2) [d1(x, z) + d2(x, z)] + (b1 + b2)

[
d1(z, y) + d2(z, y)

]
≤ (b1 + b2) [d(x, z) + d(x, z)] .

�
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Proposition 4.2. Let (X,A, d) be a C∗-algebra valued b-asymmetric metric space and λ a positive
element in Z(A+) such that ‖λ‖ > 1. Then the mapping dλ : X × X → A defined by

dλ(x, y) = λd(x, y)

is λb-asymmetric metric.

Proof. We recall that the product of two positive elements which commutes in a C∗-algebra is also
positive. It is easy to verify that the conditions (i) and (ii) of Definition 4.1 are satisfied. �

Definition 4.2. Let (X, d,A) be a C∗-algebra valued b-asymmetric metric space, x ∈ X and {xn} a
sequence in X. We say that

(i) {xn} b-forward (respectively b-backward) converges to x with respect to A and we write xk
F
→ x

(respectively xn
B
→ x ), if and only if for given ε > 0A, there exists k ∈ N such that for all n > k

d (x, xn) ≤ ε, (respectively d (xn, x) ≤ ε).

(ii) {xn} converges to x if {xn} b-forward converges and b-backward converges to x.

(iii) {xn} b-forward (respectively b-backward) Cauchy sequence with respect to A, if for given ε > 0A,
there exists k belonging to N such that for all n > p > k

d
(
xp, xn

)
≤ ε, (respectively d

(
xn, xp

)
≤ ε).

Definition 4.3. Let (X, d,A) be a C∗-algebra valued b-asymmetric metric space. X is said to be
b-forward (respectively b-backward) complete if every b-forward (respectively b-backward) Cauchy
sequence {xn}n∈N in X, converges to x ∈ X.

Definition 4.4. Let (X, d,A) be a C∗-algebra valued b-asymmetric metric space. X is said to be b-
complete if X is b-forward and b-backward complete.

Example 4.2. Let G a nonempty set and X = L∞(G),H = L2(G) and A = B(H) the set of all bounded
linear operators on the Hilbert space H. Note that B(H) is a unitary C∗-algebra. We define a b-
asymmetric metric db : X × X → A as

db( f , g) = π| f−g|2χ{| f |>|g|}+2|g− f |2χ{|g|>| f |} .

(X, B(H), db) is a complete C∗-valued b-asymmetric metric space with respect to B(H). Indeed, ( fn) is
a Cauchy sequence in L∞(G) with respect to B(H) then

∀ε > 0 ∃ k ∈ N, ∀n > m > k ‖db ( fm, fn) ‖ ∨ ‖db ( fn, fm) ‖ < ε.

We observe that for A and B included in a nonempty set E such that and A q B,

‖ fχA + 2 fχB‖∞ = sup
t∈E
| f (t)χA(t) + 2 f (t)χB(t)| = max

(
sup
t∈A
| f (t)|, 2 sup

t∈B
| f (t)|

)
,
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then for every n > m > k

‖ fn − fm‖∞ ≤ ‖ | fn − fm|
2 χ{| fn |<| fm |} + 2 | fn − fm|

2 χ{| fn |>| fm |}‖∞

= ‖db ( fn, fm)‖
≤ ε.

then ( fn) is a b-Cauchy sequence in the space X. This implies that there is a function f ∈ X and a
natural number N

′

such that ‖ fn − f ‖∞ ≤ ε for every n ≥ N
′

. It follows that

‖db ( fn, f )‖ =
∥∥∥| fn − f |2 χ{| fn |>| f |} + 2 | fn − f |2 χ{| fn |6| f |}

∥∥∥
∞

6 2 ‖ fn − f ‖∞
6 2ε.

Therefore, the sequence ( fn) converges to the function f in X with respect to L(H), that is, (X, L(H), db)
is complete with respect to L(H).

Definition 4.5. Let (X, d,A) be a C∗-algebra valued asymmetric metric space. A mapping T : X → X
is said to be forward (respectively backward) C∗-algebra valued contractive mapping on X, if there
exists a in A with ‖a‖ < 1 such that

d(T x,Ty) ≤ a∗d(x, y)a (respectively d(T x,Ty) ≤ a∗d(y, x)a) x, y ∈ X.

Example 4.3. Define d : R × R→ R2 by

d(x, y) =


(
(x − y)2, 0

)
, if x > y,(

0, (x − y)2
)
, if x < y,

We consider T : R→ R such as T x =
x
4

. Then

d(T x,Ty) =


1

16

(
(x − y)2, 0

)
, if x > y,

1
16

(
0, (x − y)2

)
, if x < y,

As a result
d(T x,Ty) ≤

1
4

IdR2 d(x, y)
1
4

IdR2 .

