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1. Introduction

Fractional calculus has gotten considerable attention recently. Derivatives and integrals of non-
integer order are increasingly using for different analysis of various problems. Fractional differential
operators are global in nature and preserve greater degree of freedom. Therefore, researchers now
give preference to use fractional order differential equations (FODEs) in mathematical modelings of
various real world process and phenomenons over classical order differential equation. FODEs have
multi-dimensional applications in the variety of fields of modern sciences, such as to control the phase
difference in oscillators, to accomplish the high frequency oscillation and in electric engineering DC
converter models are used to obtain good assessment of the power conversion efficiency. Recently
various biological models have been investigated by using fractional order differential equations. In
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the mentioned study, researchers have established more good results than those already derived for
ordinary differential equations. For some more applications of fractions derivatives, for theory and
applications of FODEs see [1, 2], for integro-FODEs, see [3]. For basic theory and applications we
refer [4]. Some generalized type FODEs have been analyzed in [5, 6]. Some engineering applications
have been investigated in [7]. For real world applications by using FODE:s, see [8]. Those differential
equations which observe impulsive conditions at points of discontinuity of solution are known as
impulsive differential equations. Impulsive differential equations are the tools used for modeling of
those evolutionary and physical phenomena that containing sudden changes and discontinuous jumps.
Therefore, the proposed types of impulsive differential equations play a significant role to models such
phenomena, in this regards (see [9]). Some stability results about the said area has been studied in [10].
Also some conformable impulsive FODEs have been studied in [11]). In some circumstance physical
problems depends on preceding states of problem and cannot be describes by current time. In order
to avoid such circumstance, researches introduced an important class of differential equations (DEs)
known as Delay Differential Equations (DDEs). There are verities of DDEs including proportional
(pantograph), continuous and discrete type DDEs. The concern types of DEs are widely using to
formulate various real world phenomena in different fields, such as dynamics, quantum mechanics [12],
biology [13], and electrodynamics [14].

Important aspects of mathematical analysis are existence theory and stability analysis. Researchers
have used various tools of nonlinear analysis for investigating the existence and uniqueness of
solution to various problems of FODEs. Various fixed point results and degrees theories have been
developed to investigate the said area for existence of solutions. In same line stability analysis
of FODEs has also been given proper attention recently. The mentioned analysis is important for
developing various numerical methods. Stability results have been investigated by using various
methods including exponential method, Mittag-Lefller method and Hyers-Ulam method (see some
detail in [15]). Here, we remark that the Ulam’s type stability analysis has given more attention
recently. The aforementioned stability results have been derived for various problems of FODEs in
last few years (for instance see [16]). Hyers and Ulam had been introduced the mentioned stability
for the first time for functional equations in 1940 (see some detail [17]). Rassias [18] extended the
mentioned stability analysis for linear equations. Also Jung [19] extended the Rassias stability results
for functional equations in nonlinear analysis.

Motivated from the mentioned work, researchers have been given much attention to investigate the
aforesaid stability analysis for various dynamical problems (we refer few as [20, 21]). For boundary
value problems of FODESs, the mentioned stability has been studied very well (we refer few results
as [22, 23]). Furthermore, results related to existence theory of solutions to various problems of
fractional order mathematical models of epidemiology have been investigated very well (for instance
see [24]). The said results have been investigated for TB models in [27]. The Green functions theory
using FODEs has been established in [25, 26]. Also the mentioned analysis has been studied for those
FODEs involving non-singular derivatives (for instance see [28]).

The existence theory has been developed very well for FODEs in last few years. As an example
the reader can look at the second order FODE with non local boundary condition on the independent
variable [29]. Researchers have been used fixed point theory together with topological degree theory
to develop necessary condition for existence of solution for various problems of fractional order
differential equations. Furthermore, they have also derived various results related to Ulam type stability
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for said problems. Here we recall a suitable example which has been studied in [33] as

‘D' (t) =, %), 1<n<2, tel0,1],
3% O0)+ 3% () =By(U), 3% 0)+ 3% (1) = Bo(%),

where 31, 32, 33 and 34 are members of the set of real numbers, which satisfy the condition given as:
31+ 32 #0and 33 + 34 # 0. The function &, P, and P, are continuous. The authors initially utilized
the tools of fractional calculus as well as nonlinear analysis to transform the aforementioned FDE to
corresponding integral equation and then used fixed theory to achieve their aims.

Similarly, in [30] uniqueness and existence of solution have been studied by utilizing the tools
of fixed point theory. Authors have investigated the following system of FODEs with anti periodic
coupled with non local subsidiary conditions as

(1.1)

a D" U () + 5D U (t) = 4t U (1), X (1)),
a5 DY (1) + ay DY (1) = 9,(t, % (1), Z (1)),

n

O + U W)=Y KB, U O+ )= ) LY B),
J=1 j=1

YO +Z ()= Y KUB), VO +P'()= > XU B)).
=1

J=1

The author have used standard Caputo derivative in the consider problem, where parameters
i, @2, @3, A4, Kj, K}f, Aj and /lj. are real numbers for j=1,2,...,mand 0 <g; < 1.

Inspired from by the above discussion, in this research work, we take the following system by
extending the problem (1.1) utilizing the concept of [30, 31] as

14
Z T DY () = AL, U (b, W (AD)),
i=1

a €(1,2]a; €(0,1], for i=2,3,...,p, tel0,71], (1.2)
NU () = L% (t), MU' () =1L;% @), k=0,1,....m,
aﬁi/(O) + bl%(‘l') = gl(%), az%’(O) + bz%/(‘l’) = gz(%), a,beR for [=1,2.

In the consider problem (1.2), o; € R fori = 1,2,...,p with oy # 0, and functions gy, g, :
PC([0,7]),R) — R and non linear function 57 : [0,7] X R X R — R are continuous and 7 > 0 is
real constant. Furthermore, impulsive operators 7, and 7~ are also continuous. In this article, we
use tools of fixed point theory and functional analysis to obtain the desired results. Results devoted to
the existence and uniqueness of solution are derived by using Banach and Krasnoselskii’s fixed point
theorems. Also, the results devoted to stability analysis of Ulam type are established by using tools of
nonlinear functional analysis. For verification of the obtain results, we give appropriate example.

