
AIMS Mathematics, 7(7): 11529–11550. 

DOI: 10.3934/math.2022643 

Received: 24 November 2021 

Revised: 07 March 2022 

Accepted: 24 March 2022 

Published: 14 April 2022 

http://www.aimspress.com/journal/Math 

 

Research article 

Pathfinding algorithm based on rotated block AOR technique in 

structured environment 

A'qilah Ahmad Dahalan1,2,* and Azali Saudi3 

1 Department of Mathematics, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia 
2 CONFIRM Centre for SMART Manufacturing, University of Limerick, Limerick, Ireland 
3 Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia 

* Correspondence: Email: a.qilah@upnm.edu.my, A.Qilah@ul.ie. 

Abstract: Harmonic potential fields are commonly used as guidance in a global approach for self-

directed robot pathfinding. These harmonic potentials are generated using Laplace's equation solutions. 

The computation of these harmonic potentials often requires the use of immense amounts of computing 

resources. This study introduces a numerical technique called Rotated Block Accelerated Over-

Relaxation (AOR), also known as Explicit Decoupled Group AOR (EDGAOR), to deal with 

pathfinding problem. Several robot navigation simulations were performed in a static, structured, 

known indoor environment to validate the efficiency of the suggested approach. The paths generated 

by the simulations are shown using several different starting and target positions. The performance of 

the proposed approach in computing harmonic potentials for solving pathfinding problems is also 

discussed. 
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1. Introduction 

The surge of mobile robot navigation technology nowadays is rising by virtue of human desire. 

It is not only limited to transportation, but it is also very useful in other problems such as manufacturing, 
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industrial, and so on. In general, the ability of a robot to navigate autonomously is a prerequisite and 

foundation for the development of intelligent robots. Pathfinding algorithms must be both efficient and 

practical to ensure the proper performance of mobile robots' various tasks. 

Figure 1 illustrates the key phases related to the operation of a robot. The problem of robot 

pathfinding can be divided into four categories: 

• Localization: Where do I go? 

• Pathfinding: Where was I supposed to go? Which is the best path to be reached? 

• Motion control: How can I move? 

• Cognitive mapping: Where was I? What should I remember? 

 

Figure 1. Autonomous robot navigation flow diagram [1]. 

There is no doubt that pathfinding is a major issue in the navigation process. The pathfinding 

algorithm allows the robot to choose and identify the right path within the configuration space. The 

two major components of global path planning are the robot's representation of the world in 

configuration space and its ability to execute the algorithm. These two components are closely linked 

and have a significant impact on one another in choosing the optimum path and time for the robot to 

move around in the configuration space [2]. 

One of most difficult problem in robot applications is the construction of robust autonomous 

motion planning. To create a truly autonomous mobile robot, it must be able to compute its trajectory 

between locations quickly and accurately while also avoiding collisions with surrounding objects. The 

goal of this study is to use harmonic potential values to simulate point-robot pathfinding in a specified 

area using heat transfer theory. Laplace's equation [3] is used to model the heat transfer problem. 

Harmonic functions are the solutions to Laplace's equation, and they represent temperature values in 

the configuration space that will be exploited to simulate path generation. 

Iterative methods are another way of generating harmonic functions by numerically solving the 

Laplace equation under Dirichlet or Neumann boundary conditions and discretizing the two-

dimensional environment into a grid of discrete points [4–8]. Harmonic functions obey the min-max 

principle, thus there can be no spontaneous creation of local minima within the solution region. As a 

result, the only critical points that can occur are saddle points. A search in the neighbourhood of such 

a critical point would then reveal the exit from that point. Furthermore, any deviation or disturbance 

of route from such points results in a smooth path everywhere. The discretization of the Laplace 

equation yields a sparse linear system, in which the computing costs of iterative approaches are 

generally significantly greater than the analytical technique. The computational complexity is 



11531 

AIMS Mathematics  Volume 7, Issue 7, 11529–11550. 

determined by the discretization resolution; hence, if a greater region of obstacles is occupied, fewer 

calculations and storage are required. Laplace’s solutions can be numerically derived using the finite 

difference method. Laplace’ equation is transformed into a linear system, and most of the matrix 

elements are zero when written in matrix notation. The resultant matrix is often extremely large and 

sparse, and typically requires very large computing resources. This study thereby solved the linear 

system by means of the iterative approach, since it avoids the need to store a very large matrix in 

memory. 