So T is forward and backward C∗-algebra valued contractive mapping on R.

Theorem 4.1. If (X,A, d) is a b-complete C∗-algebra-valued b-asymmetric metric space and T : X →
X is a C∗-algebra valued contractive mapping on X, then T admit a unique fixed point in X.

Proof. Choose an x0 ∈ X and set xn+1 = T xn = · · · = T n+1x0, n = 1, 2, . . ..

d (xn+1, xn) = d (T xn,T xn−1) ≤ a∗d (xn, xn−1) a

≤ (a∗)2 d (xn−1, xn−2) a2

≤ · · ·

≤ (a∗)n d (x1, x0) an.
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For any m ≥ 1 and p ≥ 1, it follows that

d
(
xm+p, xm

)
≤ b

[
d
(
xm+p, xm+p−1

)
+ d

(
xm+p−1, xm

)]
≤ bd

(
xm+p, xm+p−1

)
+ b2

[
d
(
xm+p−1, xm+p−2

)
+ d

(
xm+p−2, xm

)]
≤ bd

(
xm+p, xm+p−1

)
+ b2d

(
xm+p−1, xm+p−2

)
+ · · · bp−1d (xm+1, xm)

≤ b (a∗)m+p−1 d(x1, x0)am+p−1 + b2 (a∗)m+p−2 d(x1, x0)am+p−2 · · ·

+ bp−1 (a∗)m+1 d(x1, x0)am+1 + bp−1 (a∗)m d(x1, x0)am

=

p−1∑
k=1

bk (a∗)m+p−k d(x1, x0)am+p−k + bp−1 (a∗)m d(x1, x0)am

≤

p−1∑
k=1

bk
(
(a∗)m+p−k d(x1, x0)

1
2
) (

d(x1, x0)
1
2 am+p−k

)
+ bp−1

(
(a∗)m d(x1, x0)

1
2
) (

d(x1, x0)
1
2 am

)
=

p−1∑
k=1

bk
(
d(x1, x0)

1
2 am+p−k

)∗ (
d(x1, x0)

1
2 am+p−k

)
+ bp−1

(
d(x1, x0)

1
2 am

)∗ (
d(x1, x0)

1
2 am

)
≤

 p−1∑
k=1

|‖b‖k‖ a‖2(m+p−k)‖d(x1, x0)‖ + ‖b‖p−1‖ a‖2m‖d(x1, x0)‖

 .IA
=

‖d(x1, x0)‖ ‖a‖2(m+p)
‖b‖

((
‖b‖‖a‖−2

)p−1
− 1

)
‖b‖ − ‖a‖2

+ ‖d(x1, x0)‖ ‖b‖p−1
‖a‖2m

 IA

→ θA (m→ ∞).

In the same way d
(
xm, xm+p

)
→ θA (m → ∞). Therefore {xn} is b-forward and b-backward Cauchy

sequence with respect to A. By the completeness of (X,A, d) there exists an x ∈ X such that xn

converges to x. Since
θ ≤ d(T x, x) ≤ b [d (T x,T xn) + d (T xn, x)]
≤ b[a∗d (x, xn) a + d (xn+1, x)]→ θ (n→ ∞),

hence, T x = x, i.e., x is a fixed point of T. For uniqueness, we consider x and y two fixed points such
that x , y then

0 < ‖d(x, y)‖ 6 ‖a∗d(x, y)a‖ ≤ ‖a‖2‖d(x, y)‖.

Thus, we get 1 ≤ ‖a‖2, which is a contradiction. �

5. Application

As an application of Theorem 4.1, we find an existence and uniqueness solution for a type of matrix
equation.

Let Mn(C) be the set of all n × n matrices with complex entries with n > 3. Mn(C) is a C∗-algebra
with the operator norm ‖B‖ = max

16i, j6n
|bi

j|. Let B1, B2, . . . , Bm ∈ Mn(C) are diagonal matrices which

satisfy
m∑

k=1
‖Bk‖

2 < 1. Mn(C)+ is the set of all positive definite matrices “hermitian and the eigenvalues
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are non-negative”. Then the matrix equation

m∑
k=1

B∗kABk = A (5.1)

has a unique solution.

Proof. Let A =
(
a j

i

)
1≤i, j≤n

and B =
(
b j

i

)
1≤i, j≤n

. If
n∑

k=1
‖Bk‖

2 = 0, then it is clear that the equations has a

unique solution in Mn(C).

