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1. Introduction and main results

In this paper, we assume that the reader is familiar with the basic notions of Nevanlinna’s value
distribution theory, see [6, 7, 18, 19]. In the following, a meromorphic function means meromorphic
in the whole complex plane. By S (r, f ), we denote any quantity satisfying S (r, f ) = o(T (r, f )) as
r → ∞, possible outside of an exceptional set E with finite logarithmic measure

∫
E

dr/r < ∞. And we
define the difference operators of f (z) as ∆c f (z) = f (z + c) − f (z), where c is a nonzero constant. For
convenience, let

A1 =
1

2
√

1 + α
−

i

2
√

1 − α
, A2 =

1

2
√

1 + α
+

i

2
√

1 − α
, (1.1)

where α is a constant satisfying α2 , 0, 1.
As is known to all, in 17th-century, French mathematician Fermat proposed the famous Fermat

conjecture: Let n ≥ 3, the equation xn + yn = zn has no positive integer solutions. Subsequently, it
attracted the interest of many scholars in the mathematics field. After more than three hundred years,
in 1995, British mathematician Andrew Wiles proved it with the knowledge of elliptical curves in
geometry. Then the conjecture was further extended and developed. Nowadays, people call general
equations xn + yn = zn as Fermat type equations. Many scholars have studied this type of equation and
has achieved many results, see [1, 2, 8–10, 16, 20].
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The classical results on the solutions of the Fermat type function equations

f n(z) + gn(z) = 1 (1.2)

can be stated as follows: The Eq (1.2) has no transcendental meromorphic solutions when n ≥ 4 [3],
and it has no transcendental entire solutions when n ≥ 3 [15]. If n = 2, then the Eq (1.2) has the entire
solutions f (z) = sin(h(z)) and g(z) = cos(h(z)), where h(z) is any entire function, no other solutions
exists [4].

For the case that g(z) has a special relationship with f (z) in (1.2), Yang et al. [17] considered the
solutions of the following equation

f (z)2 + f ′(z)2 = 1, (1.3)

and obtained that the transcendental meromorphic solutions of (1.3) must satisfy f (z) = 1
2 (Peλz+ 1

Pe−λz),
where P, λ are nonzero constants.

In 2009, Liu [11] considered the entire solutions of the following equation

f (z)2 + f (z + c)2 = 1, (1.4)

and obtained that the transcendental entire solutions with finite order of (1.4) must satisfy f (z) =
1
2 (h1(z) + h2(z)), where h1(z+c)

h1(z) = i, h2(z+c)
h2(z) = −i and h1(z)h2(z) = 1.

In 2012, Liu et al. [12] obtained that the nonconstant finite order entire solutions of (1.4) must have
order one.

In 2016, Liu et al. [13] studied the existence and the form of solutions of some quadratic trinomial
functional equations and obtained the following results.

Theorem A. Equation
f (z)2 + 2α f (z) f ′(z) + f ′(z)2 = 1 (1.5)

has no transcendental meromorphic solutions.

Theorem B. The finite order transcendental entire solutions of equation

f (z)2 + 2α f (z) f (z + c) + f (z + c)2 = 1 (1.6)

must be of order equal to one.

In 2019, Han et al. [5] gave the description of meromorhic solutions for the functional Eq (1.2)
when g(z) = f ′(z) and 1 is replaced by eαz+β, where α, β ∈ C, and obtained the following results.

Theorem C. Let f (z) be a meromorphic solution with finite order of the following differential equation

f (z)n + f ′(z)n = eαz+β. (1.7)

Then f (z) must be an entire function and satisfy one of the following cases:
(1) For n = 1, the general solutions of (1.7) are f (z) = eαz+β

α+1 + ae−z for α , −1 and f (z) = ze−z+β + ae−z;
(2) For n = 2, either α = 0 and the general solutions of (1.7) are f (z) = e

β
2 sin(z + b) or f (z) = de

αz+β
2 ;

(3) For n ≥ 3, the general solutions of (1.7) are f (z) = de
αz+β

2 .

Here, a, b, d ∈ C with dn(1 + α
n ) = 1 for n ≥ 1.
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They also proved that all the trivial meromorphic solutions of f (z)n + f (z + c)n = eαz+β are the
functions f (z) = de

αz+β
2 with dn(1 + eαc) = 1 for n ≥ 1 [5].