The rest of the paper is organized as follows: In Section 2, we recall some basic concepts of
fractional calculus, while the main results, relying on Krasnoselski’s fixed point theorem and Banach
contraction principal are presented in Section 3. Section 4 is devoted to stability analysis of the
proposed problem (1.2). Section 5 contains illustrative examples for the obtained results. In Section 6,
we present conclusion of our findings.
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2. Auxiliary definitions and results

This section of research, is devoted to basic results, theorems and lemmas of FPT and non-linear
analysis, which we need for investigation of the main work.
In the present work, we use the following space and norm

PCUR =X={U:J—>R:UecCy), k=0,1,...,m, and Z ("), % (t") exist,k=1,2,...,m}
with norm define as
%1l = m%X{I?/(t)I U € PC(J,R) :t € J},
te
where
Jo=10,11], /1 = (11,1,2], J» = (02, 13), . . ., Iy = (i, 7] and J = [0, 7].
Definition 2.1. The integral of fractional order a of a function y(t) € L[0,d] is denoted by I°y(t), and

defined as
ern T Y
£ = fo @ -

Definition 2.2. [32] Fractional order Caputo derivative for a function y(t) € L'([0,d],R,) on the

interval [0, d] is defined as
!
. ')
“DUy(t) = d
0= [ T
where n = [a] and [a] is defined to be the smallest integer equal or greater than .

Lemma 2.1. [34] The relation between fractional order integral and derivative is given as

P [DY(0)] = Ay + Aot + At + Agl® + - + At +3(0),
where A; e Rfori=1,2,...,n.

Definition 2.3. The mapping T : X — Y on norm linear spaces is continuous and complete, if for
each bounded M € X, T(M) € Y is compact.

Definition 2.4. [35] Let F(X) be the collection of function (real valued) on (X, d) metric space, be
equi-continuous x € X, if for each € > 0, we can find 6 > 0, such that for every function f € F(X) and
X0 € X, we have |f(xy) — f(x)| < €, whenever d(xy — x) < 0.

Definition 2.5. [35] An operator T on (X, d) metric space into itself is Lipschitz, if 4 ¢ > 0, and
d(T (x1), T (x2)) < cd(x2, x1), for each x,, x| € X, where c is called Lipschitz constant and contraction,
if0<c< 1.

Definition 2.6. [35] An operator T from a metric space (X, d) into itself is contraction, if 1 0 < ¢ < 1,
such that d(T (x1), T (x2)) < cd(x1, x2), VX1, %0 € X.

Theorem 2.7. [35] every mapping(self contraction) T in complete (X, d) metric space has unique fixed
point.

Theorem 2.8. [36] Assume that H is a non empty, convex, bounded and closed convex bounded subset
of a Banach space X. let 7\ and 7\ be two operator provide that ¢,% + £, € H whenever
U, U € H, F is continuous and compact and ¢, is contraction map. Then there is % € H provide
that, 4 = $\U + 2,U%.
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3. Qualitative analysis

This section of research work is committed, to integral representation and existence results for
the consider class of multi-term fractional delay differential equations. The authors established the
expression for integral representation of proposed problem. In order to obtain results for existence and
stability analysis the authors used the tools of analysis and fixed point theory.

3.1. Integral representations for the proposed problem

This subsection of the research work, is devoted the integral representation of the consider
model (1.2).

Theorem 3.1. Assumed that % (t) € C(J, R), then the solution of multi-term impulsive fractional delay
differential equation,

P
ZOQCD“”Z/(I) =%(1), a € (1,2] a;€(0,1], for i=2,3,...,p, te]0,1],

i=1

3.1
N () = LU (1), M%) =% ), k=0,1,....m,
a%?0)+b1%(v)=g(%), a;” 0)+by%' (v)=g%), anb €R for [=1,2,
is equivalent to the integral equation
1 1 ' a)— Y ) C N 1
a—l[mfo(r— Yy XN - ;a',-l D U ()| + 0_—1@, for te[0,1]
1 k k—1 k
a—l[m DL+ o1 D = DU @) + o ) (=T (1)
Jj=1 Jj=1 J=1
k "
g1 ! L a—1
+ JZ; @) rH(t’ DY Y (DAL
QLA T
+ 2. r(al _ 1) ljf](] ) ( )
+ ki W=t (Y (t, — XYY (X)X
=1 Har = 1) Jiy, 1
U@) = " (3.2)

k. »p
_ _ % o]
jZ‘ ; [(a; — ;) (ti= ) UXYAX

tj-1

Y& (t-t)o '
- ’ (t;— D)UY (XA X
—d F(CY] - — 1) o
j=1 i=2 -1
el te —t 1
DN / (t; — 22 Y (XA X
44 T —ai= D Jy

1 ' a—1
+m tk(l—gbr) AC AN A

d 1 ! 1
- o f (t—= )Y (X)L |+ —2,
~ T —a) Jy, o

t € (t, trr1] fork=1,2,3,...,m.
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Where gi(i = 1,2) : C(J,R) — R are continuous function, a; + b; # 0 forl = 1,2 and a; —a; — 1 >0
fori=2,3,...,pand

__ 9 byo 7h,
9 = . blgl(%) + - +b2(t vy )g2(%)
g b1 o Z I;%(t)) + o,y Z(Z —t)IU () + o JZ_:‘(I —tu) 5 (1))
b, b, ) =z f .
_ _ L _ - p
b, b, ) 2y & o f./ B o
" a2+b2(t a + b, ;Za’r(al —1 IH(IJ ) ACAVA
b __Th ) a2
ar + by (t ai+b /T - 1) J,, (T YT Y( A
by th \ v 1 4
- P _ a—a;—2
¥ Clz+b2(t a +b1);O-lF(al -a;—- 1) J, (T=-2) ACAEA
by B i 1 ftj 2
a + bl = F(Cl’l) to J

m m—1
T_tm ;-2 -2
- E _ (t—%) Y (LXYdZ — E —F(a/l—l)f(tl 2NN (A I

J=1 J=

v
NGE
S

g _ a—a;—1
im[ (t;i—Z) VAC AN A

ShS T a)—a;—2
+ZZU,—M — f (1= 2V U (DAY

~
Il
—_

1
- A AL
Ty z,,,(T ) (Z2)
t a)—a;—2
+; ;a,—ml - f (1= 2P U DL

C (r = 2o
_Zo',f =2 %(%)d%].

Proof. Applying fractional order integral /' on (3.1) and in-view of Lemma 2.1 for 7 € [0, ], we get

o U(t)=Cy+ Cit + ! f(t—%)“‘_liy(%)d% (3.3)
[I'(a1) Jo
~ Zpl o ft(t — Yy (VAL
P [ —a) Jo .
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By differentiating (3.3), we get

1 !
O']%,(l) =C; + F(Tl) f (l - %)(tl_zg(%)d%
- 0

p

Similarly, for ¢ € (¢, 1,], the system (3.1) become

o %) =Co +Cri(t—1) + @)

_ a—a;—1
_Zf‘fl(t ‘%) WXL .
— ['(a; -

By differentiating (3.5), we get

0'1%,(1) =Cy +

1 ' ap—1
o ft:(t — XYY (VA
14

- L t - a—a;-1
;r(al_ai)f”(f 2) UL .

