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1. Introduction

Fractional calculus has shown great effectiveness in describing and modeling many phenomena in
many fields such as physics, chemistry, biology, electricity, economics, etc [1–4]. Recently, many
researchers focus to introduce and develop fractional operators such as Caputo-Fabrizio, Atangana-
Baleanu and conformable derivatives [5–11].

A new extended fractional operator was proposed in [12] as a combination between conformable
and Caputo derivatives. The novel fractional derivative has attracted attention in limited papers,
see [13–16]. For the first time authors in [13] investigated the existence, uniqueness and Ulam-Hyers
stability of solutions for conformable derivatives in Caputo setting with four-point integral conditions
by applying suitable fixed point theorems. Baleanu et al. [14] discussed Caputo fractional conformable
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differential inclusion subject to four-point conditions using some analytical techniques on the α-ψ
contractive mappings. In [17] authors applied this fractional derivative to describe the behavior of an
electrical circuit model.

Delay differential equations and integro-differential equations in classical and fractional order have
been used in modeling many situations from science and engineering. For this reason they have
attracted great attention in the last two decades and have been investigated theoretically in many
papers [18–27,31–35]. In a previous study [36], Kavitha et al. established the existence results of Hilfer
fractional neutral evolution equation with infinite delay by utilizing the semigroup theory, fractional
calculus and Mönch fixed point theorem. In [20] authors studied the existence of mild solutions for
a class of non local fractional integro-differential equation in neutral type with infinite delay, using
the theory of resolvent operators. Valliammal et al. in [31] established some sufficient conditions for
the existence of solutions for neutral delay fractional integro-differential systems, where the authors
in [37] studied controllability of nonlocal neutral impulsive differential equations with measure of
noncompactness.

Inspired by the above research, we consider the following nonlocal fractional integro-differential
evolution equation with finite delay:Dα,%0+ u(t) = Au(t) + f (t, ut,

∫ t

0
h(t, s, us)ds), t ∈ [0, b] ,

u(t) + (gu)(t) = ϕ(t), t ∈ [−δ, 0] ,
(1.1)

where Dα,%
0+ is the Caputo conformable fractional derivative of order 0 < α < 1 and type 0 < % ≤ 1,

and A is infinitesimal generator of a fractional C0-%-semigroup {T%(t)}t≥0 of bounded operators on a
Banach space X with the norm ‖.‖. The functions ϕ ∈ C ([−δ, 0], X), f : [0, b)×C ([−δ, 0], X)×X → X,
h : [0, b) × [0,+∞) × C ([−δ, 0], X) → X and g : C ([−δ, b], X) → C ([−δ, 0], X) are given abstract
functions and ut : [−δ, 0]→ X is defined by ut(θ) = u(t + θ).

In this paper, we try to refine the conditions imposed in some previous works [20,31,36,38,39] and
prove the existence of a mild solution under weaker and more general conditions than those mentioned
in the previous works. For example, when we chose % = 1, δ = 0 and h ≡ 0, problem (1.1) improves the
results of existence of a mild solution for the nonlocal Caputo fractional evolution equation discussed
in [39]:  CDα

0+u(t) = Au(t) + f (t, u(t)), t ∈ (0, b]
u(0) = g(u) .

We study problem (1.1) by converting it to an equivalent integral equation using a suitable fractional
Laplace transform, then we define the mild solution of (1.1) in terms of two new families of operators.
Each family of operators is associated with the wright function and a suitable fractional semigroup. In
the second part of this paper, we apply the Mönch fixed point theorem to establish our main results
on the existence of mild solutions with the help of the general version of Gronwall’s inequality under
weaker conditions in the sense of Kuratowski measure of non-compactness.

We organize the contents of our paper as follows: In Section 2, we state some basic definitions,
concepts and preliminary results which are used throughout this paper. The representation of mild
solution of (1.1) using fractional Laplace transform is given in Section 3. In Section 4, under some
sufficient conditions, we prove the existence theorem of a mild solution of (1.1), based on Mönch fixed
point theorem. An application of our abstract results is given in the last section.

AIMS Mathematics Volume 7, Issue 7, 11614–11634.



11616

2. Preliminaries

In this section, we introduce fractional integral, fractional derivative, fractional semigroup and then
give the definition of the fractional Laplace transform. Finally, we will give some definitions and
lemmas which are used throughout this paper.
Let X be a Banach space with the norm ‖.‖. Let δ, b ∈ R+. Denote By C = C ([−δ, 0], X) and
C ([−δ, b], X) the spaces of continuous X-valued functions on [−δ, 0] and [−δ, b] with the norms

‖u‖C = sup
t∈[−δ,0]

‖u(t)‖

and
‖u‖∞ = sup

t∈[−δ,b]
‖u(t)‖

respectively, and B(X) be the space of all bounded linear operators from X into X with the norm
‖T‖B(X) = supx∈X,‖X‖≤1 ‖T x‖. Define L%p([0, b], X) to be the space of X-valued Bochner functions on

[0, b] with the norm ‖u‖%p =

(∫ b

0
‖u(s)‖p ds

s1−%

) 1
p
, 1 ≤ p < ∞.

Definition 2.1. [5,10] The left conformable derivative with lower point a of the function f : [a,+∞)→
R of order 0 < % ≤ 1 is defined by

D%
a f (t) = lim

ε→0

f (t + ε(t − a)1−%) − f (t)
ε

.

If D%
a f (t) exists on (a, b), then D%

a f (a) = limt→a+ D%
a f (t). If f is differentiable, then

D%
a f (t) = (t − a)1−% f ′(t).

Definition 2.2. [12] Let α, % > 0. The left-sided Riemann-Liouville conformablde fractional integral
operator of order α and type % with lower limit a for a function f : [a,+∞)→ R is defined by

Iα,%a u(t) =
1

Γ(α)

∫ t

a

(
(t − a)% − (s − a)%

%

)α−1

u(s)
ds

(s − a)1−% .

Definition 2.3. [12] Let α > 0, 0 < % ≤ 1 and n = [α] + 1. The left Caputo conformable fractional
derivative with lower limit a of order α and type % of a function f ∈ Cn

%,a ([a, b], X) is defined by

D
α,%
a f (t) = In−α,%

a
( nD%

a f
)

(t) (2.1)

=
1

n − α

∫ t

a

(
(t − a)% − (s − a)%

%

)n−α−1 D%
a f (s)

(s − a)1−%ds, (2.2)

where nD%
a = D%

aD%
a...D

%
a︸      ︷︷      ︸

n−times

, and D%
a is the left conformable derivative given in Definition 2.1.