Suppose that
n∑

k=1
‖Bk‖

2 > 0. For p ≥ 1, define db : Mn(C) × Mn(C)→ Mn(C)+ as

d(A, B) = (ci
j)16i, j6n

with

ci
j = 0 (i f i , j and 2 < i, j 6 n) , ci

i =
∣∣∣ai

i − bi
i

∣∣∣p ∀i > 3.

c2
1 = c1

2 =
∣∣∣a1

1 − b1
1

∣∣∣p +
∣∣∣a2

2 − b2
2

∣∣∣p ,
c1

1 =


∑

1≤i, j≤n

∣∣∣ai
j − bi

j

∣∣∣p +
∣∣∣a1

1 − b1
1

∣∣∣p +
∣∣∣a2

2 − b2
2

∣∣∣p , if
∣∣∣a1

1

∣∣∣ > ∣∣∣b1
1

∣∣∣ ,∑
1≤i, j≤n

∣∣∣ai
j − bi

j

∣∣∣p + 2
(∣∣∣a1

1 − b1
1

∣∣∣p +
∣∣∣a2

2 − b2
2

∣∣∣p) , if
∣∣∣a1

1

∣∣∣ < ∣∣∣b1
1

∣∣∣ ,
c2

2 =


∑

1≤i, j≤n

∣∣∣ai
j − bi

j

∣∣∣p + 2
(∣∣∣a1

1 − b1
1

∣∣∣p +
∣∣∣a2

2 − b2
2

∣∣∣p) , if
∣∣∣a1

1

∣∣∣ > ∣∣∣b1
1

∣∣∣ ,∑
1≤i, j≤n

∣∣∣ai
j − bi

j

∣∣∣p +
∣∣∣a1

1 − b1
1

∣∣∣p +
∣∣∣a2

2 − b2
2

∣∣∣p , if
∣∣∣a1

1

∣∣∣ < ∣∣∣b1
1

∣∣∣ .
Then (Mn(C),Mn(C), d) is a C∗-algebra valued b-asymmetric metric space and it b-complete
with b=2p−1In.

Consider the map T : Mn(C) → Mn(C) defined by T (X) =
∑m

k=1 B∗kXBk. Let X =
(
x j

i

)
1≤i, j≤n

and

Bk = diag
(
λk

1, λ
k
2......., λ

k
n

)
, observe that

T (X) =



m∑
k=1

∣∣∣λk
1

∣∣∣2 x1
1

m∑
k=1
λk

1λ
k
2x1

2.........
m∑

k=1
λk

1λ
k
2x1

n

.
m∑

k=1

∣∣∣λk
2

∣∣∣2 x2
2......... .

. ... ...

. ... ...

. ... ...

. ... ...
m∑

k=1
λk

nλ
k
1xn

1 ...
m∑

k=1

∣∣∣λk
n

∣∣∣2 xn
n



,
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so i f
∣∣∣x1

1

∣∣∣ < ∣∣∣y1
1

∣∣∣ d(T X,TY) =

(
m∑

k=1

∣∣∣λk
1

∣∣∣2)p (
|x1

1 − y1
1|

p + |x1
1|

p
) (

m∑
k=1

∣∣∣∣λk
i λ

k
j

∣∣∣∣)p

max
i, j
|x j

i − y j
i |

p 0 . . . 0

0
(

m∑
k=1

∣∣∣λk
2

∣∣∣2)p

|x2
2 − y2

2|
p 0

...

...
...

0

0 . . . 0
(

m∑
k=1

∣∣∣λk
n

∣∣∣2)p

|x2
n − y2

n|
p



.

Then, we have
d(T X,TY) =

(
αi

j

)
1≤i, j≤n

with

αi
j = 0 (if i , j and 2 < i, j ≤ n) , αi

i =

 m∑
k=1

∣∣∣λk
i

∣∣∣2p

|xi
i − yi

i|
p ∀i > 3.