Motivated by above question, in 2021, Luo et al. [14] considered the case that the right side of
Eqs (1.5) and (1.6) were replaced by eg(z) in Theorems A and B, where g(z) is a nonconstant polynomial.
They proved:

Theorem D. Let g(z) be a nonconstant polynomial, and let f (z) be a transcendental entire solution
with finite order of the following difference equation

f (z + c)2 + 2α f (z) f (z + c) + f (z)2 = eg(z). (1.8)

Then g(z) must be of the form g(z) = az + b, where a, b are constants, and f (z) must satisfy one of the
following cases:
(1) f (z) = 1

√
2
(A1η + A2η

−1)e
1
2 (az+b), where η(, 0) is a constant and e

1
2 ac =

A2η+A1η
−1

A1η+A2η−1 ;
(2) f (z) = 1

√
2
(A1ea1z+b1 + A2ea2z+b2), where ai(, 0), bi(i = 1, 2) are constants satisfying a1 , a2, g(z) =

(a1 + a2)z + b1 + b2 = az + b, and ea1c = A2
A1
, ea2c = A1

A2
, eac = 1.

Theorem E. Let g(z) be a polynomial, and let f (z) be a transcendental entire solution with finite order
of the following differential equation

f (z)2 + 2α f (z) f ′(z) + f ′(z)2 = eg(z), (1.9)

then g(z) must be the form g(z) = az + b, where a, b are constants.

For the differential difference counterpart of Theorem E, they proved

Theorem F. Let g(z) be a nonconstant polynomial, and let f (z) be a transcendental entire solution with
finite order of the following differential difference equation

f (z + c)2 + 2α f (z + c) f ′(z) + f ′(z)2 = eg(z). (1.10)

Then g(z) must be of the form g(z) = az + b, where a(, 0), b are constants, and f (z) must satisfy one of
the following cases:
(1) f (z) =

√
2

a

(
A1η

−1 + A2η
)

e
1
2 (az+b), where η(, 0) is a constant and e

1
2 ac =

a(A1η+A2η
−1)

2(A2η+A1η−1) ;

(2) f (z) = 1
√

2

(
A2
a1

ea1z+b1 + A1
a2

ea2z+b2
)
, where ai(, 0), bi(i = 1, 2) are constants satisfying a1 , a2, g(z) =

(a1 + a2)z + b1 + b2 = az + b, and ea1c = A2
A1

a1, ea2c = A1
A2

a2, eac = a1a2.

From Theorems D–F, it is naturally to pose the following question.

Question: If considering the relationship between f (z), f ′(z),∆c f (z), does there similar conclusion
exist?

In this paper, we give a positive answer to this question, and prove the following results.

Theorem 1. Let g(z) be a nonconstant polynomial, and let f (z) be a transcendental entire solution
with finite order of the following difference equation

f (z)2 + 2α f (z)∆c f (z) + ∆c f (z)2 = eg(z). (1.11)
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Then g(z) must be of the form g(z) = az + b, and f (z) = Ae
1
2 az, where a(, 0), b, A(, 0) are constants

satisfying A2[eac + 2(α − 1)e
1
2 ac − 2(α − 1)] = eb.

Example 1.1. Let α = −1
2 , A = 1, a = 2, b = ln7, c = ln4, then f (z) = ez. Thus, f (z) is a solution

of (1.11) with g(z) = 2z + ln7.
This example shows the existence of transcendental entire solutions with finite order of (1.11).

Theorem 2. Let g(z) be a nonconstant polynomial, and let f (z) be a transcendental entire solution
with finite order of the following difference equation

f (z + c)2 + 2α f (z + c)∆c f (z) + ∆c f (z)2 = eg(z). (1.12)

Then g(z) must be of the form g(z) = az + b, and f (z) = Ae
1
2 az, where a(, 0), b, A(, 0) are constants

satisfying A2[2(1 + α)eac − 2(1 + α)e
1
2 ac + 1] = eb.

Example 1.2. α = −1
2 , A = 1, a = 2, b = ln3, c = ln2, then f (z) = ez. Thus, f (z) is a solution of (1.12)

with g(z) = 2z + ln3.
This example shows the existence of transcendental entire solutions with finite order of (1.12).
Obviously, Theorem 2 cannot be directly obtained by Theorem 1.

Theorem 3. Let g(z) be a nonconstant polynomial, and let f (z) be a transcendental entire solution
with finite order of the following differential difference equation

f ′(z)2 + 2α f ′(z)∆c f (z) + ∆c f (z)2 = eg(z). (1.13)

Then g(z) must be of the form g(z) = az + b, where a(, 0), b are constants, and f (z) must satisfy one of
the following cases:
(1) f (z) = Ae

1
2 az +c1, where A(, 0), c1 are constants satisfying A2[eac +(αa−2)e

1
2 ac + 1

4a2−αa+1] = eb;
(2) f (z) = B1z + B2eaz + c1, where Bi(, 0, i = 1, 2), c1 are constants satisfying

a2 + 2αa(eac − 1) + (eac − 1)2 = 0
1 + 2αc + c2 = 0

a + α(eac − 1) + αac + c(eac − 1) =
eb

2B1B2
;

(3) f (z) = B1ea1z + B2e(a−a1)z + c1, where a1(, 0), Bi(, 0, i = 1, 2), c1 are constants satisfying
a2

1 + 2αa1(ea1c − 1) + (ea1c − 1)2 = 0
(a − a1)2 + 2α(a − a1)(e(a−a1)c − 1) + (e(a−a1)c − 1)2 = 0

a1(a − a1) + αa1(e(a−a1)c − 1) + α(a − a1)(ea1c − 1) + (ea1c − 1)(e(a−a1)c − 1) =
eb

2B1B2
.

