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1. Introduction

Fractional calculus has shown great effectiveness in describing and modeling many phenomena in
many fields such as physics, chemistry, biology, electricity, economics, etc [1-4]. Recently, many
researchers focus to introduce and develop fractional operators such as Caputo-Fabrizio, Atangana-
Baleanu and conformable derivatives [5—11].

A new extended fractional operator was proposed in [12] as a combination between conformable
and Caputo derivatives. The novel fractional derivative has attracted attention in limited papers,
see [13-16]. For the first time authors in [13] investigated the existence, uniqueness and Ulam-Hyers
stability of solutions for conformable derivatives in Caputo setting with four-point integral conditions
by applying suitable fixed point theorems. Baleanu et al. [14] discussed Caputo fractional conformable
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differential inclusion subject to four-point conditions using some analytical techniques on the a-y
contractive mappings. In [17] authors applied this fractional derivative to describe the behavior of an
electrical circuit model.

Delay differential equations and integro-differential equations in classical and fractional order have
been used in modeling many situations from science and engineering. For this reason they have
attracted great attention in the last two decades and have been investigated theoretically in many
papers [18-27,31-35]. In a previous study [36], Kavitha et al. established the existence results of Hilfer
fractional neutral evolution equation with infinite delay by utilizing the semigroup theory, fractional
calculus and Monch fixed point theorem. In [20] authors studied the existence of mild solutions for
a class of non local fractional integro-differential equation in neutral type with infinite delay, using
the theory of resolvent operators. Valliammal et al. in [31] established some sufficient conditions for
the existence of solutions for neutral delay fractional integro-differential systems, where the authors
in [37] studied controllability of nonlocal neutral impulsive differential equations with measure of
noncompactness.

Inspired by the above research, we consider the following nonlocal fractional integro-differential
evolution equation with finite delay:

(1.1)

D u(t) = Au(t) + f(t, u,, fot h(t, s,uy)ds), te€[0,b],
u(t) + (gu)(1) = (1), t€[-6,0],

where DY is the Caputo conformable fractional derivative of order 0 < @ < 1 and type 0 < o < 1,
and A is infinitesimal generator of a fractional Cy-p-semigroup {7,(1)};>o of bounded operators on a
Banach space X with the norm ||.||. The functions ¢ € C ([-6, 0], X), f : [0,b) X C ([-6,0], X) X X — X,
h : [0,b) X [0,+00) X C([-0,0],X) — X and g : C([-9,b],X) = C([-0,0],X) are given abstract
functions and i, : [-9,0] — X is defined by u,(0) = u(t + 0).

In this paper, we try to refine the conditions imposed in some previous works [20,31,36,38,39] and
prove the existence of a mild solution under weaker and more general conditions than those mentioned
in the previous works. For example, when we chose o = 1,6 = 0 and /& = 0, problem (1.1) improves the
results of existence of a mild solution for the nonlocal Caputo fractional evolution equation discussed
in [39]:

{ “DS.u(t) = Au(t) + f(t,u(t)), 1€(0,b]
u(0) = g(u).

We study problem (1.1) by converting it to an equivalent integral equation using a suitable fractional
Laplace transform, then we define the mild solution of (1.1) in terms of two new families of operators.
Each family of operators is associated with the wright function and a suitable fractional semigroup. In
the second part of this paper, we apply the Monch fixed point theorem to establish our main results
on the existence of mild solutions with the help of the general version of Gronwall’s inequality under
weaker conditions in the sense of Kuratowski measure of non-compactness.

We organize the contents of our paper as follows: In Section 2, we state some basic definitions,
concepts and preliminary results which are used throughout this paper. The representation of mild
solution of (1.1) using fractional Laplace transform is given in Section 3. In Section 4, under some
sufficient conditions, we prove the existence theorem of a mild solution of (1.1), based on Monch fixed
point theorem. An application of our abstract results is given in the last section.
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2. Preliminaries

In this section, we introduce fractional integral, fractional derivative, fractional semigroup and then
give the definition of the fractional Laplace transform. Finally, we will give some definitions and
lemmas which are used throughout this paper.

Let X be a Banach space with the norm ||.|l. Let 6,b € R*. Denote By C = C([-4,0],X) and
C ([0, b], X) the spaces of continuous X-valued functions on [—¢, 0] and [—6, b] with the norms

llullc = sup |lu()|
1€[~6,0]

and

llullo = sup [lu(®)ll
re[-6]

respectively, and B(X) be the space of all bounded linear operators from X into X with the norm
ITllpx) = supyexxy<t ITxll. Define Lf,([O, b], X) to be the space of X-valued Bochner functions on

1
. b \r
[0, b] with the norm ||u||f'7 = (fo ||u(s)||"ﬂ) , 1< p<oo.

sl-o

Definition 2.1. [5,10] The left conformable derivative with lower point a of the function f : [a, +00) —
R of order O < o < 1 is defined by

—a)l) —
DEf) = i [ =002 J0)

- €
If D% f(¢) exists on (a, b), then D%f(a) = lim,_,+ DS f(¢). If f is differentiable, then
D2f(t) = (t—a)' 2 f (1).