Lemma 2.1. [12] Let α, β, γ > 0. Then

Iα,%a

(
Iβ,%a f

)
(t) = Iα+β,%

a f (t),

and (
Iα,%a (s − a)α(γ−1)

)
(t) =

1
α%

Γ(γ)
Γ(% + γ)

(t − a)α(%+γ−1).
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Theorem 2.2. [12] Let α > 0, 0 < % ≤ 1 and n = [α] + 1. Then

(1) If α < N and f ∈ C ([a, b], X), then

D
α,%
a

(
Iα,%a f

)
(t) = f (t).

(2) If α ∈ N and f ∈ C ([a, b], X), then

D
α,%
a

(
Iα,%a f

)
(t) = f (t) −

Iα−n+1,%
a f (a)
%n−αΓ(n − α)

(t − a)%(n−α).

(3) If f ∈ Cn
%,a ([a, b], X), then

Iα,%a
(
D
α,%
a f

)
(t) = f (t) −

n−1∑
k=0

kD%
a f (a)(t − a)%k

%kk!
.

Definition 2.4. ( [5]) Let a ∈ R, 0 < % ≤ 1 and f : [a,∞)→ X be an X-valued Bochner function. The
fractional Laplace transform of order % started from a is given by

L%a f (s) =

∫ +∞

a
e−s (t−a)%

% f (t)
dt

(t − a)1−% . (2.3)

Definition 2.5. Let 0 < % ≤ 1, and u, v be two X-valued Bochner functions. We define the fractional
convolution of u and v of order % by(

u ∗% v
)

(t) =

∫ t

0
u
(
(t% − τ%)

1
%

)
v(τ)

dτ
τ1−% . (2.4)

Proposition 2.1. Let 0 < % ≤ 1 and u, v be two X-valued functions which are piecewise continuous at
each interval [a, b] and of %-exponential order (u(t) ≤ Mect%). Then

(1) For any c1, c2 ∈ R, L%a{c1u + c2v}(s) = c1L
%
a{u}(s) + c2L

%
a{v}(s).

(2) L%a{
(

(t−a)%

%

)α
}(s) =

Γ(α+1)
sα+1 .

(3) L%0
(
u ∗% v

)
(s) = L

%
0{u}(s)L%0{v}(s).

(4) For α > 0, L%0{I
α,%
a u}(s) =

L
%
0u(s)
sα .

Proof. The proof follows from the argument of [40] by letting ψ(t) = t%
%

. �

Lemma 2.3. [41] Let α ≥ 0, 0 < % ≤ 1 Assume that u, v are two nonnegative locally integrable real
valued functions on [0, b] and h is a nonnegative and nondecreasing real valued function on [0, b]. If

u(t) ≤ v(t) + h(t)
∫ t

0

(
t% − s%

%

)α−1

u(s)
ds

s1−% ,

then

u(t) ≤ v(t) +

∫ t

0

∞∑
k=1

(h(t)Γ(α))k

Γ(kα)

(
t% − s%

%

)kα−1

v(s)
ds

s1−% .
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Now, we define and give some results about the so called fractional %-semigroup of bounded linear
operators, these results can be found in [5, 42–44]

Definition 2.6. [5] Let 0 < % ≤ 1. A family {T%(t)}t≥0 ⊆ B(X) is called a fractional %-semigroup of
bounded linear operators on Banach space X if

(i) T%(0) = I,

(ii) T%(t + s)
1
% = T%(t

1
% )T%(s

1
% ) for all t, s ∈ [0,∞).

An %−semigroup T%(t) is called a C0-%-semigroup, if for each x ∈ X, T%(t)x→ x as t → 0+.
A linear operator A defined by

D(A) = {x ∈ X| lim
t→0+

D%
0+

(T%)(t)x exists},

and
Ax = lim

t→0+
D%

0+
(T%)(t)x

is called the %−infinitesimal generator of the fractional %−semigroup T%(t).

Theorem 2.4. [42,43] Let A be the %-infinitesimal generator of a fractional C0-%-semigroup {T%(t)}t≥0

where 0 < % ≤ 1. Then

(1) There exist M ≥ 1 and ω ≥ 0, such that ‖T%(t)‖ ≤ Meωt% , t ≥ 0.

(2) A is closed densely defined.

(3) The resolvent set ρ(A) of A contains the interval (ω,+∞) and for any λ > ω, we have
‖R(λ, A)‖B(X) ≤

M
λ−ω

, where the resolvent operator R(λ, A) is defined by

R(λ, A)x = (λI − A)−1 x =

∫ +∞

0
e−λ

τ%

% T%(τ)
dτ
τ1−% , ∀x ∈ X.

Throughout this paper, assume that A is the infinitesimal generator of a uniformly bounded C0-%-
semigroup {T%(t)}t≥0 on X. i.e, there exists M ≥ 1 such that M = supt∈[0,+∞) ‖T%(t)‖.

Next, we define the Kurtawoski measure of noncompact µ(.) on each bounded subset Λ of Banach
space X by

µ(Λ) = inf{ε ≥ 0 : Λ ⊆

m⋃
i=1

Bi, where diam (Bi) ≤ ε},

where diam (B) is the diameter of B. The Kurtawoski measure of noncompact (KMN) µ satisfies the
following basic properties (see [45, 46]):

(1) µ (Λ1) ≤ µ (Λ2), for any bounded subsets Λ1,Λ2 ∈ X such that Λ1 ⊆ Λ2.

(2) µ (Λ) = 0 if and only if Λ is relatively compact in X.

(3) µ ({x} ∪ Λ) = µ (Λ) for all x ∈ X and Λ ⊂ X.

(4) µ (Λ1 ∪ Λ2) ≤ max{µ (Λ1) , µ (Λ2)}.
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(5) µ (Λ1 + Λ2) ≤ µ (Λ1) + µ (Λ2).

(6) µ (ηΛ) ≤ |η|µ (Λ) for η ∈ R.

(7) If Θ : Ω ⊂ X → X is a Lipschitz map with constant K, then µ (Θ (Λ)) ≤ Kµ (Λ) for any bounded
subset Λ ⊂ Ω.

Lemma 2.5. [47] If Λ ⊆ C([0, b], X) is bounded, then µ (Λ(t)) ≤ µ (Λ) for every t ∈ [0, b], where
Λ(t) = {u(t), u ∈ Λ}. Moreover if Λ is equicontinuous on [0, b], then t → µ (Λ(t)) is continuous real
valued function on [0, b], µ (Λ) = sup{µ (Λ(t)) , t ∈ [0, b]}. Furthermore µ

(∫ t

0
Λ(s)ds

)
≤

∫ t

0
µ (Λ(s)) ds.