α1
2 = α2

1 =

 m∑
k=1

∣∣∣λk
1

∣∣∣p ∣∣∣x1
1 − y1

1

∣∣∣p +

 m∑
k=1

∣∣∣λk
2

∣∣∣p ∣∣∣x2
2 − y2

2

∣∣∣p ,

α1
1 =



∑
1≤i, j≤n

(∣∣∣∣∣ m∑
k=1
λk

i λ
k
j

∣∣∣∣∣)p ∣∣∣xi
j − yi

j

∣∣∣p +

(
m∑

k=1

∣∣∣λk
1

∣∣∣)p ∣∣∣x1
1 − y1

1

∣∣∣p
+

(
m∑

k=1

∣∣∣λk
2

∣∣∣)p ∣∣∣x2
2 − y2

2

∣∣∣p , if
∣∣∣x1

1

∣∣∣ > ∣∣∣y1
1

∣∣∣ ,
∑

1≤i, j≤n

(∣∣∣∣∣ m∑
k=1
λk

i λ
k
j

∣∣∣∣∣)p ∣∣∣xi
j − yi

j

∣∣∣p + 2
(

m∑
k=1

∣∣∣λk
1

∣∣∣)p ∣∣∣x1
1 − y1

1

∣∣∣p
+2

(
m∑

k=1

∣∣∣λk
2

∣∣∣)p ∣∣∣x2
2 − y2

2

∣∣∣p , if
∣∣∣x1

1

∣∣∣ < ∣∣∣y1
1

∣∣∣ ,

α2
2 =



∑
1≤i, j≤n

(∣∣∣∣∣ m∑
k=1
λk

i λ
k
j

∣∣∣∣∣)p ∣∣∣xi
j − yi

j

∣∣∣p + 2
(

m∑
k=1

∣∣∣λk
1

∣∣∣)p ∣∣∣x1
1 − y1

1

∣∣∣p
+2

(
m∑

k=1

∣∣∣λk
2

∣∣∣)p ∣∣∣x2
2 − y2

2

∣∣∣p , if
∣∣∣x1

1

∣∣∣ > ∣∣∣y1
1

∣∣∣ ,
∑

1≤i, j≤n

(∣∣∣∣∣ m∑
k=1
λk

i λ
k
j

∣∣∣∣∣)p ∣∣∣xi
j − yi

j

∣∣∣p +

(
m∑

k=1

∣∣∣λk
1

∣∣∣)p ∣∣∣x1
1 − y1

1

∣∣∣p
+

(
m∑

k=1

∣∣∣λk
2

∣∣∣)p ∣∣∣x2
2 − y2

2

∣∣∣p , if
∣∣∣x1

1

∣∣∣ < ∣∣∣y1
1

∣∣∣ ,
d(T X,TY) ≤

m∑
k=1

‖Bk‖
2pd(X,Y).
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Therefore, T satisfies the condition of Theorem 4.1. So it has a fixed point. So the matrix equations
has a unique solution on Mn(C). �

As a second application of Theorem 4.1, we find the existence and uniqueness solution for a type
of following integral equation

f (u) =

∫
G

K(u, v, f (u))dµ(u) + h(u), u, v ∈ E, (5.2)

where G is a multiplicative group with its left invariant Haar measure µ, K : G × G × R → R and
h ∈ L∞(G).

Let X = L∞(G),H = L2(G) and A = B(H) the set of all bounded linear operators on the Hilbert
space H. Note that B(H) is a unitary C∗-algebra. We define a b-asymmetric metric db : X × X → A
(see example 4.2) by

db( f , g) = π| f−g|2χ{| f |>|g|}+2|g− f |2χ{|g|>| f |} .

Suppose that

(i) There exist a continuous function ψ : G ×G → R and α ∈ (0,
1
2

) such that

|K(u, v, f (v)) − K(u, v, g(v))| ≤ α|ψ(u, v)( f (v) − g(v))| ∀u, v ∈ G.

(ii) sup
u∈G

∫
G
|ψ(u, v)|dµ(v) ≤ 1.

Then, the integral equation f (u) =
∫

G
K(u, v, f (u))dµ(u) + h(u), u, v ∈ E has a unique solution in X.

Proof. Define T : X → X by

T f (u) =

∫
G

K(u, v, f (u))dµ(v) + h(u),∀u, v ∈ G.

‖db(T f ,Tg)‖ = sup
‖φ‖=1
〈π|T f−Tg|2χ{|T f |>|Tg|}+2|Tg−T f |2χ{|Tg|>|T f |}φ, φ〉

≤ 2 sup
‖φ‖=1

∫
G

∣∣∣∣∣∫
G

K(u, v, f (v)) − K(u, v, g(v))dµ(v)
∣∣∣∣∣2 φ(u)φ(u)dµ(u)

≤ 2 sup
‖φ‖=1

∫
G

[∫
G
|K(u, v, f (v)) − K(u, v, g(v))dµ(v)|

]2

|φ(u)|2dµ(u)

≤ 2 sup
‖φ‖=1

∫
G

[∫
G
|αψ(u, v)( f (v) − g(v))|dµ(v)

]2

|φ(u)|2dµ(u)

≤ 2α2 sup
‖φ‖=1

∫
G

[∫
G
|ψ(u, v)|dµ(v)

]2

|φ(u)|2dµ(u)‖ f − g‖2∞

≤ 2α sup
u∈G

∫
G
|ψ(u, v)|dµ(v) sup

‖φ‖=1

∫
G
|φ(u)|2dµ(u)

∥∥∥( f − g)2
∥∥∥
∞

≤ 2α
∥∥∥( f − g)2

∥∥∥
∞

≤ 2α ‖db( f , g)‖ .

Thus the integral Eq (5.2) admits a solution. �
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