Definition 2.2. [12] Let a,0 > 0. The left-sided Riemann-Liouville conformablde fractional integral
operator of order a and type o with lower limit a for a function f : [a,+o0) — R is defined by

wor o L [([E=a@f=G—a\" O ds
I“Q”(t)‘r(a)fa ( ) o

Definition 2.3. [12] Leta > 0,0 < o < 1 and n = [a] + 1. The left Caputo conformable fractional
derivative with lower limit a of order a and type o of a function f € C, ,([a, b], X) is defined by

L) = 1,7 ("DLS) (1) 2.1)
1 ff((t—a)@—(s—a)@)"‘“‘1 D2f(s)
a a

T - 0 (s—a)-e

where "D? = D2D?...D°, and D, is the left conformable derivative given in Definition 2.1.
—_—————

ds, (2.2)

n—times

Lemma 2.1. [12] Let a,,7y > 0. Then
19 (182 £) (1) = 122 £ o,
and

(172(s = @)Y () = é%(t —a)*@r b,
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Theorem 2.2. [I2]Leta>0,0<po<1andn=[a]+ 1. Then
(1) Ifa ¢ N and f € C ([a, b], X), then

DU ) @) = f@).
(2) Ifa € N and f € C (a, b], X), then

a -n+l,0
SN () = 0 = Sl - ap,

(3) If f € Cou ([a, b], X), then

KDL (a)(t — a)k

o¢k!

I (Bgf) (@) = f() -

k=0

Definition 2.4. ( [5]) Leta € R, 0 <o < 1 and f : [a,©0) — X be an X-valued Bochner function. The
fractional Laplace transform of order o started from a is given by

L2f(s) = f )

Definition 2.5. Let 0 < o < 1, and u,v be two X-valued Bochner functions. We define the fractional
convolution of u and v of order o by

(2.3)

)1-@

weg )0 = [ (e -9 W2 (2.4)
0 T

Proposition 2.1. Let 0 < o < 1 and u,v be two X-valued functions which are piecewise continuous at
each interval [a, b] and of 0-exponential order (u(t) < Me™). Then

(1) For any ci,c;, € R, L2ciu + cv}(s) = e LoAu}(s) + cr. LoAVv}(5).
(2) L) )s) = K,
(3) L5 (1, v) (5) = L)) LEvN(s).

LOM(S)

(4) For a >0, L{I,u}(s) =
Proof. The proof follows from the argument of [40] by letting ¥ (¢) = %. O

Lemma 2.3. [4]] Leta > 0, 0 < o < 1 Assume that u,v are two nonnegative locally integrable real
valued functions on [0, b] and h is a nonnegative and nondecreasing real valued function on [0, b]. If

a-1
u(t) < v(t) + h(t)f ( 9) u(s)ﬁ

sl=¢’

then

'S L@ (- 2\
u(t)SV(t)+f0k:1 T (k) ( 0 ) (s)ﬁ
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Now, we define and give some results about the so called fractional p-semigroup of bounded linear
operators, these results can be found in [5,42-44]

Definition 2.6. [5] Let 0 < o < 1. A family {T,(1)}s0 € B(X) is called a fractional o-semigroup of
bounded linear operators on Banach space X if

(1) To(0) =1,
(i) T,(t+ 5)¢ = T,(t2)T,(s7) for all t, s € [0, 00).

An o—semigroup T,(t) is called a Cy-p-semigroup, if for each x € X, To(t)x — xast — 0.
A linear operator A defined by

D(A) = {x € X| tl_ig} D&(TQ)(I)X exists),
and
Ax = tli)rg} D; (T,)(1)x
is called the o—infinitesimal generator of the fractional o—semigroup T,(t).

Theorem 2.4. [42,43] Let A be the o-infinitesimal generator of a fractional Cy-o-semigroup {To(t)}=0
where 0 < 0 < 1. Then

(1) There exist M > 1 and w > 0, such that ||T,(t)|| < Me“ , t > 0.
(2) A is closed densely defined.

(3) The resolvent set p(A) of A contains the interval (w,+o) and for any A > w, we have
IR(A, A)llpx) < M_"\where the resolvent operator R(A, A) is defined by

A-w

+ 00 d
R, A)x = (AU —A) " x = fo T TQ(T)TI—;, Vx e X.

Throughout this paper, assume that A is the infinitesimal generator of a uniformly bounded Cy-o-
semigroup {7, (#)};>0 on X. i.e, there exists M > 1 such that M = sup,¢(g 40 1T, (DI]-

Next, we define the Kurtawoski measure of noncompact u(.) on each bounded subset A of Banach
space X by

u(A) = infle >0: A C U B, where diam (B;) < &},
i=1
where diam (B) is the diameter of B. The Kurtawoski measure of noncompact (KMN) u satisfies the
following basic properties (see [45,46]):

(1) w(Ay) < u(Ay), for any bounded subsets Ay, A, € X such that A} C As.
(2) u(A) =0if and only if A is relatively compact in X.
B) u({x}UA) =u(A) forall x € X and A C X.