Lemma 2.6. [48] If {un}
∞
n=1 is a sequence of Bochner integrable X-valued functions on [0, b] satisfies

‖un(t)‖ ≤ φ(t) for almost all t ∈ [0, b] and every n ≥ 1, where φ ∈ L1 ([0, b],R), then the function
ψ(t) = µ ({un(t) : n ≥ 1}) ∈ L1 ([0, b]) and satisfies µ

(
{
∫ t

0
un(t)ds : n ≥ 1}

)
≤ 2

∫ t

0
ψ(s)ds.

Lemma 2.7. Let Ω be a closed convex subset of a Banach space X, and G : Ω → Ω be continuous
satisfying Mönch’s condition, i.e.,

Λ ⊆ Ω is countable, Λ ⊆ conv (0 ∪G (Λ)) ⇒ Λ is compact,

where conv (Λ) denotes the convex hall of Λ. Then G has a fixed point.

3. Representation of mild solution using fractional Laplace transform

According to Theorem 2.2, we can rewrite the nonlocal problem (1.1) in the following equivalent
integral equation:u(t) = ϕ(0) − (gu) (0) + 1

Γ(α)

∫ t

0

(
t%−s%
%

)α−1 [
Au(s) + f (s, us, Bu(s))

] ds
s1−% , t ∈ [0, b]

u(t) + (gu)(t) = ϕ(t), t ∈ [−δ, 0]
(3.1)

where Bu(t) =
∫ t

0
h(t, s, us)ds, provided that the integral in (3.1) exists.

To introduce the mild solution of (1.1) we need to define the two families of operators {Sα,%(t)}t≥0

and {Pα,%(t)}t≥0 by  Sα,%(t)x = %
∫ ∞

0
θ%−1ψα(θ)T%

(
%

1−α
% t%θ

)
xdθ, x ∈ X ,

Pα,%(t) = α%
∫ ∞

0
θ2%−1ψα(θ)T%

(
%

1
% t

α
% θ

)
xdθ, x ∈ X

(3.2)

where 0 ≤ α, % ≤ 1 and for θ ≥ 0

ψα(θ) =

∞∑
k=0

(−θ)k

k!Γ(−α(k + 1) + 1)
=

∞∑
k=0

(−θ)kΓ(α(k + 1))
k!

sin (π(k + 1)α)

is the wright type function defined on (0,∞) which is positive and satisfies∫ ∞

0
ψα(θ)dθ = 1, (3.3)∫ ∞

0
θγψα(θ)dθ =

Γ(1 + γ)
Γ(1 + αγ)

, (3.4)∫ ∞

0
e−λθφα(θ)dθ = e−λ

α

, (3.5)

where φα(θ) = αt−1−αψα(t−α).
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Lemma 3.1. If (3.1) holds, then we have u(t) = Sα,%(t)
[
ϕ(0) − (gu) (0)

]
+

∫ t

0

(
t%−s%
%

)α−1
Pα,%

(
t%−s%
%

)
f (s, us, Bu(s)) ds

s1−% , t ∈ [0, b] ,
u(t) + (gu)(t) = ϕ(t), t ∈ [−δ, 0]

(3.6)

where the operators Sα,%(t) and Pα,%(t) are defined in (3.2).

Proof. Let λ > 0. By applying the fractional Laplace transform of order 0 < % ≤ 1 to (3.1) for t ≥ 0,
we get:

U(λ) =
1
λ

[
ϕ(0) − (gu) (0)

]
+L

%
0{I

α,%
0 (Au(t) + f (t, ut, Bu(t)))}(λ)

=
1
λ

[
ϕ(0) − (gu) (0)

]
+

1
λα

[AU(λ) + F(λ)]

U(λ) = λα−1 (λα − A)−1 [
ϕ(0) − (gu) (0)

]
+ (λα − A)−1 F(λ)

= J1 + J2

where U(λ) = L
%
0(u)(λ) and F(λ) = L

%
0 ( f (t, ut, Bu(t))) (λ).

Now, differentiating (3.5) with respect to λ, we obtain∫ ∞

0
θφα(θ)e−λθdθ = αλα−1e−λ

α

. (3.7)

Using (3.7) and from Theorem 2.4 , we get

J1 = λα−1 (λα − A)−1 [
ϕ(0) − (gu) (0)

]
= λα−1

∫ +∞

0
e−λ

α s%
% T%(s)

[
ϕ(0) − (gu) (0)

] ds
s1−%

=

∫ +∞

0

(
s%

%

) 1
α−1

λ (
s%

%

) 1
α


α−1

e
−

(
λ
(

s%
%

) 1
α

)α
T%(s)

[
ϕ(0) − (gu) (0)

] ds
s1−%

=

∫ +∞

0

∫ +∞

0
e−λ

(
s%
%

) 1
α θφα(θ)T%(s)

[
ϕ(0) − (gu) (0)

] 1
α

(
s%

%

) 1
α−1

θdθ
ds

s1−% . (3.8)

By using the substitution τ%

%
=

(
s%
%

) 1
α
θ and ϑ = θ−

α
% in the last equation, we obtain

J1 =

∫ +∞

0
e−λ

τ%

%

∫ +∞

0
φα(θ)T%(%

1−α
% τα

1

θ
α
%

)
[
ϕ(0) − (gu) (0)

]
dθ

dτ
τ1−%

=

∫ +∞

0
e−λ

τ%

%

[∫ +∞

0
%ϑ%−1ψα(ϑ%)T%(%

1−α
% ταϑ)

[
ϕ(0) − (gu) (0)

]
dϑ

]
dτ
τ1−% . (3.9)

Similarly, from (3.5) and by using the substitution τ%

%
=

(
s%
%

) 1
α
θ, we get

J2 = (λα − A)−1 F(λ) =

∫ +∞

0
e−λ

s%
% T%(s)F(λ)

ds
s1−%
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=

∫ +∞

0

∫ +∞

0
φα(θ)e−λ

(
s%
%

) 1
α θT%(s)F(λ)d(θ)

ds
s1−%

=

∫ +∞

0
e−λ

τ%

%

∫ +∞

0

(
τ%

%

)α−1
α

θα
φα(θ)T%(%

1−α
% τα

1

θ
α
%

)F(λ)d(θ)
dτ
τ1−%

=

∫ +∞

0
e−λ

τ%

%

∫ +∞

0
α%θ2%−1ψα(θ%)

(
τ%

%

)α−1

T%(%
1−α
% ταθ)F(λ)d(θ)

dτ
τ1−% . (3.10)

Applying the property 3 of Proposition 2.1 yields

J2 =

∫ +∞

0
e−λ

τ%

%

∫ +∞

0
α%θ2%−1ψα(θ%)