Example 1.3. Let α = 1
2 , A = 1, a = 2, b = ln3, c = ln2, c1 = 0 then f (z) = ez. Thus, f (z) is a solution

of (1.13) with g(z) = 2z + ln3.
This example shows the existence of the conclusion (1) of Theorem 3.

Example 1.4. Let α = − 1+ln2

2(ln2)
1
2
, a = c = (ln2)

1
2 , b = ln

(
−

(ln2−1)2

(ln2)
1
2

)
, c1 = 0, B1 = B2 = 1, then f (z) =

z + e(ln2)
1
2 z. Thus, f (z) is a solution of (1.13) with g(z) = (ln2)

1
2 z + ln

(
−

(ln2−1)2

(ln2)
1
2

)
.
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This example shows the existence of the conclusion (2) of Theorem 3.

Example 1.5. Let α = −5
4 , a1 = 2, c = ln2

2 , then we have e(a−a1)c − 1 = e
ln2
2 (a−2) − 1. So equation

(a−a1)2 + 2α(a−a1)(e(a−a1)c−1) + (e(a−a1)c−1)2 = 0 can be written as h(z)2 + (3− 5
2z)h(z) + z2− 3

2z = 0,
where h(z) = e

ln2
2 (z−2).

By the Nevanlinna’s second fundamental, we have

2T (r, h(z))

≤T
(
r, h(z)2 +

(
3 −

5
2

z
)

h(z) + z2 −
3
2

z
)

+ S (r, h)

≤N

r, 1

h(z)2 +
(
3 − 5

2z
)

h(z)

 + N
r, 1

h(z)2 + (3 − 5
2z)h(z) + z2 − 3

2z

 + S (r, h)

≤T (r, h(z)) + N
r, 1

h(z)2 + (3 − 5
2z)h(z) + z2 − 3

2z

 + S (r, h).

So we have T (r, h(z)) ≤ N
(
r, 1

h(z)2+(3− 5
2 z)h(z)+z2− 3

2 z

)
+ S (r, h), which means that the equation (a−a1)2 +

2α(a− a1)(e(a−a1)c − 1) + (e(a−a1)c − 1)2 = 0 must have infinitely many solutions. Then we can chose one
a satisfying this equation.

In addition, from a1(a − a1) + αa1(e(a−a1)c − 1) + α(a − a1)(ea1c − 1) + (ea1c − 1)(e(a−a1)c − 1) = eb

2B1B2
,

we know that there must exist b, Bi(, 0, i = 1, 2) satisfying this equation.
This example shows the existence of the conclusion (3) of Theorem 3.

2. Preliminary lemmas

For the proof of our results, we need the following lemmas.

Lemma 1. [18] Let f j(z)( j = 1, 2, 3) be meromorphic functions, and let f1(z) be a nonconstant function.
If

∑3
j=1 f j ≡ 1 and

3∑
j=1

N
(
r,

1
f j

)
+ 2

3∑
j=1

N(r, f j) < (λ + o(1))T (r),

where λ < 1 and T (r) = max1≤ j≤3 T (r, f j), then f2(z) ≡ 1 or f3(z) ≡ 1.

Lemma 2. [6,18,19] Let f (z) be a meromorphic function in the complex plane. If f , 0,∞, then there
exists an entire function α(z) such that f (z) = eα(z).

Lemma 3. [6,18,19] Let f (z) be a nonconstant meromorphic function, and let a(z), b(z) be two distinct
small functions of f (z). Then

T (r, f ) ≤ N(r, f ) + N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
+ S (r, f ).
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3. Proof of Theorem 1

Suppose that f (z) is a transcendental entire solution with finite order of Eq (1.11).
Let

u(z) =
1
√

2
( f (z) + ∆c f (z)), v(z) =

1
√

2
( f (z) − ∆c f (z)).

Then we have
f (z) =

1
√

2
(u + v),∆c f (z) =

1
√

2
(u − v).

Thus, we know that Eq (1.11) can be written as

(1 + α)u2 + (1 − α)v2 = eg(z). (3.1)

It follows from (3.1) that  √1 + αu

e
g(z)

2

2

+

 √1 − αv

e
g(z)

2

2

= 1.