Now to compute o % (t}), o\ %' (t]), o1 % (¢]) and o1 %' (t]) using (3.3)—(3.6), we obtain

3l
O']%(ll_) =Co+Cit; + ;)f (l] - %‘)m_lg)’/(%)d%
a

1| aj—a;—1
_Zf u %) (2D,
i=2 r(al

Ul%’(l;) =C| + mj; (tl - %)0172@(%‘)d%‘

P 1 . _ Crl—(l,'—z
53 f ot = 2 e,
Py F(a/l —a; — 1)

o () = Cor, o' (1)) = Cyy.

Using the impulsive condition
NU 1) =% ) — %)) = 11 % (1),

and

N% (1) =) — 7' (t) = 1)U (1),

N9 [ peas
;r(al—ai—l)fo(f 2\ U (XL

f -2 ' 2YdX

(3.4)

(3.5)

(3.6)

(3.7)
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we get

11
Cor :O'III%(II)+C0+C1t1 + f (ll — %)m_l@(%)d%
0

1
I'(ay)
P

11
Ve [ G-y v,
Iy —a) Jo

= (3.8)

11 *

Cy = OIITOZ/(II) +C + ;f (ll - %)al_zg(%)d%
[l - 1) Jo

p

1|
- Zai;‘f (t, — XYY ()AL
— T —ai=1) Jo
Using (3.8) in (3.5), we obtain

U]%(l) =1tCi+Cy+ 0'1]1%(1‘1) + O'](t— l‘])IT%(ﬁ) +

" _ ap—1
T fo (t— 2" (HdE
p

1] _ 3l
- Zai; f (= 2y Y (VA Y + —— f (t = XWX )AL
~ T(ar —a) Jo L(ar = 1) Jo
14

-1 " a)—a;—2
ZO-IF(aq — —1)f (t — 2) U)X +

1 ' ar—1
F(al)j;(t—%) ACAEA

p

_ ) _ aj—a;—1
Z‘T‘—r(al—ai)f,l(t ) WXL .

i=2
On the same fashion, for r € (#;, 411, (3.1) becomes

k k-1 k
FU W) = Co+1C+ a1 Y LU+ 01 ) (=)W + 0 Y (=) [% (1) (39)

j=1 j=1 j=1

3 1 g ar-1
+Ulzm[_l(tj_%) @(%)d%

k t—1; -2
+;—r(al b f (t; = 22 ()AL
k-1
;-2
9] —r(al - f (1 — 22U (DL
k p
m—a,-—l
N ey —a)f (=i
j=1 i=2
‘ . O-I(I a)—a;—2
ZZ f (t;— XYY (XA X
- > (aq —a; — 1)

1 i=

J

a—1
+F(a1)‘[k(t_%) Y (X)YdZ
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k-1 p

ZZ 7t f (tj— )Y (VAL
. I'a) —a; - 1) J

j=1 i=

p
N ar—a;—1
Zf(al @) f (t =2 U (2)d X

By using the boundary conditions involve in (3.1), we obtain

b [0 (=)
T at b ; i Tl =1) Y(Z)dx (3.10)
_zmlzp:f’j oi(t; — %)al_“"_z%(%)d%
Ilay—a;— 1)
j=1 i=2 1
P 0',(7' _ )a/l—a,-—Z
- ;f [(a; —a; = 1) %2z
- _ a2 (O]
+r(a1—1)L(T AV EUL |+ (W)
and
_ o1 T b2 m 1 (tj_ 3{)“1_2
B a,+bya, + b, ; too I'la; - 1) Y(2H)dx 3.11)
m p 1 O-i(tj_ %)al—a,——Z 1 -
- %%d%+—f - Y2 (YA X
;;fm ey —a; = 1) ) I'(a; - 1) zm(T ) (%)
; —1 ’ a1—a;—2 Tbl (a8
_Zmr(al_ai_l)f(r—%) %(%)d%] a1+b1a2+b2g2(%)
b m—1 ) )
“a b mZI 02/(t)+0'12(t - 1)1 %(r,)+o-12(1 )5 (1))

J=1 j=1 j=1

N . a;—1 N T_—m g L a1—2
+012F(QI)II(U—%) @(%)d%+;r(al_l)‘[jl(g V2 ()AL

—_

-  J ;-2
+ F(al_l)f(tl XYY (XA

j=1

3

'ME

p
_ ap—a;—1
;”’r(al a)f (t; = 2" U (A X

p
_ a)—a;—2

=2

1

J

Il
—_

J

A AT AL
F(1)f(T ) (2)
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m—1

. O_I(I ) -ais
Z(F(al—a,—nf =%

j=1 i=2

"ot = ) o1g(%)
B ft;, F(a1 - ozl-) )%(%)d%] - a; + b] '

One can obtain the desired integral form of solution (3.2), by using (3.10) and (3.11) in (3.9)
and (3.3). O

Corollary 3.1. In view of Theorem 3.1 the solution of the given multi-terms fractional delay differential
equation (1.2) is given by

_[ f (t= DY AL UL, U AL )AL
o1 | Tar) Jo

- Zp: oI DY (1)

1
+—9, forte[0,1]
(O8]

1 k k—1 . k )
—1[0'1 D LU + o1 ) (= )T (1) + oy ) (¢ =0T (1))

J=1 J=1 J=1

+

k
01 - 1 ap—
Z(r f (t,— 2) —F(cxl 5 f s )%(3{ WL, UAL DAL

(a1)
j=1
k—1
Iy — 1 w2, -
U (1) = +(Z;F(a/1—l)f tH—-2) F( 1)f(t Z) )%(% AC AN AN EA
k
( _tk)o-l a1 —a;—2
_Z mf (t;i=2) U)X

~.
Il
—_

1 0-l(t] _ %)(Il—(li—l

T —ap ACAPA

-
M- i i

Tji-1

>~ o~
| Il
_ =

oi(ty — tj)

_ a)—a;—2
T —a-1) a,—l)f t—-2) AC AN A

1

I
[\S]

J

~ I

M

1 f = 2 UYXHAx
(0’1 - ) J;

1
+—9,
i— g1
t € (ty, tes1] fork:1,2,3,...,m

(3.12)
Where (gi(i = 1,2) : C(J,R) — R) are continuous functions, a;+ b; # 0 forl = 1,2 and ¢y —a; —1 >0
fori=2,3,...,pand

o broy b,
7= a) + blgl(%) * a, + bz(t a) + b )gz(%)
bl * *
S 4 ZI U 1) + o Z(tm DI (1) + o Z(r )5 (1)
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Z f t;— XYV 2L UL U QAL N AL
F(al -1