(4) p (AU A) <max{u(Ay), pu(Ar)}
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(5) (A1 + Ag) < p(Ay) + p(Ag).
(6) u(MA) < Inlu(A) forn € R.

(7) If® : Q c X — X is a Lipschitz map with constant K, then ¢ (® (A)) < Ku (A) for any bounded
subset A C Q.

Lemma 2.5. [47] If A C C(]0,b], X) is bounded, then u(A(t)) < u(A) for every t € [0, b], where
A(t) = {u(t),u € A}. Moreover if A is equicontinuous on [0, b], then t — u(A(t)) is continuous real
valued function on [0, b], u (A) = sup{u (A(?)),t € [0, b]}. Furthermore u (fot A(s)ds) < fot,u (A(s))ds.

Lemma 2.6. [48] If {u,};" | is a sequence of Bochner integrable X-valued functions on [0, b] satisfies

lu, (DIl < ¢(t) for almost all t € [0,b] and every n > 1, where ¢ € L' ([0,b],R), then the function
W) = () : n > 1) € L' ([0, b)) and satisfies 1 ({ [} u,(t)ds = n > 1}) <2 [ y(s)ds.

Lemma 2.7. Let Q be a closed convex subset of a Banach space X, and G : Q — Q be continuous
satisfying Monch’s condition, i.e.,

A C Q is countable, A C conv OUG(A) = Aiscompact,

where conv (\) denotes the convex hall of A. Then G has a fixed point.
3. Representation of mild solution using fractional Laplace transform

According to Theorem 2.2, we can rewrite the nonlocal problem (1.1) in the following equivalent
integral equation:

{u(r) = ¢(0) ~ (gu) (O) + 75 [ (222)" [Auts) + f5.u,, Bu(s)] 5, 1€ [0,b)

©

u(r) + (gu)(®) = ¢(1), t € [-6,0]

3.1

where Bu(t) = fol h(t, s, us)ds, provided that the integral in (3.1) exists.
To introduce the mild solution of (1.1) we need to define the two families of operators {S, ,(#)}0
and {P, ,(1)}20 by

SeoDx =0 [ ¢ Wo(O)T, (0 7 126) xdf, x€X, 42
Poot) = ao [ 6% 0o(O)T, (07196) xdf, x € X |
where 0 < @,0 < 1 and for8 >0
N (=0 O (O T(ak+1) .
2(0) = = k+1
VO = 2 T Catk+ D+ ) kzz(; Kl sim (ke D)
is the wright type function defined on (0, co) which is positive and satisfies
f Ya(0)do = 1, (3.3)
0
® r'd+y)
O (0)d0) = ————, 34
fo Yo (6) T +ay) (3.4)
f e p,(0)do = e, (3.5)
0

where ¢,(6) = at™ %Y, (t7%).
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Lemma 3.1. If (3.1) holds, then we have

©

I/t([) — Sa,g(t) [()0(0) gu) (0) (19 s0\¥~ IPQQ(# sg) (s MS,BM(S)) L te [0, b] s (36)
u(r) + (gu)(?) = ¢(1), t € [-6,0]

where the operators S, ,(t) and P, ,(t) are defined in (3.2).

Proof. Let A > 0. By applying the fractional Laplace transform of order 0 < o < 1 to (3.1) for ¢ > 0,
we get:

1
U=~ [(0) — (gu) (0)] + LIy (Au(t) + f(t, ur, Bu(®))}()

1 1
=7 [¢(0) - (gu) (0)] + 2 (AU + F()]

U) = 27 (A% = A) ' [9(0) - (gu) (0)] + (A" = A" F(Q)
=Ji+J

where U(A) = Lg(u)(/l) and F(1) = £§ (f(t, us, Bu(1))) ().
Now, differentiating (3.5) with respect to A, we obtain

f 06, (0)edl = a1* e, (3.7)
0
Using (3.7) and from Theorem 2.4 , we get

Ji =217 = A7 [9(0) — (gu) (0)]

o d
_ e f e "0 To(5) [p(0) — (gu) (0)] 1—:1)
o N

oo [ o)\ i1 Qia_l_ YAl
_ f (S_) [ﬂ(%)] ) 10 100 - e 0] 2 =

- [ h f ) 04, 01T (5) [(0) - (gu)(@]é(%)“ 0o (35)
By using the substitution = = (£ ) @ and ¥ = 6 ¢ in the last equation, we obtain
- f e f $a(O)T, <ger >[<p<0> <gu>(0>]d9£
= fo e [ fo 09 W, (0T, 7 1°0) [so@—(gu)(@]dﬁ]d—. (3.9)