(
τ%

%

)α−1

T%(%
1−α
% ταθ)F(λ)d(θ)

dτ
τ1−%

=

∫ +∞

0

∫ +∞

0
e−λ

(
τ%

% + s%
%

) ∫ +∞

0
α%θ2%−1ψα(θ%)

(
τ%

%

)α−1

× T%(%
1−α
% ταθ) f (s, us, Bu(s))d(θ)

dτ
τ1−%

ds
s1−%

=

∫ +∞

0
e−λ

t%
%

α∫ t

0

∫ +∞

0
%θ2%−1ψα(θ%)

(
t% − s%

%

)α−1

× T%(%
1−α
% (τα − s%)

α
% θ) f (s, us, Bu(s))d(θ)

ds
s1−%

]
dt

t1−% . (3.11)

According to (3.9) and (3.11), we have

U(λ) =

∫ +∞

0
e−λ

t%
%

(∫ +∞

0
%θ%−1ψα(θ%)T%(%

1−α
% tαθ)

[
ϕ(0) − (gu) (0)

]
dθ

)
dt

t1−%

+

∫ +∞

0
e−λ

t%
%

α∫ t

0

∫ +∞

0
%θ2%−1ψα(θ%)

(
t% − s%

%

)α−1

× T%(%
1−α
% (τα − s%)

α
% θ) f (s, us, Bu(s))d(θ)

ds
s1−%

)
dt

t1−% (3.12)

Now, by inverting the inverse fractional Laplace transform, we obtain

u(t) =

∫ +∞

0
%θ%−1ψα(θ%)T%(%

1−α
% tαθ)

[
ϕ(0) − (gu) (0)

]
dθ

+α

∫ t

0

∫ +∞

0
%θ2%−1ψα(θ%)

(
t% − s%

%

)α−1

T%(%
1−α
% (τα − s%)

α
% θ) f (s, us, Bu(s))d(θ)

ds
s1−%

=Sα,%(t)
[
ϕ(0) − (gu) (0)

]
+

∫ t

0

(
t% − s%

%

)α−1

Pα,%

(
t% − s%

%

)
f (s, us, Bu(s))

ds
s1−%

�

Definition 3.1. An X-valued function u ∈ C ([−δ, b], X) is called a mild solution of the nonlocal Cauchy
problem (1.1), if it satisfies:u(t) = Sα,%(t)

[
ϕ(0) − (gu) (0)

]
+

∫ t

0

(
t%−s%
%

)α−1
Pα,%

(
t%−s%
%

)
f (s, us, Bu(s)) ds

s1−% , t ∈ [0, b] ,

u(t) + (gu)(t) = ϕ(t), t ∈ [−δ, 0] .
(3.13)
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Lemma 3.2. The family of operators {Sα,%(t)}t≥0 and {Pα,%(t)}t≥0 satisfy:

(i) For any fixed t ≥ 0, Sα,%(t) and Pα,%(t) are linear and bounded.
(ii) For any x ∈ X, the X-valued functions t → Sα,%(t)x and t → Pα,%(t)x are continuous on [0,+∞).

Proof. The linearity is obvious. Since ‖T%(t)‖ ≤ M for any t ≥ 0 and from (3.3), we get

‖Sα,%(t)x‖ ≤ %
∫ +∞

0
ψα(θ%)‖T%(%

1−α
% tαθ)‖‖x‖

dθ
θ1−%

≤ M‖x‖
∫ +∞

0
ψα(θ%)d(θ%)

≤ M‖x‖
∫ +∞

0
ψα(θ)dθ = M‖x‖.

Similarly:

‖Pα,%(t)x‖ ≤ M‖x‖α%
∫ +∞

0
θ2%−1ψα(θ%)dθ

≤ αM‖x‖
∫ +∞

0
θψα(θ)dθ =

αM
Γ(1 + α)

‖x‖ =
M

Γ(α)
‖x‖.

For the part (ii), let t1, t2 ≥ 0. Then

‖Sα,%(t1)x − Sα,%(t2)x‖ ≤ %
∫ +∞

0
ψα(θ%)‖T%(%

1−α
% tα1θ)x − T%(%

1−α
% tα2θ)x‖

dθ
θ1−% .

From the strong continuity of T%(t) and by using Lesbegue dominated convergence we obtain
limt2→t1 ‖Sα,%(t1)x − Sα,%(t2)x‖ = 0, which implies that {Sα,%(t)}t≥0 is strongly continuous. A similar
argument enables us to prove the strong continuity of {Pα,%(t)}t≥0.

�

4. Existence results of a mild solution

In this section we will establish the existence results by using the Hausdorff measure of
noncompactness. To state and prove our main results for the existence of mild solutions of
problem (1.1), we need the following hypotheses:

(H1) The uniformly bounded C0-%-semigroup {T%(t)}t≥0 generated by A is continuous in the uniform
operator topology for t > 0.

(H2) The function f : [0, b] × C × X → X satisfies the following

(i) For each (v, x) ∈ C × X, f (., v, x) is strongly measurable, f (t, ., .) is continuous a.e. for
t ∈ [0, b].

(ii) There exists m ∈ L1 ([0, b],R+) such that Iα,%0 m ∈ C ((0, b],R+) and limt→0+ Iα,%0 m(t) = 0,
satisfying: ‖ f (t, x, v)‖ ≤ m(t) for all (x, v) ∈ X × C and almost all t ∈ [0, b].

(iii) There exists a constant L ≥ 0 such that for any bounded sets Λ1 ⊂ C, Λ2 ⊂ X

µ ( f (t,Λ1,Λ2)) ≤ L
(

sup
θ∈[−δ,0]

µ (Λ1(t)) + µ (Λ2)
)
, a.e. t ∈ [0, b] .
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(H3) The function h : [0, b] × [0, b] × C → X satisfies the following

(i) For each v ∈ C, h(., ., v) is strongly measurable, h(t, s, .) is continuous a.e. for (t, s) ∈ [0, b] ×
[0, b].

(ii) There exists a function m1 : [0, b] × [0, b] → R+, such that supt∈[0,b]

∫ t

0
m1(t, s)ds = m∗1 < ∞

and ‖h(t, s, v)‖ ≤ m1(t, s)‖v‖C, for all t, s ∈ [0, b] and v ∈ C.
(iii) There exists a function γ : [0, b] × [0, b]→ R+, such that supt∈[0,b]

∫ t

0
γ(t, s)ds = γ∗ < ∞ and

µ (h (t, s,Λ)) ≤ γ(t, s) sup
θ∈[−δ,0]

µ (Λ(t))

for each bounded subset Λ ∈ C and almost all t, s ∈ [0, b].