612+b2

—_1) f (t;— XYY (XX

(- av)
+az+bz(f 7 wi 2

(-ass)

Sl ass)

t—

f (T1— D)2 H(X U L), U AL
C(a; - 1)

(12+b2 (11+b1

p
_ a)—a;—2
a + b2 - a + bl ZZ U’F(aq a; — 1) f (T ) %(%)d%

b] m 1 (tj_ %’)(},’1 1
Tt b (_ ; . T
T f (1) — 2y 2)%(% L), UL DAL
i T(a - D)
m—1

I
—

tm— _ @)— 2 ap—1
r(a1-1)f = 20"+ 1 )f(r ) )%(% U UALNAL

1= T
NMw

O-(F(al ) f (1= 2 e _l)f ;- 2N (2L

~.
Il
—

N m—1 Zp: O'i(tm f (l’ %‘)0/1 —a— 2%(%)d%
24 24Ty - a1

|
—

?
1S

Ul
[\S)

(T _ %)”“"f‘l%(%)d%].
- ;)

[/ m

3.2. Data dependence results for proposed problem

In this subsection of the research work, we represent the desired solution for MIFDDE (1.2), in
the form of operator equation and provides some assumptions for investigation of existence results for
proposed problem.

Lets define 7 : X — X, such that

1 k k—1 k
T(U) = a_l[m Z I,% () + o ;(rk ~DISU (1) + oy ;(r ~ ) (1))

k ap—1
oty = 2)" =1 o)
;f ( ['(a) i [(a; — )(t 2 )%(35 UL, U AL NAX

k-1

a— 2 ap—1
( F(al—l)f 6 = 2) * Ta ])f(t 2) )%(3{ UL, UAX)NAL

- i 3 f T 2 v
- tj-1 F(all - a/i)

j=1 i=2

+
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k p
_ZZ O-l(t f (] %‘)a/l —; 2%(%)61%
I'lay — a; — 1)
j=1 i=2
p _ 1
‘ZZ ol G (A
j=1 i=2 F( -ai- 1)
B U'i(l—%)m_a"_l s(%) bzgz(%)( _Thy )
;L F(Cll —a,-) %(%)d% * a +b] * a +b2 ! aj +b1

m m—1 m
- —L [ij%(z,-) D = DU () + Y (1 - rm)r;@/(rj)]
a + by =1 j=1 j=1

m

1 y ;-2
_ij;_l(fj—%) X, UX), U AL NdX

b, ( b )
+ t—
oi(ay + b))\ a;+b

N Jo-t(t—%)“ld2
+12112f F(Cll—all_l) %(%)d%

N f (= DAL U, U AL N
F(al - 1)

)(t] —(1/,'—2

ot -
* IZ; f F(Q’l a; — 1) %(%)d%]

m_ p
ZZ f (t;— )Y YdX
e r(a’l .

tj

0'1(611 +b1)

y ar-1 l ’ L a2
JZ r(al)f,.l(tf_‘% A f 71(6 2) )%(%,%(%),OZ/M%))d%

1
m—1
Z— f (th = XYL, UL ), U AX)NAZ
‘= I'a;-1)
— ay—ai—1
_Zf oi(t gf/y‘) WXL
i=2 r(a]

ar—1
f(T @, ) L UL, U AXNAX

Aok O-(t a)—a;—2

PN ey al—nf“‘%) YEWL

N N gi a1 —a;—2

+;;F<m m—l)f“ EYTH AL (3.13)

We consider the following assumptions, which we needs for further correspondence in this work.
(Hy) For %, %, € X, there exist 5 , %5, >0, i.e

|7 (t, U (1), Us(At)) — FC(t, Us (A1), U ()| < L U — VUl + L5, 1P — . (3.14)
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(H,) For 24, %, € X, there exist .Z,, > 0, for i=1,2, such that
(%) — (W) < Ly |1ty — . (3.15)
(H3) For %, %, € X, there exist .£; > 0, such that
) - )| < L - (3.16)

(Hy4) For %,, % € X, there exist £ > 0, such that

ALK f}i%(i)‘ < LN - 2. (3.17)
(Hs) For any % € X, there exist Z# : C(J, R*) such that
| (t, U (1), % (A1) < Bz (1). (3.18)
(He) For any % € X, there exist %,, : C(J,R*) for i = 1, 2, such that
g2 < B, 0. (3.19)
(H7) For any % € X, there exist %, : C(J,R"), such that
|7 o] < 210 (3.20)

(Hg) For any % € X, there exist % : C(J,R"), such that

nw 0| < %0 (3.21)

For computational convenience, we introduce the following notation:

1Dy
B =—1 1) 322
’ (|a1+b1|+ & (5.22)
= ( lal +1r@m-1). (3.23)
lay + byl
- sup | - il } (3.24)
© laz + ba| ey a, + b ’ '
T loilm + 1 b | b, \(m+ DHro-!
PP, 15 DA P R .
“ Tleen\ a orillas + bl ey |~ @+ b 1S Tan) (325)
b T (m+ 1 P 1)) '
m — .
loilla; + by T'(ay)
P |- 1
By = il ( T om- 1)
oy —a)\ay - a;
b, {‘ by } o (m+ Do
S L B 70 3.26
ollas + 5l e\ ™ @+ b | 24 T — o) (3:26)

|b1| (m+l )
; 7Y% +2m-1)).
|0-1||a1 + byl Z' |F(oq a) a) —a; m=1)
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L =B L+ B L+ o b1| + By, Loy + By, L + Py (3.27)
£ = %Kg}fg + %@,ﬂ. (3.28)
T

Theorem 3.2. Consider (H,)—(H4) holds and £ < 1, then problem (1.2) has at most one fixed point,
where £ is defined by (3.27).