Similarly, from (3.5) and by using the substitution % = (%)E 0, we get
a -1 e -2 ds
SHLr=U"-A) FQ1) = e e Tg(s)F(/l)ﬁ
0

AIMS Mathematics Volume 7, Issue 7, 11614-11634.
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- f i f m¢a(0>e‘*<%V"Tg(s)Fu)d(e)d—f

+00 a—1
f e f ( ) O OT (0 T —)Fu)dw)—

f A“f ot llﬁa(@Q)(Tg) T(QTT“H)F(/Dd(@)— (3.10)

Applying the property 3 of Proposition 2.1 yields

+00 e +00 - 0 a-1 1o dr
= fo e fo ot 1%(9@)(5) Ty(0 " T F(DAO) 7

400 oo + a-1
= f f e_/l(§+§) f ap@zg_lwa(eg) (T—Q)
0 0 0

1-a d d
x T,(0's 70) (s, us, Bu(s))d(e)l_TQ]_Sg
+00 ) v 3 a1
:f ot [“ f f 992@‘%(0@)( )
0 0 Jo
1-a a d
X Tpo'® (% = s9)% 0) £ (s, us, Bu(s))d(@)—] ﬂ_lg 3.11)

According to (3.9) and (3.11), we have

+00 o +00 d
U = j; e ( f 00 Yo ()T (0 7 1°0) [(0) - (gu)(O)]dG)

e -2 20-1 ©—s2\"!
[ o [ [ (22

- o d
X To(0 e (7% = 592 0) (s, us, Bu(s))d(@)—) tl—tg (3.12)

Now, by inverting the inverse fractional Laplace transform, we obtain

u(t) = fo 00 o (00T, (0'F 1°6) [£(0) — (gu) (0)] d

! +00 a-1
+af f 06771y, (6°) (tg — SQ) TQ(QlfTa (7% = 592 0) f (s, us, Bu(s))d(@)%
0o Jo Q 5@

-5\ (e e d
=S4(1) [(0) — (gu) (0)] + f ( ) Pa,g(—s)ﬂs,us,Bu(s»l—i,
0 Q S

O

Definition 3.1. An X-valued function u € C ([-6, b], X) is called a mild solution of the nonlocal Cauchy
problem (1.1), if it satisfies:

{u(t) = S0 [0(0) — (gu) )] + [ (£=2)" P 'p wo (552) f(s,us, Bu(s))£5, £ €0,b],
u(t) + (gu)(1) = (1), 1€[-06,0].

(3.13)
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Lemma 3.2. The family of operators {S, o(t)}=0 and {P, o(t)}=0 satisfy:

(i) For any fixed t > 0, S, ,(t) and P, ,(t) are linear and bounded.
(ii) For any x € X, the X-valued functions t — S, ,(1)x and t — P, ,(1)x are continuous on [0, +o0).

Proof. The linearity is obvious. Since ||T,(?)|| < M for any ¢ > 0 and from (3.3), we get

+oo 1-a d9
ISeo(DXIl < 0 Yo(O)NT (0 2 t*OllIxll——
0 o'-e
< Mllxllf Yo (6°)d(6°)
0
< Mllxllf Yo (6)do = M||x]|.
0

Similarly:

+00
IPao(x]l < Ml|xllae f 6%~ "o (6°)d0
0

M
I = =~ Il

<aM O (0)d6 =
<a ||x||f0 Val(0)dt = @

aM
(1+a)
For the part (ii), let t;,#, > 0. Then

e 0 Lo o Lo g do
ISao(f1)x = S o(02)xI| < 0 f Yo T(0 @ 170)x — Ty(o * IZG)XIlﬁ :
0

From the strong continuity of 7,(f) and by using Lesbegue dominated convergence we obtain
limy,_;, [[Sqo(1)x — Sqo(t2)x|l = 0, which implies that {S, ,(f)}0 is strongly continuous. A similar
argument enables us to prove the strong continuity of {P, ,(1)}s0.

O

4. Existence results of a mild solution

In this section we will establish the existence results by using the Hausdorff measure of
noncompactness. To state and prove our main results for the existence of mild solutions of
problem (1.1), we need the following hypotheses:

(H) The uniformly bounded Cy-p-semigroup {T,(#)},-0 generated by A is continuous in the uniform
operator topology for ¢t > 0.
(H,) The function f : [0,b] X C X X — X satisfies the following

(i) For each (v,x) € C x X, f(.,v,x) is strongly measurable, f(z,.,.) is continuous a.e. for
t€0,Db].
(i) There exists m € L, ([0,b],R*) such that I;°m € C ((0,b],R*) and lim,_o- Iy *m(t) = 0,
satisfying: ||f(¢, x, v)|| < m(¢) for all (x,v) € X X C and almost all ¢ € [0, b].
(iii) There exists a constant L > 0 such that for any bounded sets A; c C, A, C X

p(f (AL A2) <L es[u?mM(Al(t))Jrﬂ(AZ) , ae. t€[0,b].