The above equation leads to √1 + αu

e
g(z)

2

+ i

√
1 − αv

e
g(z)

2

  √1 + αu

e
g(z)

2

− i

√
1 − αv

e
g(z)

2

 = 1.

Since f is a finite order transcendental entire function and g is a polynomial, then by Lemma 2,
there exists a polynomial p(z) such that

√
1 + αu

e
g(z)

2

+ i

√
1 − αv

e
g(z)

2

= ep(z),

√
1 + αu

e
g(z)

2

− i

√
1 − αv

e
g(z)

2

= e−p(z).

(3.2)

Denote
r1(z) =

g(z)
2

+ p(z), r2(z) =
g(z)

2
− p(z). (3.3)

By combining with (3.2) and (3.3), we have

√
1 + αu =

er1(z) + er2(z)

2
,
√

1 − αv =
er1(z) − er2(z)

2i
.

This leads to

f (z) =
1
√

2
(u + v) =

1
√

2

(
er1(z) + er2(z)

2
√

1 + α
+

er1(z) − er2(z)

2
√

1 − αi

)
=

1
√

2
(A1er1(z) + A2er2(z)), (3.4)

∆c f (z) =
1
√

2
(u − v) =

1
√

2

(
er1(z) + er2(z)

2
√

1 + α
−

er1(z) − er2(z)

2
√

1 − αi

)
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=
1
√

2
(A2er1(z) + A1er2(z)), (3.5)

where A1, A2 are defined as (1.1).
It follows from (3.4) that

4c f (z) =
1
√

2

[
(A1er1(z+c) + A2er2(z+c)) − (A1er1(z) + A2er2(z))

]
. (3.6)

Combing with (3.5) and (3.6), we have(
A2

A1
+ 1

)
er1(z)−r1(z+c) +

(
A2

A1
+ 1

)
er2(z)−r1(z+c) −

A2

A1
er2(z+c)−r1(z+c) = 1. (3.7)

Next we consider the following two cases.

Case 1. r2(z) − r1(z + c) is a constant.

In the following, we consider the following two subcases.

Case 1.1. r1(z) − r1(z + c) is a constant.

It follows that r2(z) − r1(z + c) and r1(z) − r1(z + c) are constants.
Combing with (3.3), we have

r1(z) − r2(z) = 2p(z). (3.8)

From (3.8), we know that p(z) is a constant.
Let η = ep. Substituting this into (3.4) and (3.5), we have

f (z) =
1
√

2
(A1η + A2η

−1)e
1
2 g(z), (3.9)

∆c f (z) =
1
√

2
(A2η + A1η

−1)e
1
2 g(z). (3.10)

From (3.9), we get

∆c f (z) =
1
√

2
(A1η + A2η

−1)(e
1
2 g(z+c) − e

1
2 g(z)). (3.11)

Combing with (3.10) and (3.11), we obtain

(A1η + A2η
−1)e

1
2 g(z+c)− 1

2 g(z) =(A1η + A2η
−1) + (A2η + A1η

−1). (3.12)

In view of α2 , 0, 1 and e
g(z+c)−g(z)

2 have no zeros and poles, it follows that A1η + A2η
−1 = 0 and

(A1η + A2η
−1) + (A2η + A1η

−1) = 0 cannot hold at the same time. Hence, we have A1η + A2η
−1 , 0 and

(A1 + A2)η + (A1 + A2)η−1 , 0.
Since g(z) is a polynomial, then (3.12) implies that g(z+c)−g(z) is a constant. Otherwise, we obtain

a contradiction from the left of the above equation is transcendental but the right is not transcendental.
So we get g(z) = az + b, where a, b are constants satisfying e

1
2 ac =

(A1+A2)(η+η−1)
A1η+A2η−1 .

AIMS Mathematics Volume 7, Issue 7, 11597–11613.
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Furthermore, we obtain

f (z) =
1
√

2
(A1η + A2η

−1)e
1
2 (az+b).

Since Eq (1.11) and f (z) are only related to a, b, c, α, then f (z) can be written as f (z) = Ae
1
2 az,

where A is a nonzero constant. Substituting it into Eq (1.11), we know that a, b, c, A, α must satisfy
A2[eac + 2(α − 1)e

1
2 ac − 2(α − 1)] = eb.

Case 1.2. r1(z) − r1(z + c) is not a constant.

If er2(z+c)−r1(z+c) is a constant, we have er1(z)−r1(z+c) is a constant, a contradiction. So we know that
er2(z+c)−r1(z+c) is not a constant.