H4) The operator g : C ([−δ, b], X)→ C satisfies

(i) For each t ∈ [−δ, 0], the operator Υt : C ([−δ, b], X) → X defined by Υt(u) = (gu)(t)
is continuous. There exists a constant L3 ∈

(
0, 1

M

)
such that ‖g(u)‖C ≤ L3‖u‖∞ for all

u ∈ C ([−δ, b], X), and the subset g (Λ) ⊂ C is equicontinuous for each bounded set
Λ ⊂ C ([−δ, b], X)

(ii) There exists a constant L4 ∈ [0, 1) such that µ (Υt (Λ)) ≤ L4µ (Λ(t)) for each bounded set
Λ ⊂ C ([−δ, b], X) and all t ∈ [−δ, 0].

Lemma 4.1. If (H1) holds, then the family of operators {Sα,%(t)}t≥0 and {Pα,%(t)}t≥0 are continuous in
the uniform operator topology for t > 0.

Proof. Let t1, t2 ≥ 0. For ε > 0 we have

‖Sα,%(t1)x−Sα,%(t2)x‖

≤ %

∫ +∞

ε

ψα(θ%)‖T%(%
1−α
% tα1θ)x − T%(%

1−α
% tα2θ)x‖

dθ
θ1−% + %M

∫ ε

0
ψα(θ%)

dθ
θ1−%

≤ %

∫ +∞

ε

ψα(θ%)‖T%(%
1−α
% tα1θ) − T%(%

1−α
% tα2θ)‖‖x‖

dθ
θ1−% + %M

∫ ε%

0
ψα(θ)dθ. (4.1)

Applying the Lebesgue dominated convergence by using the continuity of T% in the uniform operator
topology and the Eq (3.3), we obtain

%

∫ +∞

ε

ψα(θ%)‖T%(%
1−α
% tα1θ) − T%(%

1−α
% tα2θ)‖‖x‖

dθ
θ1−% → 0 as t2 → t1.

Then for any x ∈ X, ‖x‖ ≤ 1

lim
t2→t1
‖Sα,%(t1)x − Sα,%(t2)x‖ ≤ %M

∫ ε%

0
ψα(θ)dθ.

From (3.3), and since ε is arbitrary, then∫ ε%

0
ψα(θ)dθ → 0 as ε→ 0,

and therefore
lim
t2→t1
‖Sα,%(t1)x − Sα,%(t2)x‖ = 0
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which implies that the continuity in the uniform operator topology of Sα,%(t) for t > 0.
Using the similar argument we can prove that Pα,%(t) is continuous in the uniform operator topology
for t > 0. �

Let Br = {u ∈ C ([−δ, b], X) , ‖u‖∞ ≤ r}, where r ≥ 0. Then Br is clearly a bounded closed and
convex subset in C ([−δ, b], X). We define the operator Φ by

(Φ1u) (t) =

 Sα,%(t)
[
ϕ(0) − (gu) (0)

]
+

∫ t

0

(
t%−s%
%

)α−1
Pα,%

(
t%−s%
%

)
f (s, us, Bu(s)) ds

s1−% , t ∈ [0, b] ,
ϕ(t) − (gu)(t) , t ∈ [−δ, 0] .

(4.2)

Obviously, u ∈ Br is a mild solution of (1.1) if and only if the operator Φ has a fixed point on Br, i.e.,
there exists u ∈ Br satisfies u = Φu.

Lemma 4.2. If (H1)–(H4) hold, then {Φu, u ∈ Br} is equicontinuous.

Proof. Let u ∈ Br. For −δ ≤ t1 ≤ t2 ≤ 0, we have

‖Φu(t2) − Φu(t1)‖ ≤ ‖ϕ(t2) − ϕ(t1)‖ + ‖gu(t2) − gu(t1)‖ .

Since ϕ ∈ C and from (H4)(i), we obtain

‖Φu(t2) − Φu(t1)‖ → 0 independently for u ∈ Br as t2 → t1.

For −δ ≤ t1 ≤ 0 < t2 ≤ b, then from (H2)(ii) and Lemma 3.2, we get

‖Φ2u(t2) − Φ2u(t1)‖ =
∥∥∥ϕ(t1) − gu(t1) − Sα,%(t2)

[
ϕ(0) − (gu) (0)

]
−

∫ t2

0

(
t%2 − s%

%

)α−1

Pα,%

(
t%2 − s%

%

)
f (s, us, Bu(s))

ds
s1−%

∥∥∥∥∥∥∥
≤‖ϕ(t1) − ϕ(0)‖ + ‖Sα,%(t2)ϕ(0) − ϕ(0)‖ + ‖gu(t2) − gu(0)‖

+ ‖Sα,%(t2)gu(0) − gu(0)‖ +
M

Γ(α)

∫ t2

0

(
t%2 − s%

%

)α−1

m(s)
ds

s1−%

≤I1 + I2 + I3 + I4 + I5.

Since ϕ ∈ C and from (H2)(ii), (H4)(i) and Lemma 4.1, we find I1, ..., I5 → 0 as t1, t2 → 0 and hence

‖Φu(t2) − Φu(t1)‖ → 0 independently for u ∈ Br as t2 → t1.

For 0 < t1 ≤ t2 ≤ b , we have

‖Φ2u(t2)−Φ2u(t1)‖ ≤ ‖
(
Sα,%(t2) − Sα,%(t2)

)
(ϕ(0) − gu(0)) ‖

+

∥∥∥∥∥∥∥
∫ t2

t1

(
t%2 − s%

%

)α−1

Pα,%

(
t%2 − s%

%

)
f (s, us, Bu(s))

ds
s1−%

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∫ t1

0

(
t%2 − s%

%

)α−1

Pα,%

(
t%2 − s%

%

)
f (s, us, Bu(s))

ds
s1−%

−

∫ t1

0

(
t%1 − s%

%

)α−1

Pα,%

(
t%2 − s%

%

)
f (s, us, Bu(s))

ds
s1−%

∥∥∥∥∥∥∥
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+

∥∥∥∥∥∥∥
∫ t1

0

(
t%1 − s%

%

)α−1

Pα,%

(
t%2 − s%

%

)
f (s, us, Bu(s))

ds
s1−%

−

∫ t1

0

(
t%1 − s%

%

)α−1

Pα,%

(
t%1 − s%

%

)
f (s, us, Bu(s))

ds
s1−%

∥∥∥∥∥∥∥ (4.3)

≤‖Sα,%(t2) − Sα,%(t1)‖B(X)‖ϕ(0) − gu(0)‖

+
M

Γ(α)