AIMS Mathematics Volume 7, Issue 7, 11614-11634.
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(H3) The function 4 : [0, b] X [0,b] X C — X satisfies the following

(i) For each v € C, h(., ., v) is strongly measurable, A(t, s, .) is continuous a.e. for (z, s) € [0, b] X
[0, b].
(i1) There exists a function m; : [0, b] X [0, b] — R*, such that SUP,c(0.5] fotml(t, s)ds = m] < o0
and ||, s, V)|| < my(t, $)|Vllc, for all ¢, s € [0,b] and v € C.
(iii) There exists a function y : [0, b] X [0, b] — R*, such that SUP;cr0.5] fot v(t, s)ds = y* < oo and

p(h(t, s, A)) <yt s) sup pu(A@)
0el-6,0]

for each bounded subset A € C and almost all #, s € [0, b].
H,) The operator g : C ([-0, b], X) — C satisfies

(i) For each t € [-0,0], the operator Y, : C([-0,b],X) — X defined by Y,(u) = (gu)(t)
is continuous. There exists a constant L; € (O, 1T14) such that ||g(u)llc < Lsllulle for all

u € C([-6,b],X), and the subset g(A) C C is equicontinuous for each bounded set
A c C([-6,b],X)

(i) There exists a constant L, € [0, 1) such that u (Y, (A)) < Lyu (A(¢)) for each bounded set
A c C([-0,b],X)and all ¢ € [-6,0].

Lemma 4.1. If (H,) holds, then the family of operators {S, ,(t)}0 and {P, ,(t)}=0 are continuous in
the uniform operator topology for t > 0.

Proof. Lett,t, > 0. For € > 0 we have
||Sa,g(tl)x_soz,g(t2)x”
oo o, 1, do i do
<o f U ONIT (0T 10)x = Ty(0 T 5500l 5=, + oM f Vo)
& 0
+oo 1-a 1-a dg &
< Qf Yo ()N T,(0 @ 176) — TQ(QTfE’G)IIIIXIIHI—_Q + QMf Ya(0)do. (4.1)
& 0

Applying the Lebesgue dominated convergence by using the continuity of 7, in the uniform operator
topology and the Eq (3.3), we obtain

—a

e O La 4 La de
Qf Yo ()N To(0 2 170) — Tyl t29)IIIIXI|91—_Q -0 as -1

Then for any x € X, ||x|| < 1

€
M [[Sao(11)x = Soo(t2)xll < oM f Yo (0)do.
21 0

From (3.3), and since ¢ is arbitrary, then

f Ve (0)dd — 0 as € — 0,
0

and therefore
t121—>nlll ”Sa,g(tl)x - Sa,g(t2)x|| =0

AIMS Mathematics Volume 7, Issue 7, 11614—-11634.
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which implies that the continuity in the uniform operator topology of S, ,(¢) for # > 0.
Using the similar argument we can prove that P, ,(#) is continuous in the uniform operator topology
fort > 0. m]

Let B, = {u € C([-6,b],X),|lullc < r}, where r > 0. Then B, is clearly a bounded closed and
convex subset in C ([-6, b], X). We define the operator @ by

(@u) (1) = Seo(t) [¢(0) — (gu) (0)] + foz(,@;s@)a—l (,Q(fgg“)f(s Uy, Bu(s))-2 1 =, te€[0,b], 4.2)
@(t) — (gu)(®), t€[-6,0].

Obviously, u € B, is a mild solution of (1.1) if and only if the operator ® has a fixed point on B,, i.e.,
there exists u € B, satisfies u = ®u.

Lemma 4.2. If (H,)—(H,) hold, then {®u, u € B,} is equicontinuous.

Proof. Letu € B,. For -6 < t; <1, <0, we have

[Pu(tz) = Du(t)|| < llp(tz) = @(t)ll + llgu(zz) — gul)|l .

Since ¢ € C and from (H,)(i), we obtain
||Du(t,) — Du(ty)|| — 0 independently foru € B, ast, — #4.

For -6 <t; <0 < t, < b, then from (H,)(ii) and Lemma 3.2, we get

1Dau(t2) — Dau(t) = ||(t1) — gu(tr) = Sao(t2) [(0) — (gu) (0)]

0 (2 — 0\7! — g
_f (l‘é’ Qs ) pa’g(l‘i QS )f(s,us,Bu(S))%H
0

<lle(r1) = @O)I + [1Sao(12)9(0) — @(O)| + llgu(z2) — gu(O)l|
l_g _ 4 )(y 1 dS

m(s)m

M 2
+ [ISa,0(2)gu(0) — gu(O)I + T@ J, (

<h+L+L+14+1Is.

Since ¢ € C and from (H,)(i1), (H4)(1) and Lemma 4.1, we find Iy, ...,Is — 0 as t;,, — 0 and hence
||Du(t,) — Du(t)|| — 0 independently foru € B, ast, — #,.