Let
ξ =

A1 + A2

A1
er2(z)−r1(z+c). (3.13)

From (3.7), we get (
A2

A1
+ 1

)
er1(z)−r1(z+c) −

A2

A1
er2(z+c)−r1(z+c) = 1 − ξ. (3.14)

Next we consider the following two subcases.

Case 1.2.1. 1 − ξ = 0.

Combing with (3.13) and (3.14) we have

er1(z+c)−r2(z) =
A1 + A2

A1
, er2(z+c)−r1(z) =

A1 + A2

A2
,

which means that r1(z + c) − r2(z), r2(z + c) − r1(z) are constants.
It follows from (3.3) that

er1(z+c)+r2(z+c)−r1(z)−r2(z) = eg(z+c)−g(z) =
(A1 + A2)2

A1A2
.

Thus, we obtain g(z) = az + b, where a(, 0), b are constants satisfying eac =
(A1+A2)2

A1A2
.

Combing with r1(z) + r2(z) = az + b and r2(z)− r1(z + c) is a constant, we get r1(z) = a1z + b1, r2(z) =

a2z + b2, where ai, bi(i = 1, 2) are constants satisfying a1 + a2 = 0.
Substituting this into (3.4), we have

f (z) =
1
√

2
(A1ea1z+b1 + A2ea2z+b2).

Similarly, f (z) can be written as f (z) = B1ea1z + B2e(a−a1)z, where Bi(i = 1, 2) are nonzero constants.
Substituting it into Eq (1.11), we get a contradiction.

Case 1.2.2. 1 − ξ , 0.

By Lemma 3 and (3.14), we have

T
(
r, er1(z)−r1(z+c)

)
≤N

(
r, er1(z)−r1(z+c)

)
+ N

(
r,

1
er1(z)−r1(z+c)

)
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+ N

r, 1
er1(z)−r1(z+c) −

A1
A1+A2

(1 − ξ)

 + S (r, er1(z)−r1(z+c))

=S (r, er1(z)−r1(z+c)),

a contradiction.

Case 2. r2(z) − r1(z + c) is not a constant.

Since r1(z), r2(z) are polynomials and er2(z)−r1(z+c) is not a constant, by Lemma 1 and (3.7), we deduce
that either

(
A2
A1

+ 1
)

er1(z)−r1(z+c) ≡ 1 or −A2
A1

er2(z+c)−r1(z+c) ≡ 1.
If −A2

A1
er2(z+c)−r1(z+c) ≡ 1. It follows from (3.7) that(

A2

A1
+ 1

)
er1(z)−r1(z+c) +

(
A2

A1
+ 1

)
er2(z)−r1(z+c) ≡ 0,

which means that −er1(z)−r2(z) ≡ 1.
From (3.3), we have −e2p(z) ≡ 1. Combing with −A2

A1
er2(z+c)−r1(z+c) ≡ 1, we have −e2p(z+c) ≡ 1 and

−
A2
A1

e−2p(z+c) ≡ 1. So we get A2
1 = A2

2. This is a contradiction with α2 , 0, 1.

If
(

A2
A1

+ 1
)

er1(z)−r1(z+c) ≡ 1. It follows that r1(z) = a1z + b1, where a1, b1 are constants satisfying
ea1c = A1+A2

A1
.

From (3.7), we have
A1 + A2

A2
er2(z)−r2(z+c) = 1.

This means that r2(z) = a2z + b2, where a2, b2 are constants satisfying ea2c = A1+A2
A2

. Since er2(z)−r1(z+c)

is not a constant, it follows that a1 , a2.

So we have g(z) = (a1 + a2)z + b1 + b2 = az + b and eac =
(A1+A2)2

A1A2
.

Substituting this into (3.4), we have

f (z) =
1
√

2
(A1ea1z+b1 + A2ea2z+b2).

Similarly, we can get a contradiction, which means that the above format of f (z) does not exist.
Therefore, this completes the proof of Theorem 1. �

4. Proof of Theorem 2

Suppose that f (z) is a transcendental entire solution with finite order of Eq (1.12). By using the
same argument as the proof of Theorem 1, we have

f (z + c) =
1
√

2
(A1er1(z) + A2er2(z)), (4.1)

∆c f (z) =
1
√

2
(A2er1(z) + A1er2(z)), (4.2)

where A1, A2 are defined as (1.1).
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It follows from (4.1) that

∆c f (z) =
1
√

2
(A1er1(z) + A2er2(z)) −

1
√

2
(A1er1(z−c) + A2er2(z−c)).

Then combing with (4.2), we have

er2(z)−r1(z) +
A2

A1 − A2
er2(z−c)−r1(z) +

A1

A1 − A2
er1(z−c)−r1(z) = 1. (4.3)

Next we consider the following two cases.

Case 1. r2(z) − r1(z) is a constant.