Proof. Consider that %, % * € X and t € J, where k=1,2..., m
[T (% @) = T (% (D)

l—[w Zéfln% Wl +|on| Z(tk — 1)L —

+|<rl|Zsup It = 1)L 112 ~ %||+|cn|2r(al) f (tj =2 >‘“‘1(%H%—%ll
tj-1

j=1 teJ
+ L5~ W)A 2 + Zr( 5 f (t; = 2)" 2(0%1”02/1 W+ L, |7 - %n)%
o

k=1
(tl—2 _ B
' JZ‘ e =D f (=2 (%l”% Wl + |1 %Il)d%

ZP ! aj—a;—1
Ilo-ll(t - )1 i |O'l||t —— )
' = ,zf [ - +I“(a1_a,_1)f (tj = 2) \% — % \d2

/‘\

k-1 p
it —
+ "TK"—’)I (tj— )Y NY - UL
P F(al a; — 1)

p _ a)—ai—
+ sup Zf il ‘%) ||?/—02/*||d3{}
= Y

reJ I'(a; -

+ SUP f(f - %)m_l(g&ﬂ%l - U\ + L5 U — @/2”)6155}]
teJ (ar) t
+ ls1(%) - & - [e2(%) ~ g7
Ia + b | |a2 + bzl Cll + bl
|b1| m—1
LU - Wl + S 1 — 1)Ll — Do + {it = tl) L1112 02/]
b Z % - %) Z( DLl - U ;53}9 VL2 - )

b
|bs| sup{t

loillaz + bl ey

Tbl 2
a, + b, '}[Z I'a; - 1) f ;= 2) (3‘&1”02/1 vl

! o a)—ai—2 _ *
+ L, - ) d%+22|m = _ai_l)ftj_l(tj LY ANY - UL

Jj=1 i=2
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1 T
+—— | (1= D)W LN - Wl + Lo P — W)X
F(Ch—l)ft;( ) ( s % — Wl + L5, 1% 2||)

14 1 T . *

1]
loilla; + by

> Fan -2z -+ Lo - i)z
' fi1

ZF(al—l)f (tj— 2™ z(fg.ﬂ%l U\ + L U — %zll)d%
Z al—l)f G z(gmﬂ%l U\ + L % — %ll)d%

m p
)y - wNdx
]ZZ; r<1— f(r e [
m p
+ZZ| e 1—a,-1>f“‘ LYY - U AL

J: =2

+ f (7 - %)al-l(%n% W\ + L% - %n)d%
I J,
m—-1 p t, — tj 1 )
+ Ol —————— ti— )N UY - UNdE
;Zz| 'r<a1—ai—1>f,,_l(’ Y ||
+ Z loi| =—— T —a) (T ) S 77 %*lld%]. (3.30)
Qa; tm

Let us assume %% = %%, + L5

%, and evaluate the integral involve in (3.30), we have

T (% (1) - T (% *(t))l

U — U- -
|| | — 2||[| 1|ZD%+|O-1|Z(;,(_I)D§,@ +|0'1|ZT$ +|O'1|Z lji-1

o] 1+ 1)
k _
. i )al ;
t —t a1 — I‘Z t —t a|— lg l—l
+;r o=t U+ZF( )( 1) w+;]l§2]| I
kK p
+ | ] 1)0[1 T + |0-l l‘j—l)m_m_1
1 ol o
+su —t—t“‘$}+su { — )™ “}]
up {r(al TR Z a—ar D'
12 ‘ Th) '
+ LN -w {t— }z U-u
la; + b | al I+ la, + b, Srlely a, + b, el |
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billl% —%*H[ N ]
—_— LN - %+ t—t$+ su t—tm.i”
|bs| { b, |} “ 1 ; tj_l)al—tlf—l
P - - i) L+ l
o 1llds + bal ey a, + b, Zl ( 1) ;;l | T(a, — )
: ( )0{1—13 + Zp: | | ! ( )al—ai—l
) o ! i=2 7 o) — @) T
billlz — 2"l 1 moor B
—t. alg — (t:—t. g g
T lorillar + by Zl"(a/ +1)( 1) Z§+]Z:;F(a/1)(’ 1) ¥
m—1
1
+ ti—ti)" " L+ J— e
= F(al)( ) 5 ;;l(f () —a; + 1)( 1)
+ lo| —— (@, — t;- )"+ ——— (7 - 1,)" L
JZ:;; T —ap) ' 77 I'(a; + 1) §
m—-1 p - 1 » 1
T =y~ ™™ (T = 1) . 3.31
'ZﬁZ;'Hm—mf’ ”) *ZQ“nm-%+n“ ) (3-31)

It is quite clearly that #;_; — #; < 7, hence by using the aforementioned inequality equation (3.31) can
be express as

T @) =T (% )
_Nw-w)

ol

+ Lrloilt@m = 1) +‘,§ﬂ§r( 1)(

[lemlm

lomqlm + 1

+om - 1)
ay

e LU - U
|oilT (m+1+2m_1)]+ Al I

= 'y —a)\ay —a; lay + byl
b2 | Lo U — U || { b, '} bill% - %*||(
sup |t — + mY + 2m—17$*)
YR A s a1+ b1 1+ @m = Drzy
b, | ‘ b, (m + 17! S m+ Do,y
—su p{ } 5+ I T ama
loillaz + bal| res a + by [(ay) ~ (o) — @)
b1l % —%*II[ T (m+1
+ + (2m — 1))‘,??
loillay + by | T'(ay) ’
1 m+1
+ , -0 +2 —1). 3.32
Zlcr [« 1—a,)T (al a; " )] (3-32)

By rearranging term containing .%;, %)+, %, , -Z,, and %5 in Eq (3.32), we obtain
T (% @) - T (% )
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<||% - Ul il +1)mZ + il + o )rCm - 1)L + Za
B la; + b la; + byl la; + bl

|bs| { b, '} { T (|0'1|m +1 )
+ sup i |t — <z, + +2m -1
@+ bol er |y + o )7 T @\ e
b b + D! b e +1
123 U p{‘ b, }(m )T N 1] T (m FQm— 1))}:%
loillaz + Dol iey a, + b, I'(ay) loilla; + by T(a)\ o

P |1 —@i +1
+{ it (m +2m—1)

= o [T(ay — )\ — o

b, {‘ by } o (m+ Do
——— Sup T
loillas + bs| rey ar +bil) —4 T(a — )
b1 m+ 1
b ol (s am - ) (3.33)
lo1llar + b Z F(a1 a) ap — q;

Now using (3.22)—(3.27) in (3.33), we have

T (1) =T (2 )| <\ - %II[:%-Z + Br Ly + + By Loy + By L5+ By

81
lai + by
<ZLNw - U".

Therefore, by Banach contraction principal the mapping 7 has fixed point. Thus, the consider
problem (1.2) has solution, which is unique. O

Theorem 3.3. The consider problem (1.2) has at least one solution, if (H,) and (Hs)—(Hsg) holds and
%y < 1, where £ is defined in (3.28).