ForO<# <t <b,wehave

1D1u(12)~Dou(ty)]| < || (Sw(t2) = Sae(12)) (9(0) — gu(O) |
a-1 0
9) (é sg)ﬂs, g Bus)
o s

Q
tQ_SQal tg—sg ds
_f (1 ) QQ( - )f(s,us,Bu(s))ﬁ
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—+

no(f — g0\t £
f ( = ) Pa,g(g)f(s, U, Bu(S))cf—i,
0 Q 0 S

f _w© a-1 _©
- f (tf - ) m,g(tf d )f(s, s, Bu(s) 43)
0 © Y si—e
<NSa0(t2) = Sa o)) ll(0) — gu(0)||
M-\ ds Mo[(E - s\
+r<a)fn ( 0 ) m(s)ﬁ+@fo ( 0 )
tg — s\ ds
_( 0 ) }m(s)ﬁ
1 tﬁ)—SQ a—1 l'g—SQ
L) B
0 © ©
— ©
_ng(ﬁ 5 )f(s, ug, Bu(s)) Cll—fg “4.4)
Q )
SISa.0(f2) = Sa 0@ lle(0) — gu(0)|]
M | (215 —s° ot ds = s ot ds
’ ['(@) fo ( 0 ) m(s)ﬁ _fo ( 0 ) m(s)ﬁ
f _ a—1 w0 a—1
s 1 [(ﬁ SQ) —(tg - ) ]m(S)d—_S
I'(@) Jo 0 0 st-e
11 _ o\l _ @ _ @
+f (lﬁ) ° ) ng(rg ° )—Pw(ﬁ ° ) m(s)-2 (4.5)
0 0 0 e B(X) ¢
<N+ + 03+ Js (46)

Applying Lemma 4.1, we get J; — 0 as t, — t;. According to (H;)(ii), we find J, — O ast, — ;. For
t; < t, and since

PR (5)-2
> T T(@) Jo s
then from Lebesgue dominated convergence, we get J; — 0 as t, — ;. For € > 0 small enough, we
have
n-e (2 _ 0\ 5 — s° 12— 52 d
e [ ol o) e
0 0 o ¢ NMsxy S
no (- 5o\ - s £ - s? ds
+ f ( : ) Pw,g (2—) - P(Z,Q (1— m(s)l—_g
n-e\ Q@ o 0 B(X)
n-e (2 _ g0\ £ —s? 17— ¢ ds
T N
0 Y e ¢ s

2M
+ —_—
I'(@)

12— o\ 1 t1—& _ _ a—1
[ (1 ) mo - [ (—(“ o SQ) ()L
0 Y N 0 Y )
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['(a) 0

<Ja1 + Jao + Ju3.

S

Since

Ju £ @ m(s)m

and from Lemma 4.1, P, ,(¢) is continuous in the uniform operator topology, then by using Lebesgue
dominated convergence we find J4; — 0 as r, — #;. Using the same manner in J, and J;3 we get
Ji2, Ji3 — 0 as € — 0, and consequently J4 converges to zero independently for u € B, as 1, — 1.
Therefore

2M tl—s(r?_sg)a 1 dS

[|Du(ty) — Oou(t)|| independently for u € B, as t, — 14,
which means that {®u, u € B,} is equicontinuous. O

Lemma 4.3. If (H,)-(H4) hold, then @ is continuous in B, and maps B, into B, for any r > 0 satisfies

M — s2\*! ds
LM (I|¢Ilc+tz[l(l)%{r(a) f ( ) (S)ﬁ})sr- (4.7)

Proof. Claim: ® maps B, into B,.
Obviously, from Lemma 4.2, ®u € C ([-9, b], X). For ¢t € [0, b] and for any u € B,, by using (H;),

(H,)(i) and (H,)(1), we get
f a—1
[ el
0 o o

§© a-1 ds
<M (llp(O)ll + Ls|lulleo )+1"( )f( 0 ) ||f(S,Ms,BM(S))|Iﬁ

- s\ ds
<M ||l¢llc + Lsr + sup m(s)— <r.
ref0.] F(a/) o\ © s7e

For t € [-0,0], we get

DUl <|[Sao() [(0) — (gu) (0)]|| +

|Pu()|| <l + Lslulloo
<ll¢lle + Lsr
<M (llgllc + Lar) < r.

Hence, ||®ul|, < rfor all u € B,.
Claim: @ is continuous in B,.
Let {u,},., C B, such that lim,_ |lu, — u|l = 0.

For ¢t € [0, b], we have
[ Du, (1) — PuDI| < |Sao(®) [(g24) (0) = (g10) (O]
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+

-\ (e d
f ( a ) Pa,g( . )(f(s, (tn)s + Bun()) = f(5, ttg, Bu(5)) ~r—
0 o o si@

<M|| (gu,) (0) = (gu) ()|

M (e -\ ds
* T fo ( 0 ) I/ Cs, (un)s , Bun(s)) — (s, us, Bu(s))l| e
From conditions (H,)(1),(ii) and (H3)(i),(i1) we get
lim f(s, (un) , Bun(s)) = f(s, us, Bu(s))

and

1 tQ_ 0 a—1 2 t@_ 0 a—1
—( QS ) 1F s (), » Bun(s)) — £(5. s, Bu(s)I| < —( Qs ) m(s).