∫ t2

t1

(
t%2 − s%

%

)α−1

m(s)
ds

s1−% +
M

Γ(α)

∫ t1

0

( t%1 − s%

%

)α−1

−

(
t%2 − s%

%

)α−1 m(s)
ds

s1−%

+

∫ t1

0

(
t%1 − s%

%

)α−1 ∥∥∥∥∥∥Pα,%

(
t%2 − s%

%

)
f (s, us, Bu(s))

−Pα,%

(
t%1 − s%

%

)
f (s, us, Bu(s))

∥∥∥∥∥∥ ds
s1−% (4.4)

≤‖Sα,%(t2) − Sα,%(t2)‖B(X)‖ϕ(0) − gu(0)‖

+
M

Γ(α)

∣∣∣∣∣∣∣
∫ t2

0

(
t%2 − s%

%

)α−1

m(s)
ds

s1−% −

∫ t1

0

(
t%1 − s%

%

)α−1

m(s)
ds

s1−%

∣∣∣∣∣∣∣
+

2M
Γ(α)

∫ t1

0

( t%1 − s%

%

)α−1

−

(
t%2 − s%

%

)α−1 m(s)
ds

s1−%

+

∫ t1

0

(
t%1 − s%

%

)α−1 ∥∥∥∥∥∥Pα,%

(
t%2 − s%

%

)
− Pα,%

(
t%1 − s%

%

)∥∥∥∥∥∥
B(X)

m(s)
ds

s1−% (4.5)

≤J1 + J2 + J3 + J4. (4.6)

Applying Lemma 4.1, we get J1 → 0 as t2 → t1. According to (H2)(ii), we find J2 → 0 as t2 → t1. For
t1 < t2 and since

J3 ≤
2M
Γ(α)

∫ t1

0

(
t%1 − s%

%

)α−1

m(s)
ds

s1−% ,

then from Lebesgue dominated convergence, we get J3 → 0 as t2 → t1. For ε > 0 small enough, we
have

J4 ≤

∫ t1−ε

0

(
t%1 − s%

%

)α−1 ∥∥∥∥∥∥Pα,%

(
t%2 − s%

%

)
− Pα,%

(
t%1 − s%

%

)∥∥∥∥∥∥
B(X)

m(s)
ds

s1−%

+

∫ t1

t1−ε

(
t%1 − s%

%

)α−1 ∥∥∥∥∥∥Pα,%

(
t%2 − s%

%

)
− Pα,%

(
t%1 − s%

%

)∥∥∥∥∥∥
B(X)

m(s)
ds

s1−%

≤

∫ t1−ε

0

(
t%1 − s%

%

)α−1 ∥∥∥∥∥∥Pα,%

(
t%2 − s%

%

)
− Pα,%

(
t%1 − s%

%

)∥∥∥∥∥∥
B(X)

m(s)
ds

s1−%

+
2M
Γ(α)

∣∣∣∣∣∣∣
∫ t1

0

(
t%1 − s%

%

)α−1

m(s)
ds

s1−% −

∫ t1−ε

0

(
(t1 − ε)% − s%

%

)α−1

m(s)
ds

s1−%

∣∣∣∣∣∣∣
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+
2M
Γ(α)

∫ t1−ε

0

( (t1 − ε)% − s%

%

)α−1

−

(
t%1 − s%

%

)α−1 m(s)
ds

s1−%

≤J41 + J42 + J43.

Since

J41 ≤
2M
Γ(α)

∫ t1−ε

0

(
t%1 − s%

%

)α−1

m(s)
ds

s1−%

and from Lemma 4.1, Pα,%(t) is continuous in the uniform operator topology, then by using Lebesgue
dominated convergence we find J41 → 0 as t2 → t1. Using the same manner in J2 and J3 we get
J42, J43 → 0 as ε → 0, and consequently J4 converges to zero independently for u ∈ Br as t2 → t1.
Therefore

‖Φ2u(t2) − Φ2u(t1)‖ independently for u ∈ Br as t2 → t1,

which means that {Φu, u ∈ Br} is equicontinuous. �

Lemma 4.3. If (H1)–(H4) hold, then Φ is continuous in Br and maps Br into Br for any r ≥ 0 satisfies

M
1 − L3M

‖ϕ‖C + sup
t∈[0,b]

 1
Γ(α)

∫ t

0

(
t% − s%

%

)α−1

m(s)
ds

s1−%


 ≤ r. (4.7)

Proof. Claim: Φ maps Br into Br.
Obviously, from Lemma 4.2, Φu ∈ C ([−δ, b], X). For t ∈ [0, b] and for any u ∈ Br, by using (H1),
(H2)(ii) and (H4)(i), we get

‖Φu(t)‖ ≤
∥∥∥Sα,%(t)

[
ϕ(0) − (gu) (0)

]∥∥∥ +

∥∥∥∥∥∥∥
∫ t

0

(
t% − s%

%

)α−1

Pα,%

(
t% − s%

%

)
f (s, us, Bu(s))

ds
s1−%

∥∥∥∥∥∥∥
≤M (‖ϕ(0)‖ + L3‖u‖∞) +

M
Γ(α)

∫ t

0

(
t% − s%

%

)α−1

‖ f (s, us, Bu(s))‖
ds

s1−%

≤M

‖ϕ‖C + L3r + sup
t∈[0,b]

 1
Γ(α)

∫ t

0

(
t% − s%

%

)α−1

m(s)
ds

s1−%


 ≤ r.

For t ∈ [−δ, 0], we get

‖Φu(t)‖ ≤‖ϕ(t)‖ + L3‖u‖∞
≤‖ϕ‖C + L3r

≤M (‖ϕ‖C + L3r) ≤ r.

Hence, ‖Φu‖∞ ≤ r for all u ∈ Br.
Claim: Φ is continuous in Br.
Let {un}

∞
n=0 ⊂ Br such that limn→∞ ‖un − u‖∞ = 0.

For t ∈ [0, b], we have

‖Φun(t) − Φu(t)‖ ≤
∥∥∥Sα,%(t)

[
(gun) (0) − (gu) (0)

]∥∥∥
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+

∥∥∥∥∥∥∥
∫ t

0

(
t% − s%

%

)α−1

Pα,%

(
t% − s%

%

)
( f (s, (un)s , Bun(s)) − f (s, us, Bu(s)))

ds
s1−%

∥∥∥∥∥∥∥
≤M‖ (gun) (0) − (gu) (0)‖

+
M

Γ(α)

∫ t

0

(
t% − s%

%

)α−1

‖ f (s, (un)s , Bun(s)) − f (s, us, Bu(s))‖
ds

s1−%

From conditions (H2)(i),(ii) and (H3)(i),(ii) we get

lim
n→∞

f (s, (un)s , Bun(s)) = f (s, us, Bu(s))

and
1

s1−%

(
t% − s%

%

)α−1

‖ f (s, (un)s , Bun(s)) − f (s, us, Bu(s))‖ ≤
2

s1−%

(
t% − s%

%

)α−1

m(s) .