Combing with (3.3), we know that p(z) is a constant.
Let η = ep. Substituting this into (4.1) and (4.2), we have

f (z + c) =
1
√

2
(A1η + A2η

−1)e
1
2 g(z), (4.4)

∆c f (z) =
1
√

2
(A2η + A1η

−1)e
1
2 g(z). (4.5)

From (4.4), we know that

∆c f (z) = f (z + c) − f (z)

=
1
√

2
(A1η + A2η

−1)e
1
2 g(z) −

1
√

2
(A1η + A2η

−1)e
1
2 g(z−c)

=
1
√

2
(A1η + A2η

−1)(e
1
2 g(z) − e

1
2 g(z−c)).

Combing with above equation and (4.5), we have

(A1η + A2η
−1)e

1
2 (g(z−c)−g(z)) = (A1η + A2η

−1) − (A2η + A1η
−1). (4.6)

It follows from α2 , 1 that A1η + A2η
−1 = 0 and (A1η + A2η

−1) − (A2η + A1η
−1) = 0 cannot hold at

the same time. Hence, we have A1η + A2η
−1 , 0 and (A1η + A2η

−1) − (A2η + A1η
−1) , 0.

By (4.6), we know that g(z − c) − g(z) is a constant. Since g(z) is a polynomial, it follows that
g(z) = az + b, where a, b are constants satisfying e

1
2 ac =

A1η+A2η
−1

(A1−A2)(η−η−1) .

By (4.4), we have

f (z + c) =
1
√

2
(A1η + A2η

−1)e
1
2 (az+b).

From above equation, we obtain

f (z) =
1
√

2
(A1η + A2η

−1)e
1
2 [a(z−c)+b].

Since Eq (1.12) and f (z) are only related to a, b, c, α, then f (z) can be written as f (z) = Ae
1
2 az,

where a, A are nonzero constants. Substituting it into Eq (1.12), we know that a, b, c, A, α must satisfy
A2[2(1 + α)eac − 2(1 + α)e

1
2 ac + 1] = eb.
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Case 2. r2(z) − r1(z) is not a constant.

Since r1(z), r2(z) are polynomials and er2(z)−r1(z) is not a constant, by Lemma 1 and (4.3), we deduce
that either A2

A1−A2
er2(z−c)−r1(z) ≡ 1 or A1

A1−A2
er1(z−c)−r1(z) ≡ 1.

Case 2.1. A2
A1−A2

er2(z−c)−r1(z) ≡ 1.

From (4.3), we get
A2 − A1

A1
er2(z)−r1(z−c) ≡ 1.

Combing with A2
A1−A2

er2(z−c)−r1(z) ≡ 1 and (3.3), we obtain

e2p(z−c)+2p(z) ≡ −
A2

A1
,

which imply that p(z) is a constant. So we have r2(z) − r1(z) is a constant. This is a contradiction with
r2(z) − r1(z) is not a constant.

Case 2.2. A1
A1−A2

er1(z−c)−r1(z) ≡ 1.

Then it follows that r1(z) = a1z + b1, where a1, b1 are constants satisfying ea1c = A1
A1−A2

.

Moreover, it follows from (4.3) that

er2(z)−r1(z) +
A2

A1 − A2
er2(z−c)−r1(z) = 0.

So we have
A2

A2 − A1
er2(z−c)−r2(z) ≡ 1.

This means r2(z) = a2z + b2, where a2, b2 are constants satisfying ea2c = A2
A2−A1

.

Since er2(z)−r1(z) is not a constant, it follows that a1 , a2. Thus, we have g(z) = (a1 + a2)z + b1 + b2 =

az + b and eac = − A1A2
(A1−A2)2 .

Substituting this into (4.1), we have

f (z + c) =
1
√

2
(A1ea1z+b1 + A2ea2z+b2).

So we obtain

f (z) =
1
√

2
(A1ea1(z−c)+b1 + A2ea2(z−c)+b2).

Similarly, f (z) can be written as f (z) = B1ea1z + B2e(a−a1)z, where Bi(i = 1, 2) are nonzero constants.
Substituting it into Eq (1.12), we get a contradiction, which means that the above format of f (z) does
not exist.

Therefore, this completes the proof of Theorem 2. �
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5. Proof of Theorem 3

Suppose that f (z) is a transcendental entire solution with finite order of Eq (1.13). By using the
same argument as the proof of Theorem 1, we have

f ′(z) =
1
√

2
(A1er1(z) + A2er2(z)), (5.1)

∆c f (z) =
1
√

2
(A2er1(z) + A1er2(z)), (5.2)

where A1, A2 are defined as (1.1).
Thus, it follows from (5.1) and (5.2) that

(∆c f (z))′ = f ′(z + c) − f ′(z)

=
1
√

2
[(A1er1(z+c) + A2er2(z+c)) − (A1er1(z) + A2er2(z))]

=
1
√

2
(A2r′1(z)er1(z) + A1r′2(z)er2(z)).