Proof. In order to prove existence of at least one solution, we define operator T;,3T, : PC(J,R) —
PC(J, R) given by

k k-1 k
(W) = Z T+ Z(tk —)DU (1) + Z(t )W t)| +

b2 Tb
) +b2(t bl)gZ(%)

m

ZI,@/(z)+Z(r z)[*%(r,)+2(z n)IU (1) )]

J=1 J=1

1+b1g1( ) — 1+b1

and

1 S oty — 2! r— =2
LU ) = U—I[ZI ( Fo 1)“ — ) )%(5{ UL, UL DAL

Iy — I 27)n-2
+Zr(al_1) f (6 — DY 2AL UL, U AL )AL

kK p 1 O'l(l _ )al—ai—l
- Z Z f UYL
‘w5 I'a) — )
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: C l( ) —a;
_(ZZF(;tal—l)f(J A

it —t) ([ s
DN ol IURED )%(%)d%

f(t NN, UL, Y ALY
F(m)

_ a—a;—-1
_ZF(aq — f (- Z) %(%)d%]

i=2

+ b, (t— ™™ )
0'1(a2+b2) a +b1

a;—2
_mem(tj— DN RAL UL, U AL NAL

m 1j O.l(t _ %)01 o
+;zzf [N, —a;—1) %(%)d%

- f (1= )X, U, U AL )AL
F(al - J,

C ot — %)al—a,——z
+;v[t; F(Cl’l—all._l) %(%)d%‘]

m P o 1 ——
Z Z S f t—2) WU(X)AL

N 2Hu !4 f—%‘“zifﬂy@/%%ﬂ%d%
er(of(’ " e | G- e waz)

+—
oi(a, +by)

mloy o . 1
Zr(al—nf e R v 1)f(r Z) %(% UL, U AL NAL

j=1

—

.

m p O'I(T— m) -
+;Zr(“l “t—l)f (6= 2P Y (2HAL
C oi(t — <%V)fll—a,-—l
- ” .
i=2 ff; F(Q’] — a.) (’%‘) e/lm//

3
L

a—a;—2
+ Zalr(al—a,—l)f t— %) UYL .

j=1 i=2
Moreover, we construct a ball H = {7 (t) € PC(J,R) : ||| < R}, with positive radius R chosen as

1B, (DI
la; + by

R > (%n%mn + BB ()] + + BB, ()] + %fgn%gmu).

1
(1 - %)
Step 1: We claim that T, % (t) + T, % (t) € H < PC(J,R) for every %, (t), % (t) € H € PC(J,R).
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Now for the proof of desired results, consider

I31%0 + T 240
< Z 1210l + Z(rk — )l 0l + le sup 1= I (O] + - =18, 0
lal"f'bll[i 12101+ ﬁa —1IB 0] + ;]sgo = 1)1 0

k
|d§h¥oj‘u—%w|%@mwﬁ

k
+Z|ﬁm\f0—%ﬁﬂﬁwwﬁ

— I'la; = 1)

k—1
; —3141f<r 2y BN L
LT -DJ,, " 7

kK »p
|t—tk| a)—a;—2
+Z;"’"r(al — f (t; — 2" RAY

=
+k—lzpll | tk_t f ([ %)al ; ZRd(/lm//‘
0',-— - ’
=1 i=2 ) —a;i = 1)
+ {— YN Bt d%}
igh(0f< Y B 0l

p

+sup{z e f(t—%)“““’ IRd%}]

teJ —y
¢ _ a2
[}lf Loz I 0l

2] {‘ 7h)
sup{ |t —

loillaz + Dol iey ay + b
T(r— 202
—II@.,a lldZ
%r<—> 7
" o t _r%' ) —a;— ZRd%‘
A;Z; nl—m—nf( :

1 a)—a;—2
+ Z; Ll P— f, t-2) Rdﬁ&”]
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N b1
lo1lla; + byl

N 1 g a1—1
Z o f = 2B Ol

N T—t
+ -7 ti— IV 2NBFONALX
ler(al_l)f< 20|
m—1
Im a2
+,:1 mf t, — )" NBzONdZ
m p 1 ;
) o a1 —a;—1
+;Z;| U —— Ll(zj 2 RAX
S . T a1 —a;—2
+;;| r— al_l)f(t— XY PRAL
+ - ) NBrOIdZ
F( 1)f( )T AB O
_ a1 —a;—2
+121;|0,r( l_a_l)f (tj = 22 RAL
1
+ ) |o|——— T—%m—m—‘ﬂd%]. 3.34
;| 'r<a1—a,-)f,m( ) (3.34)
By using (Hs)—(Hs), and evaluating the integral in (3.34), we obtain
1T, % (t) + TL2(1)|]
B, (Ol 1ball| B, (D Th;
< 1%;,0||lm + | Br@®)||rCm - 1) + + su {t——'}
1210l + 12 lfr@m = 1)+ =05+ = == sup e = =
b1 ( ) 1 [ T (|0'1|m+1 )
m|| %, (|| + Cm — D7|| B )| ) + — ||| B (¢t +2m—1
@ b | B + ( )Tl A ()| o | g()llr(al) ”
p o —a;
Rloi|T (m+l +2m—1)]
- Iy —a)\ay -«
bs| { b, |} (m + D)zt "y (m + DRl 1]
——————supi|r - B + T e
ol + b P @ r ol Tan RO 2T e
1] ™ (m+1 TN ]
|01||a1+b1|[F(a1)( + (2m- 1))||@ (t)||+Z|(T, —a)(al—a,+2m 1))}.

By rearranging term containing .27, £, %, Z,,, and £ in (3.34), we obtain

1T1721(t) + TL26(1)|]
< ( b, 1)m||%<t)|| + ( b, 1)r<2m — Bl
|611+b1| |al+b1|
1By O ool {‘ by }
+ + t B, (t
lay + byl laz + ba| res b, I gz( 4
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{ T lomqlm + 1 |bs| b (m+ l)T‘“‘1
+ ( +2m — 1) ———su p{ }
lo1 () ) loillaz + byl iey ap + b I'(ay)
|b4] T (m +1 )}
+02m -1 B (t
onllay + b T@p\ @ & D)0
P T m+ 1
2m—1
+R{;F(al—a@)(al—a/i+ " )
b, { b '} S (m+ Dloyl oo
+ —————sup{|t - 1
o illaz + bal e U ay + b1 1) & Tar - a)
|5y _fm+1
o ———— ™ “t( +2m— 1))} (335
Imllal +b1|Z ['a; — ;) ) — «; )
By using (3.22)—(3.26) in (3.35), we obtain
[EZ QI
T, % (t) + LU < B2 + B | B ()] + Ialngbll + BB, Ol + By, | B (O + RB .

Hence it show that T,%,(t) + T, % (t) € H < PC(J,R).