S1—0 S1-o

Then by using Lesbegue dominated convergence, we obtain

e — 50\ d
f ( - ) (. ) Buty(5)) = £(5, s, Bu(s)lI~= = 0 as n = co.
0 Q S

From (H,4)(1), we obtain
” (gun) (0) - (gu) (0)” — (0 as n — oo,

Hence
Ou,, (1) —» du(t) as n — oo. 4.8)

From (H,)(i), we find ®u,, — ®u pointwise on [-J, 0] and consequently ®u,, — Pu pointwise on
[0, b], so the sequence {Du,},, is pointwise relatively compact on [, b]. From Lemma 4.2, {®u,},’
is equicontinuous, then by Ascoli-Arzela theorem, {®u,}, , is relatively compact, i.e., there exists
subsequence of {®u,}, , converge uniformly, clearly, to ®u as n — oo, and since C ([, b]) is compete,
®u, — Ou uniformly on [0, b], as n — oo, and so @ is continuous. O

Theorem 4.4. Assume that (H,)—(H,) are hold. Then the nonlocal Cauchy problem (1.1) has at least
a mild solution on B,, where r satisfies (4.7).

Proof. We know that B, is closed and convex. From Lemmas 4.2 and 4.3, we know that @ is
a continuous map from B, into B, and the set {®u, u € B,} is equicontinuous. We shall prove
that @ satisfies the Monch condition B,. Let A = {u,},, be a countable subset of B, such that
A C conv(0U @ (A)). Then A is bounded and equicontinuous and therefore the function t — w@(f) =
u (A(2)) is continuous on [0, b]. From (H,4)(i1), we have, for any ¢ € [-0¢, 0],

@(t) <p(conv(0U @ (A1) = u(0U @ (A1)
<u (O (A@))
<u ({gua(O},21)
<Lap ({un(D},21) = Law(2).
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Since Ly < 1, then @w(¢) = 0 for all € [0, 0]. For ¢ € [0, b], then from (H,)(iii), (H3)(iii), (H4)(ii) and
by using Lemma 2.6 and properties of the measure y, we obtain

@ (1) <p(conv (00U @ (A1) < u(P(A@))

: £ @ a-1 12— ¢
su({gun(t)}iil)Jrﬂ(fo( QS ) P“’Q( QS )

d
f (S’ {(un)s}fzozl ’ {Bu”(s)}zozl) sl_i))

2M
I'(a)

DML (" (10 — s\*!
<Ly sup 1 ((O)2,) + ( ; ) [sup (a5 + 1)
0<0<t I'a) Jo Y —6<6<0

d
+1 ({Bun($))2)] sl_fg

<Lap ({un(0)},2)) +

v ©—_ Qal
( QS) P (5 ) I3 B )) o

sup /“l( un(S + 9) n= 1)

_5<6<0 sl-e

. 2ML(1 ) *) t 2 — @ a-1
<Ly sup u ({un(O)},2) + . ( )
0<6<t r(a) 0 ¢

o\ 2MLA 42y (T =52\
<Ly sup u ({u,(O)},2) + - ( )
0<o<t F(oz) 0

From the last equation and by using the properties of supremum, we get

sup p ({un(0)}, 1)

0<6<s

DML(1 +2y*) ’(r@—s@)“ :
sup w(l) < —— e
0stor (1 - LyT(e)

Then from Lemma 2.3, we obtain sup,_,., w(f) = 0 for all + € [0,b]. Hence @w = 0 on [~y,b].
This implies that A() is relatively compact for each ¢ € [—y,b]. From Ascoli-Arzela theorem, A is
relatively compact on B,. Hence from Lemma 2.7 , ®@ has a fixed point in B,, i.e., the nonlocal Cauchy
problem (1.1) has at least mild solution on B,. O

sup w(@)

0<6<s

5. Applications

Consider the following nonlocal integro-differential equation:

4
’(t@—y@)‘i
0\ o

-1
) dx, 1 € [0,b], x € [0, 7], .1)

8 %v(t, ) = (1, x) + ¢ arctan (f_(fs sin (Ivi(6, X)) d@) b (1 *

ﬁ; £(0) (1 — exp (— (%)_5) si-e lffv(i’;)l)l ) dods
v(t,0) =v(t,m) =0, t€]0,b],
v(t,x) + [) @) cos (% + v(6, 1)) d0 = y(t,x), 1€[-5,0], 1€ [0,x],

where 0 < o <1, > 0, and v,(6, x) = v(t + 6, x). The following conditions hold:

(1) The function ¢ : [6,0] — R is integrable, i.c., [ |{(6)ld6 < co.