Then we have(
A2

A1
r′1(z) + 1

)
er1(z)−r1(z+c) +

(
A2

A1
+ r′2(z)

)
er2(z)−r1(z+c)−

A2

A1
er2(z+c)−r1(z+c) = 1. (5.3)

Next, we discuss the following two cases.

Case 1. r2(z + c) − r1(z + c) is a constant.

From (3.3), we know that r1(z + c) − r2(z + c) = 2p(z + c). So p(z) is a constant.
Let η = ep. Substituting this into (5.1) and (5.2), it follows that

f ′(z) =
1
√

2
(A1η + A2η

−1)e
1
2 g(z), (5.4)

∆c f (z) =
1
√

2
(A2η + A1η

−1)e
1
2 g(z). (5.5)

Thus, we can deduce from (5.4) and (5.5) that

(∆c f (z))′ = f ′(z + c) − f ′(z)

=
1
√

2
(A1η + A2η

−1)e
1
2 g(z+c) −

1
√

2
(A1η + A2η

−1)e
1
2 g(z)

=
1
√

2
(A2η + A1η

−1)e
1
2 g(z) ·

1
2

g′(z).

So we have

(A1η + A2η
−1) +

1
2

(A2η + A1η
−1)g′(z) = (A1η + A2η

−1)e
1
2 (g(z+c)−g(z)). (5.6)
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Next we consider the following two subcases.

Case 1.1. deg(g) ≥ 2.

It follows that g′(z) . 0 and g(z + c) − g(z) is not a constant. Eq (5.6) implies that A2η + A1η
−1 = 0

and A1η + A2η
−1 = 0.

Otherwise, if A1η + A2η
−1 , 0, we have

e
1
2 (g(z+c)−g(z)) =

1
2

g′(z)
A2η + A1η

−1

A1η + A2η−1 + 1. (5.7)

The left of Eq (5.7) is transcendental, but the right of Eq (5.7) is a polynomial. This is a
contradiction.

If A1η + A2η
−1 = 0, by (5.6), we obtain A2η + A1η

−1 = 0. So we can deduce that A2
1 = A2

2, which is
a contradiction with α2 , 0, 1.

Case 1.2. deg(g) = 1.

That is g(z) = az + b, where a(, 0), b are constants. It follows from (5.6) that

e
1
2 ac =

1
2

A2η + A1η
−1

A1η + A2η−1 a + 1.

Combing with (5.4), we have

f ′(z) =
1
√

2
(A1η + A2η

−1)e
1
2 (az+b).

So we obtain

f (z) =

√
2

a
(A1η + A2η

−1)e
1
2 (az+b) + c1,

where c1 is a constant.
Since Eq (1.13) and f (z) is only related to a, b, c, α, then f (z) can be written as f (z) = Ae

1
2 az + c1

where A(, 0), c1 are constants. Substituting it into Eq (1.13), we know that a, b, c, A, α must satisfy
A2[eac + (αa − 2)e

1
2 ac + 1

4a2 − αa + 1] = eb.

Thus, we get the conclusion (1) of Theorem 3.

Case 2. r2(z + c) − r1(z + c) is not a constant.

It follows from (3.3) that p(z) is not a constant.
Next, we consider the following four subcases.

Case 2.1. r′1(z) ≡ 0, r′2(z) ≡ 0.

It follows that r1(z) and r2(z) are constants. Hence, r2(z + c), r1(z + c) are constants. So we get
r2(z + c) − r1(z + c) is a constant, a contradiction.

Case 2.2. r′1(z) ≡ 0, r′2(z) . 0.
It follows from (5.3) that

er2(z+c)−r2(z) = 1 +
A1

A2
r′2(z). (5.8)
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If deg(r2) ≥ 2, we have a contradiction from the left of Eq (5.8) is transcendental, but the right
of Eq (5.8) is a polynomial. Thus, we have r2(z) = a2z + b2 and r1(z) = b1, where a2(, 0), b1, b2 are
constants.

Combing with (5.1), we obtain

f ′(z) =
1
√

2
(A1eb1 + A2ea2z+b2).

Thus, we have

f (z) =
1
√

2
(A1eb1z +

A2

a2
ea2z+b2) + c1,

where c1 is a constant.
Similarly, f (z) can be written as f (z) = B1z + B2eaz + c1, where Bi(, 0, i = 1, 2), c1 are constants

and a = a1. Substituting it into Eq (1.13), we know that a, b, c, α, Bi(i = 1, 2) must satisfy
a2 + 2αa(eac − 1) + (eac − 1)2 = 0
1 + 2αc + c2 = 0

a + α(eac − 1) + αac + c(eac − 1) =
eb

2B1B2
.