Then by using Lesbegue dominated convergence, we obtain∫ t

0

(
t% − s%

%

)α−1

‖ f (s, (un)s , Bun(s)) − f (s, us, Bu(s))‖
ds

s1−% → 0 as n→ ∞.

From (H4)(i), we obtain
‖ (gun) (0) − (gu) (0)‖ → 0 as n→ ∞.

Hence
Φun(t)→ Φu(t) as n→ ∞. (4.8)

From (H4)(i), we find Φun → Φu pointwise on [−δ, 0] and consequently Φun → Φu pointwise on
[−δ, b], so the sequence {Φun}

∞
n=0 is pointwise relatively compact on [−δ, b]. From Lemma 4.2, {Φun}

∞
n=0

is equicontinuous, then by Ascoli-Arzela theorem, {Φun}
∞
n=0 is relatively compact, i.e., there exists

subsequence of {Φun}
∞
n=0 converge uniformly, clearly, to Φu as n→ ∞, and since C ([−δ, b]) is compete,

Φun → Φu uniformly on [−δ, b], as n→ ∞, and so Φ is continuous. �

Theorem 4.4. Assume that (H1)–(H4) are hold. Then the nonlocal Cauchy problem (1.1) has at least
a mild solution on Br, where r satisfies (4.7).

Proof. We know that Br is closed and convex. From Lemmas 4.2 and 4.3, we know that Φ is
a continuous map from Br into Br and the set {Φu, u ∈ Br} is equicontinuous. We shall prove
that Φ satisfies the Mönch condition Br. Let Λ = {un}

∞
n=0 be a countable subset of Br such that

Λ ⊆ conv (0 ∪ Φ (Λ)). Then Λ is bounded and equicontinuous and therefore the function t → $(t) =

µ (Λ(t)) is continuous on [−δ, b]. From (H4)(ii), we have, for any t ∈ [−δ, 0],

$(t) ≤µ (conv (0 ∪ Φ (Λ(t)))) = µ (0 ∪ Φ (Λ(t)))

≤µ (Φ (Λ(t)))

≤µ
(
{gun(t)}∞n=1

)
≤L4µ

(
{un(t)}∞n=1

)
= L4$(t).
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Since L4 < 1, then $(t) = 0 for all t ∈ [−δ, 0]. For t ∈ [0, b], then from (H2)(iii), (H3)(iii), (H4)(ii) and
by using Lemma 2.6 and properties of the measure µ, we obtain

$(t) ≤µ (conv (0 ∪ Φ (Λ(t)))) ≤ µ (Φ (Λ(t)))

≤µ
(
{gun(t)}∞n=1

)
+ µ

∫ t

0

(
t% − s%

%

)α−1

Pα,%

(
t% − s%

%

)
f
(
s, {(un)s}

∞
n=1 , {Bun(s)}∞n=1

) ds
s1−%

)
≤L4µ

(
{un(0)}∞n=1

)
+

2M
Γ(α)

∫ t

0

(
t% − s%

%

)α−1

µ
(
f
(
s, {(un)s}

∞
n=1 , {Bun(s)}∞n=1

)
)
) ds

s1−%

≤L4 sup
0≤θ≤t

µ
(
{un(θ)}∞n=1

)
+

2ML
Γ(α)

∫ t

0

(
t% − s%

%

)α−1 [
sup
−δ≤θ≤0

µ
(
{un(s + θ)}∞n=1

)
+µ

(
{Bun(s)}∞n=1

)] ds
s1−%

≤L4 sup
0≤θ≤t

µ
(
{un(θ)}∞n=1

)
+

2ML(1 + 2γ∗)
Γ(α)

∫ t

0

(
t% − s%

%

)α−1

sup
−δ≤θ≤0

µ
(
{un(s + θ)}∞n=1

) ds
s1−%

≤L4 sup
0≤θ≤t

µ
(
{un(θ)}∞n=1

)
+

2ML(1 + 2γ∗)
Γ(α)

∫ t

0

(
t% − s%

%

)α−1

sup
0≤θ≤s

µ
(
{un(θ)}∞n=1

) ds
s1−% .

From the last equation and by using the properties of supremum, we get

sup
0≤θ≤t

$(θ) ≤
2ML(1 + 2γ∗)
(1 − L4)Γ(α)

∫ t

0

(
t% − s%

%

)α−1

sup
0≤θ≤s

$(θ)
ds

s1−% .

Then from Lemma 2.3, we obtain sup0≤θ≤t $(θ) = 0 for all t ∈ [0, b]. Hence $ ≡ 0 on [−γ, b].
This implies that Λ(t) is relatively compact for each t ∈ [−γ, b]. From Ascoli-Arzela theorem, Λ is
relatively compact on Br. Hence from Lemma 2.7 , Φ has a fixed point in Br, i.e., the nonlocal Cauchy
problem (1.1) has at least mild solution on Br. �

5. Applications

Consider the following nonlocal integro-differential equation:

∂
1
4 ,%

t v(t, x) = ∂2
xv(t, x) + e−t arctan

(∫ 0

−δ
sin (|vt(θ, x)|) dθ

)
+

∫ π

0

(
1 +

∣∣∣∣∣∫ t

0

(
t%−s%
%

)− 4
5

∫ 0

−δ
ζ(θ)

(
1 − exp

(
−

(
s%
%

)− 1
5
)

s1−% |vt(θ,x)|
1+|vt(θ,x)|

)
dθds

∣∣∣∣∣)−1

dx, t ∈ [0, b], x ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ [0, b],
v(t, x) +

∫ b

0
ζ1 (θ) cos

(
π
2 + |vt(θ, x)|

)
dθ = ψ(t, x), t ∈ [−δ, 0], t ∈ [0, π],

(5.1)

where 0 < % ≤ 1, δ > 0, and vt(θ, x) = v(t + θ, x). The following conditions hold:

(1) The function ζ : [−δ, 0]→ R is integrable, i.e.,
∫ 0

−δ
|ζ(θ)|dθ < ∞.

(2) The function ζ1 : [0, b]→ R is integrable, and
∫ b

0
|ζ2(θ)|dθ < 1.
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(3) The function ψ : [−δ, 0] × [0, π]→ R is measurable and saisfies

lim
t2→t1

∫ π

0
|ψ(t2, x) − ψ(t2, x)|2dx = 0,

for all t1, t2 ∈ [−δ, 0].