(2) The function ¢; : [0, b] — R is integrable, and fob |5>(0)|do < 1.
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(3) The function ¢ : [-9,0] X [0, 7] — R is measurable and saisfies

T

m [ (12, %) = (12, )Pdx = 0,
h—1 0

for all 11, 1, € [-6,0].

Let X = L? ([0, ]). Consider the operator A = —% in X with domain

D(A) = H*([0, n]) N Hy ([0, 71])

where H([0, r]) and Hé([O, n]) are the classical Sobolev spaces. Eigenvalues and the corresponding
normalized eigenfunctions of A are given by n?, v, = \/g sinnx, n € N. The family of eigenfunctions

{va})”, forms an orthonormal basis in X with inner product (w, v) = fol w(x)@dx.
Define the family of linear operators {T‘Q(I)}tZO by
T,(Hw = Z;’;le_"z%(a), Up)Up,
for w € X given by w = £*  (w, v,)v,. This family satisfies the following
(1) Ty(r) is a bounded linear operator, with ||7,(1)|| < 1 for z > 0.
(2) For s, > 0 and w € X we get the semigroup property Tg(té)TQ(sé)w =Tyt + sg)éw.
(3) For s,t >0, ||T,(s) — T,(t)ll > 0 when s — .
(4) For w € D(A), Dy, To(w = AT (f)w. In particular lim,_o+ D, T,(Hw = Aw.

Clearly, {TQ(I)}t>0 is a uniformly bounded Cy-o-semigroup which is continuous in the uniform operator

topology for ¢ > 0, and A its generator. For x € [0, 7] and ¢ € C ([-6, 0], X), we set

u(t)(x) = v(t, x)
@()(x) = ¥(t, x)

0 T
f(t,d,w) (x) = e arctan f sin(|¢(0)(x)|)d9)+ f (1 + lw()) " dx.
= 0

S 2\ L IO
0|1 - —|— e T2 Ldp
Lg()[ exp( (e) ]S I+ 6O

b n
gu)()(x) = f Z, (6) cos (5 + |¢,(0)(x)|)d9.
0

ht, 5, $)(x) = (tg - SQ)_
%

Then Eq (5.1) can be transformed to the abstract form (1.1).
For t € [0, b], we can obtain

-t
If (1., )| < ? (‘% + 1) = m(f)
where I;°m € C ((0,b],R*) and lim,_,o+ I;*m(r) = 0.
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For any ¢, ¢ € C and w, @ € X, by straightforward calculations we get

|7 .. 0) - £ (1.8.0)| < 6¢7 - Bl + 7l - ol
Then for any bounded sets Ay c C, A Cc X

u(f (A, A) <L (e S[l_lfo]ﬂ (A1(2) + (Az)) ,

where L=6+mand ¢ € [0, b].
For each ¢, s € [0, b], ¢ € C, we obtain

: S )W)
) f <0 1_exp[ ( ) ' 91+|¢<9)<x>|]Hd9

€ — s\ 75 [0 _3 0
s( S) (S—) 51 f £(0)ld6 ¢l
% % )

<my(t, ) 1Pllc

I (2, s, d)l < (

N

where m(t, 5) = (f;)_g (ﬁ)_% st [ (; 12(0)|d6 satisfies

4 ©

4 1
5

' 0 : - _1

1 — g€ e\"5 4

m' = sup f m(t, s)ds = f 1£(0)|d0 sup f ( s) (S_) Ll
€061 Jo -5 1e[0,6] Jo [ [ \

0 r, | 1 4\ °
_ f Ol f fs(l—trsdr:ﬁ(g,g) f £O)ldo.
-0 0 -

For any t, s € [0,b], ¢, ¢ € C ([-6,0], X)

— 5 3 0
"h(t,s,¢)—h(t,s,$)'|S(tg QSQ) (%) s f @1 — dlc

.p

Hence, for any bounded set A C C,

p(h(t,s,A) <y(s,1) sup p(A(1))
0e[—6,0]

\ &

1

where y(s, ) = 2(“=£)” 5(%) “s'e [2126)lde. and y = 28(L. %) [ K (©)lde.
Forallt € [-6,0], ¢, ¢ € C ([0, b], X), we have

ligdlle < L3 ¢l ,

and

lgp(® - gd)|| < ||¢ - ¢||._ La

where L; = Ly = fob |£>(0)| d6. Then g(.)(¢) : C ([-0,b], X) — X is continuous for any ¢ € [0, 0], and

therefore
(g (A) (@) < Lapu (AQD)) .

Since all conditions of Theorem 4.4 are satisfied, problem (5.1) has at least a mild solution.
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6. Conclusions

In this manuscript, the existence results of mild solutions for non local fractional evolution equations
with finite delay in the sense of Caputo conformable fractional derivative have been successfully
investigated under some sufficient conditions on Kuratowski measure of non compactness. To the
best of our knowledge, this type of problems supplemented with newly defined Caputo conformable
fractional operator has not been investigated in any literature. All the obtained results are supported by
an application showing the applicability of the presented theory.
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