Thus, we get the conclusion (2) of Theorem 3.

Case 2.3. r′1(z) . 0 and r′2(z) ≡ 0.

It follows from (5.3) that (
A2

A1
r′1(z) + 1

)
er1(z)−r1(z+c) ≡ 1. (5.9)

If deg(r1) ≥ 2, we have a contradiction from the left of Eq (5.9) is transcendental, but the right of
Eq (5.9) is a polynomial. Thus, r1(z) = a1z + b1, r2(z) = b2 and ea1c = 1 + A2

A1
a1, where a1(, 0), b1, b2

are constants.
Substituting this into (5.1), we get

f ′(z) =
1
√

2
(A1ea1z+b1 + A2eb2).

So we have

f (z) =
1
√

2

(
A1

a1
ea1z+b1 + A2eb2z

)
+ c1,

where c1 is a constant.
Similarly, f (z) can be written as f (z) = B1z + B2eaz + c1, where Bi(, 0, i = 1, 2), c1 are constants

and a = a1. Substituting it into Eq (1.13), we can also get the conclusion (2) of Theorem 3.

Case 2.4. r′1(z) . 0, r′2(z) . 0.
By Lemma 1, we deduce that either

(
A2
A1

r′1(z) + 1
)

er1(z)−r1(z+c) ≡ 1 or ( A2
A1

+ r′2(z))er2(z)−r1(z+c) ≡ 1.

If
(

A2
A1

r′1(z) + 1
)

er1(z)−r1(z+c) ≡ 1.
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From Case 2.3, we know that r1(z) = a1z + b1 and ea1c = 1 + A2
A1

a1, where a1(, 0), b1 are constants.

In view of (5.3), it follows that A1
A2

(
A2
A1

+ r′2(z)
)

er2(z)−r2(z+c) = 1, which implies that r2(z) is a linear
form of r2(z) = a2z + b2 and ea2c = 1 + A1

A2
a2, where a2(, 0), b2 are constants.

Since r1(z + c) − r2(z + c) is not a constant, it follows that a1 , a2. In view of (5.1) and (5.2), it
follows that g(z) = r1(z) + r2(z) = (a1 + a2)z + b1 + b2 = az + b and

f ′(z) =
1
√

2
(A1ea1z+b1 + A2ea2z+b2), (5.10)

where A1, A2 are defined in (1.1).
So we have eac = (1 + A2

A1
a1)(1 + A1

A2
a2).

From (5.10), we have

f (z) =
1
√

2

(
A1

a1
ea1z+b1 +

A2

a2
ea2z+b2

)
+ c1,

where c1 is a constant.
Similarly, f (z) can be written as f (z) = B1ea1z + B2e(a−a1)z + c1, where Bi(, 0, i = 1, 2), c1 are

constants. Substituting it into Eq (1.13), we know that a, b, c, a1, α, Bi(i = 1, 2) must satisfy
a2

1 + 2αa1(ea1c − 1) + (ea1c − 1)2 = 0
(a − a1)2 + 2α(a − a1)(e(a−a1)c − 1) + (e(a−a1)c − 1)2 = 0

a1(a − a1) + αa1(e(a−a1)c − 1) + α(a − a1)(ea1c − 1) + (ea1c − 1)(e(a−a1)c − 1) =
eb

2B1B2
.

Thus, we get the conclusions (3) of Theorem 3.
If ( A2

A1
+ r′2(z))er2(z)−r1(z+c) ≡ 1.

This means that
r2(z) − r1(z + c) = ε1, (5.11)

where ε1 is a constant.
In view of (5.3), it follows that (

A1

A2
+ r′1(z)

)
er1(z)−r2(z+c) = 1.

So we have
r1(z) − r2(z + c) = ε2 (5.12)

where ε2 is a constant.
In view of (5.11) and (5.12), it yields that

r1(z) − r2(z) + r1(z + c) − r2(z + c) = ε2 − ε1.

By combing with (3.3), we have

p(z) + p(z + c) =
1
2

(ε2 − ε1).

This is a contradiction with the assumption that r1(z + c) − r2(z + c) = 2p(z + c) is not a constant.
Therefore, this completes the proof of Theorem 3. �
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6. Conclusions

By using the theory of meromorphic functions and Nevanlinna theory, this paper deduce several
new theorems including Theorems 1–3, which discuss the specific forms of g(z) and the transcendental
entire solutions of three Fermat type equations 1.11–1.13 respectively. It is obvious that Theorems 1–3
do develop the related results by Liu and Yang [13], Han and Lü [5], Luo, Xu and Hu [14] to a certain
extent.
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