Let X = L2 ([0, π]). Consider the operator A = − ∂2

∂x2 in X with domain

D(A) = H2([0, π]) ∩ H1
0([0, π])

where H2([0, π]) and H1
0([0, π]) are the classical Sobolev spaces. Eigenvalues and the corresponding

normalized eigenfunctions of A are given by n2, υn =

√
2
π

sin nx, n ∈ N. The family of eigenfunctions

{υn}
∞
n=0 forms an orthonormal basis in X with inner product (ω, ν) =

∫ 1

0
ω(x)ν(x)dx.

Define the family of linear operators
{
T%(t)

}
t≥0

by

T%(t)ω = Σ∞n=1e−n2 t%
% (ω, υn)υn,

for ω ∈ X given by ω = Σ∞n=1(ω, υn)υn. This family satisfies the following

(1) T%(t) is a bounded linear operator, with ‖T%(t)‖ ≤ 1 for t ≥ 0.

(2) For s, t ≥ 0 and ω ∈ X we get the semigroup property T%(t
1
% )T%(s

1
% )ω = T%(t% + s%)

1
%ω.

(3) For s, t ≥ 0, ‖T%(s) − T%(t)‖ → 0 when s→ t.

(4) For ω ∈ D(A), D%
0+T%(t)ω = AT%(t)ω. In particular limt→0+ D%

0+T%(t)ω = Aω.

Clearly,
{
T%(t)

}
t≥0

is a uniformly bounded C0-%-semigroup which is continuous in the uniform operator
topology for t ≥ 0, and A its generator. For x ∈ [0, π] and φ ∈ C ([−δ, 0], X), we set

u(t)(x) = v(t, x)
ϕ(t)(x) = ψ(t, x)

f (t, φ, ω) (x) = e−t arctan
(∫ 0

−δ

sin (|φ(θ)(x)|) dθ
)

+

∫ π

0
(1 + |ω(x)|)−1 dx.

h(t, s, φ)(x) =

(
t% − s%

%

)− 4
5
∫ 0

−δ

ζ(θ)

1 − exp

− (
s%

%

)− 1
5
 s1−% |φ(θ)(x)|

1 + |φ(θ)(x)|

 dθ

g(u)(t)(x) =

∫ b

0
ζ1 (θ) cos

(
π

2
+ |φt(θ)(x)|

)
dθ.

Then Eq (5.1) can be transformed to the abstract form (1.1).
For t ∈ [0, b], we can obtain

‖ f (t, φ, ω)‖ ≤ π
3
2

(
e−t

2
+ 1

)
= m(t)

where Iα,%0 m ∈ C ((0, b],R+) and limt→0+ Iα,%0 m(t) = 0.
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For any φ, φ̃ ∈ C and ω, ω̃ ∈ X, by straightforward calculations we get∥∥∥∥ f (t, φ, ω) − f
(
t, φ̃, ω̃

)∥∥∥∥ ≤ δe−t‖φ − φ̃‖C + π‖ω − ω̃‖.

Then for any bounded sets Λ1 ⊂ C, Λ ⊂ X

µ ( f (t,Λ1,Λ2)) ≤ L
(

sup
θ∈[−δ,0]

µ (Λ1(t)) + µ (Λ2)
)
,

where L = δ + π and t ∈ [0, b].
For each t, s ∈ [0, b], φ ∈ C, we obtain

‖h (t, s, φ)‖ ≤
(
t% − s%

%

)− 4
5
∫ 0

−δ

ζ(θ)

∥∥∥∥∥∥∥1 − exp

− (
s%

%

)− 1
5

s1−% |φ(θ)(x)|
1 + |φ(θ)(x)|


∥∥∥∥∥∥∥ dθ

≤

(
t% − s%

%

)− 4
5
(

s%

%

)− 1
5

s1−%
∫ 0

−δ

|ζ(θ)|dθ ‖φ‖C

≤ m1(t, s) ‖φ‖C ,

where m1(t, s) =
(

t%−s%
%

)− 4
5
(

s%
%

)− 1
5 s1−%

∫ 0

−δ
|ζ(θ)|dθ satisfies

m∗1 = sup
t∈[0,b]

∫ t

0
m1(t, s)ds =

∫ 0

−δ

|ζ(θ)|dθ sup
t∈[0,b]

∫ t

0

(
t% − s%

%

)− 4
5
(

s%

%

)− 1
5 ds

s%−1

=

∫ 0

−δ

|ζ(θ)|dθ
∫ t

0
t−

4
5 (1 − t)−

1
5 dt = β

(
1
5
,

4
5

) ∫ 0

−δ

|ζ(θ)|dθ.

For any t, s ∈ [0, b], φ, φ̃ ∈ C ([−δ, 0], X)∥∥∥∥h (t, s, φ) − h
(
t, s, φ̃

)∥∥∥∥ ≤ (
t% − s%

%

)− 4
5
(

s%

%

)− 1
5

s1−%
∫ 0

−δ

|ζ(θ)|dθ‖φ − φ̃‖C.

Hence, for any bounded set Λ ⊂ C,

µ (h (t, s,Λ)) ≤ γ(s, t) sup
θ∈[−δ,0]

µ (Λ1(t))

where γ(s, t) = 2
(

t%−s%
%

)− 4
5
(

s%
%

)− 1
5 s1−%

∫ 0

−δ
|ζ(θ)|dθ, and γ∗ = 2β

(
1
5 ,

4
5

) ∫ 0

−δ
|ζ(θ)|dθ.

For all t ∈ [−δ, 0], φ, φ̃ ∈ C ([−δ, b], X), we have

‖gφ‖C ≤ L3 ‖φ‖∞ ,

and ∥∥∥gφ(t) − gφ̃(t)
∥∥∥ ≤ ∥∥∥φ − φ̃∥∥∥

∞
L4

where L3 = L4 =
∫ b

0
|ζ2(θ)| dθ. Then g(.)(t) : C ([−δ, b], X) → X is continuous for any t ∈ [−δ, 0], and

therefore
µ (g (Λ) (t)) ≤ L4µ (Λ(t)) .

Since all conditions of Theorem 4.4 are satisfied, problem (5.1) has at least a mild solution.
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6. Conclusions

In this manuscript, the existence results of mild solutions for non local fractional evolution equations
with finite delay in the sense of Caputo conformable fractional derivative have been successfully
investigated under some sufficient conditions on Kuratowski measure of non compactness. To the
best of our knowledge, this type of problems supplemented with newly defined Caputo conformable
fractional operator has not been investigated in any literature. All the obtained results are supported by
an application showing the applicability of the presented theory.
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