Step 2: Here we claim that $, is uniformly bounded for confirmation, we proceed as

IT124(8) + T2 < Z 151l + Z(tk — )IB- ()] + Z sup {|t — t}1 - ()|

= =1 =1 te]
b, ‘
Nl + t— B, (t
| o b1|” ol @ b2| @ |, (DI
|b1| ]
Bt — 1) % (¢ t— -l il B
—— Z 10| + Z(r DB Ol + ]ZI sup (it = 18- O
(3.36)
As we clearly see that r — 7, < 7. So substitute 7 instead of 7 — ¢,, in (3.36), then we obtain
b b, 1%, (D
1T12(0) + Tata (D) S( il + 1)M|I=@1(t)|| ( Gl + ImI)T(Zm - DIBr 0l + ———
la 1] lay + by lay + b
|b,| {‘ b, }
- B .
laz + b Ste] : a + b 18 (0
(3.37)
Using (3.22)—(3.24) in (3.37), we obtain
B, (D]
IT121(0) + Towa (DI <BINB1 O + Br|| B (DIl + ar+ bl + B, | B, (-

Hence T, is uniformly bounded.

Step 3: Suppose %,(t) is a sequence in H which converge to % € H for the continuity of T, we have
to prove §,(%,(t)) — T, (% (). For the proof we precede as

1T:1%,(1) — T % ()|
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k -1
SZ]J Unt) T (1)] + Z(rk—rj)
=1

aplo-u

+ l 2 sup{’t— ™
las + byl rey a, + b,

T Uh) - T U @)

M» 3

I Ut - T* U (1 )\

blljgl(% - ()|

}jgz(%) &(%)1 [ Y |rway - 1w )|

|a1 bl|
m—1

D = T 20) ~ T 20| + Y sup {ie = 1)

=1 =1 teJ

) - I )H

Hence clearly from the continuity of g, g», Z;and 7 j., we get that T, is continuous.

Step 4: To prove T is equi-continuous. Consider

- T < sup (I = |7, 612 ()~ &1 1)
J

- teJ

b1|

o Sup‘z_t1|}‘gz(%)‘ = +Zsup{|t2—n|}\f )

lay + byl rer teJ

clearly as t; + 1, we have ||T1% (t;) — T,% (,)|| = 0. Hence T, is equi-continuous.

Step 5: To prove T, is contraction, one can get help from Theorem 3.2 and obtain the following
expression,

T2 (1) — w0l
<% - %ll[{T‘“(M +2m — 1) 4 1l sup{ t

(03] laz + bl ey

Tb]
a; + b,

}(m + DHro-!
lo[T'(ay)

b1 ] T (m+ 1 } - Y% m+1
i +(2m—1)).,§f+ ( +2m—1)
lollay + by (@) 5 1:22 I, —a)\a; — a;

b {‘ b,

lo1llaz + byl teJ a, + b,

billl7 — %"

1 m+ 1
—_— IO'iI—T"‘_“"( +2m—1 )}] (3.38
|y llar + by ; Iy — ) @) - a; ) .

} o 1+ DI g
= I'a) —a)

By using (3.25), (3.26) and (3.28) in (3.38), we obtain

T2 () — L% <% — @/2”[%"%933 + By |

<Zlw - %"\

Thus all assumption of Krasnoselskii’s fixed point theorem are satisfied. So the problem (1.2) has at
least one solution. O
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4. Stability analysis

The authors motivated by the literature [10, 29] and present some specific findings for the stability
analysis of the proposed problem (1.2).

Definition 4.1. The solution % (t) of proposed problem will be Ulam-Hyres (UH) stable, if for unique
solution 7 *(t) one can find B, > 0, such that for each solution % € PC(J,R) of the following
differential inequality and € > 0

P
D oED U W) - f U@, U ()| <€ te[0,7]

i=1

AN (1)) - Ik@/(tk)' <e. k=1,2.....m, @D

N () - LU W) <e, k=12....m,

and a unique solution % * € PC(J, R) of the given problem (1.2), such that |% — % *| < B,€ and solution
will be generalized Ulam-Hyers (GUH) stable, if there exist a positive function K : (0, 00) — (0, o)
with K(0) = 0, such that |% — U *| < B;K(1).

Definition 4.2. The solution of consider problem is UH Rassias stable, with respect to continuous
function y € X and a positive constant > 0 if we have B, (positive constant) > 0, and € > 0, for each
solution % € PC(J,R) of the following differential inequality

p
oD U (1) - f(4U (1), U ()| < x(De, 1€ [0,7]

i=1

AN (1) — Ik%(tk)’ <we, k=12,....m, 4.2)

NY'(0) - L% (1| < we, k=1,2,....m,

and a unique solution % * € PC(J, R) of the given problem (1.2), such that |% — % *| < B(x(t) + Y)e.

Definition 4.3. The solution of consider problem is GUH Rassias stable, with respect to continuous
function y € X and a positive constant y > 0 if we have B,(positive constant) > 0, for each solution
U € PC(J,R) of the following differential inequality

)4
DL TEDIU @) = FU (0, U (A1)

i=1

AU (1)) - Ik%(tk)‘ <y, k=1,2,....m,

<x(@®, tel0,7]

4.3)

N W) - LU W) <, k=1,2,....m.

and a unique solution % * € PC(J, R) of the given problem (1.2), such that \% — U *| < Box(t)e.
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Remark 1. The solution of the inequality (4.1) is %* € PC(J,R), iff one can find a function { €

PC(J,R), and a sequence {, k = 1,2,...,m. Depend on %, such that

() {(t)<e€ { <€ wherek=1,2,3,...,m, teJ
P

(i) Z o’ DYY () = f(t, % (), % (A1) + {(1), te€][0,7]
i=1

(iii) A(%(lk)) = Ing/(lk) + k=1,...,m,
W AU () =1, %)+ & k=1,...,m.

4.4)

Remark 2. Let % * € PC(J,R) be the solution of (4.2), iff one can find a function { € PC(J,R), and a

sequence (i, k =1,2,...,m. Depend on %, such that

(@) L(t) < x()e, & <Ye wherek=1,2,3,....m, teJ

p
(i) Y oED"U W) = ft, U W), U ) + {1, t€[0,7]
i=1

(iii) A(%(tk)) =0LUM)+ &, k=1,....m,
W AU ) =1, %)+ & k=1,...,

4.5)

Remark 3. Let %" € PC(J, R) be the solution of (4.3), iff one can find a function & € PC(J,R), and a

sequence (i, k =1,2,...,m. Depend on %, such that

@) L) <x), &G <Y wherek=1,2,3,...,m, teJ
p

(iD) Z o DU @) = f(t,% (), % (A) + {(t), te€][0,71]
i=1

i) MU () = LU () + &, k=1,....m,
W AU () =1, %)+ & k=1,....m.

Lemma 4.1. Consider % € PC(J,R) is solution of FDDE,

(4.6)

P
ZO'iCD“’%(t) =ft, U@, %)+ (), a€(1,2] a;€,1], for i=2,3,...,p, t€]0,71]

i=1
AU W) = LU W), MU' (W) =I1;% W), k=0,1,....m,
a% ) + b % (1) = g1(%), QU (0)+ by (1) = g(%), anb R for

satisfy the following relation,
(7w -TUW| < (B4 B+ By e
Proof. In light of Theorem 3.1, the solution of (4.7), is given as

U@)—T U ()

k

1 k 3 k 1 y a)—
= 0—1[01 Z fi+ oy Z(tk — 1))+ o Z(r — 1)+ oy ; Ty fz_,_l(tj N2 (A K

J=1 J=1 J=1

4.7)
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k t—1 - oo
+Zr(a,1_1)f (l c%) g(%)d%+zr(al_1)f (tl 3}//‘) {(%‘)d%

J=1 Jj=1
b m m—1
T f (t= 2" 15(%)d%] bl[zg-+Z<tm—r,,-)§i+2<r—rm>4]
j=1 j=1
- e a1-2
;—r(al = f = 2L

bl S 1 g aj—1
_Zhﬁﬁl:m—%) [(2dx

oi(a; + by)

P e
0'1(612 + bz) a) + bl

1 . -2
—mL(T—%) f(%)d% +

i m—1
T—t a2 e

J=1 J=

_ _ a—1
Hmhﬁh ) a%m%} (4.8)

By taking absolute on (4.8) and using Remark 1, we get
b1 ) ( b1 )
+1)m+ + o |r@m - 1)
(|a1+b1| s+l

a1 +1 b b
il (|0'1|m +2m—1)+—| 2 sup{‘t— o

'?/(r) - T%(t)‘ <

}(m + Dro-t

loi [T () aj loillaz + ba| rer a, + b, I'(ay)
|b1] ™ (m +1 )
+(02m-1 .
o llar + by T(ar) @m=1)le

By using (3.22), (3.23) and (3.25), we obtain
7@y - TU 0| (% + B+ B e
Which prove the required result. O

Theorem 4.4. Under the assumptions (H,—H,), the problem (1.2) is UH as well as GUH stable, if
L < 1, where Z is defined in (3.27).

Proof. For any solution %7 € PC(J, R), and unique solution %/* of the the given problem (1.2), then
W% @) =% N =Nu@)-T U ON=NO)-TU +TU-TUI,
<W\%@)-TU\+ 1% — T
Using Theorem 3.2 and Lemma 4.1 we have
1% (1) — % Ol < ZLye+ LN w @) — U @Il
1% (t) = %" (O = LNU (1) = U DI < ZLye,

120~ 20l < e
Let 8) = = 3, then the solution of the consider problem (1.2) is UH stable further set K(¢) = € then
the consider problem (1.2) is GUH stable. O
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To prove the next stability result we need the following assumption given as (Hy). For any non
decreasing function y € PC(J, R") there exist a positive constant ¢, such that

L f (t - %)"1_1X(%)de9f < Gx(1).
[(a1) t

Lemma 4.2. If assumption (Hy) holds then for any solution x € PC(J,R) the muti-term fractional
delay differential equation

P
D TEDU (@) = i, U@, U (D) + L),

i=1

a; € (1,2] a;€(0,1], for i =2,3,...,p, tel0,71] 4.9)
AU ) = LU (t), NZ'(K) =1, %), k=0,1,...,m,
a%Z0)+b%(v)=8(%), %' 0)+b”' (t)=g) %), anb €R for [=1,2

satisfy the following relation,
9
U 1) - T%(t)| B+ B+ By, )l e+ —x(e.
1

Proof. We omit the proof as it is straightforward and may be derived like Lemma 4.1. O

Theorem 4.5. Under the assumption (H\—H,) and Ho, the problem (1.2) is UHR stable and GUHR
stable, if £ < 1.

Proof. For any solution % € PC(J, R), and unique solution % * of the the given problem (1.2), then

% @) =% ON=NUO)-TU ON=NUO-TU +TU =T
<NUW)-TUN+ITU —TU|.

Using Theorem 3.2 and Lemma 4.2, we have
%
1% (@) = %O < (Br + Bre + B, )d €+ e+ ZIU W =2 @l
%
1% @) = %Ol = LNU O = U O < (Br+ Br+ B )l e+ 1 (e,
(%1 + B + By, ) + Lx(@)
€.

% @) - % Ol < o

mux(ﬂ,+«%,*+%$%,%) . . X
Let B, = T , then the solution of the consider problem (1.2) is UHR stable further set

€ = 1 then the consider problem (1.2) is GUHR stable. O

5. Example
Here we present an example to demonstrate our results.
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Example 1. Consider the following multi-term impulsive fractional delay differential equation

)4 10 . % _ L 2|%(t)|

; 10i — 9 D= (1) = (37 + 44e' + 551)? (cos(t) +|% (D)

Pl (L) 1 .

“sec) + UL COSh(t))’ refhilreg bek (5.1)
L 0 IS N (4 ¢
MU =12 QD=5 oy M@ =12 Q=5
% 1

8% (0)+ % () = a1(%) = W WO+ =8V = 7y

here

p=5m=1,a =8, by=b=1,a=6,7=1, 71=1,

10
a1:4/3, a; = 0'1:10, g; =

1+2i° 10i -9’

e w . w G - fo wmw, v G|

Q70 20
cos(t) + |21 (D] cos(r) + | (1)

L
<
= (38 + 44e' + 55;)2(

P12 (§) 21U (L) )
+ -
sec(t) + | ()| sec(t) + |U(3)|
L 2 P
< E(Cos(t)l%(t) — W1 + sec(t)l%(t) - %(m),

2

Hence, we obtain L7 = rﬁz(cos(l)

+ 1), and similarly by simple computation, one can calculate,

1 1

1 1
00 ‘e e YTy wd =g

Za = 32’ 54
Hence, we can calculate that & < 1 if G < 24.608599. Now as a consequence of Theorem 3.2, we
conclude that example 1, has unique solution.

Set x(t) = (4t — 1)%, and ¢ = 3Vt € J. since

1 ! s 32
— | ¢t-2)'dZ - 1)dZ =
I'(3) f (%)

o

|

(t - 4t —1)°

l) <
4 6.3103

condition Hy is satisfied with < = ﬁ. Hence all assumption of Theorem 4.5 are satisfied so as a
conclusion the solution of problem 1.2 is UHR and GUHR stable. Moreover problem (1.2) is UH and
GUH stable due to Theorem 4.4.
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6. Conclusions

In this research work we have established a detailed analysis about existence theory of at least
one solution to a class of multi term impulsive FODEs. The required theory has been established by
using Krasnoselskii’s fixed-point theorem and Banach contraction principle. Also keeping in mind
the importance of stability, we have developed some results regarding different kinds of Ulam stability
including HU, GHU, HUR and GHUR. The obtained analysis has been demonstrated by using pertinent
examples.
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