For pathfinding method in this study, the Gradient Descent Search (GDS) technique utilizes the 

Laplacian potential values obtained using the iterative methods discussed in the next section as 

guidance during the path construction. From the current point, the GDS method examines the potential 

values of its eight neighbouring points and simply picks the node with the lowest Laplacian potential 

value. This procedure is repeated until it reaches the target point [4, 9–11]. 

Recently, a real-time path planning method using harmonic functions based on the Proper 

Generalized Decomposition (PGD) has been suggested [12,13]. The proposed method was tested on 

two structured environments: an L-shaped corridor and a bug trap planning environment. The 

experiments showed encouraging results, in which a physical Lego Mindstorms robot was tested to 

validate the results. The experiments, however, were only conducted in a small and relatively simple 

environment. It was also stated that the offline phase of the PGD-based framework on a square 

environment of 150 x 150 nodes would take 14 hours using a high-performance computer to obtain 

the solution for every start and goal vehicle position. However, the online phase was faster and required 

minimal processing time. 

Most path planning methods in the literature that are based on the harmonic potentials rely on the 

used of the standard Laplacian operator. This study presents several to evaluate the capability of a 

rotated block Laplacian operator, also known as Explicit Decoupled Group (EDG), in the computation 

of harmonic potentials. A linear system of rotating approximation equations is developed and 

computed via EDG Accelerated Over Relaxation (EDGAOR) by employing the rotated block operator. 

The results of the implemented EDGAOR algorithm are compared and analysed in terms of the number 

of iterations and CPU time against the existing approaches. The findings showed that the EDGAOR 

outperformed the existing methods. 

2. Pathfinding technique 

2.1. Global pathfinding 

Global planning stores the map of its environmental and then utilises that map to create a feasible 

path. Accordingly, global pathfinding seeks to search for a collision-free route by which the robot may 

move from its original position toward its intended position without colliding with any obstacles.  

Figure 2 illustrates the global pathfinding framework. A model of the robot workspace that includes 

position of the robot, obstacles and vacant spaces, must first be made. The vacant area in the workspace 

is then discretized to form a graph representing the connectivity of the space. The path finding 

algorithm is then employed to determine a feasible route for the robot to trace using the graph of 

connectivity in order to reach the goal. 
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Figure 2. The framework of graph search technique for robot global pathfinding [2]. 

The process of pathfinding construction in this study comprises the following steps: 

Begin 

Step 1. Create the map of the robot’s environment. 

Step 2. Establish the formulation and modelling of the iterative schemes using finite difference method.  

Step 3. Develop and implement the algorithms of the proposed iterative schemes. 

Step 4. Run the numerical simulations to obtain the solutions. 

Step 5. Conduct the performances evaluation and complexity analysis of the algorithms. 

End 

2.2. Harmonic function 

Let Laplace’s equation below, be satisfied by a harmonic function in a region n  

2
2

2
1

0
n

i i

U
U

x=


 = =


                                                              (1) 

with ix  as the i-th coordinates in the Cartesian and the dimension is n . For the robot path creation, the 

region boundary is made up of walls, obstacle boundaries, and the target location. Since the harmonic 

potential complies with the min-max criterion [4] in the specified domain, it does not have local 

minima except the target position, and generally produces smooth path, thus making harmonic 

potential approach a feasible and very attractive option for robot navigation. The Laplace equation is 

commonly solved using standard approaches [14–16]. In this study, Eq (1) was solved using fast 

rotated block iterative technique to speed up the computational execution. 

A global approach is used to compute harmonic potentials of the robot workspace by employing 

the analogy of heat distribution in areas in which all obstacles and boundaries (with the highest 

potential value) represent heat sources and target position (with the highest potential value) as heat 

sink. Laplace’s equation is used to model this heat transfer activity and is solved numerically to obtain 

the heat distribution that represents the harmonic potential for each node in the graph. Utilizing the 

property of heat distribution that flow from high temperature to lower temperature, a gradient search 

can be used to generate path from any start point with high potential value to target position with the 

lowest potential value. The pathfinding algorithm utilizes the gradient descent search to determine a 

feasible route for the robot to navigate the workspace safely from the start point to reach the goal 
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position. 

This research seeks to replicate the aforementioned paradigm for pathfinding, describing the 

solution of Laplace’s Eq (1) through the analogy of temperature (for the potential) and heat flow (for 

the pathway). The experiment is conducted with a two-dimensional domain with various forms of 

obstacles, including the inner and external walls. To solve Eq (1) and obtain the potential values for 

each node, the EDGAOR iterative approach is utilised. For performance comparison purposes, the 

existing Explicit Group Successive Over Relaxation (EGSOR), Explicit Group AOR (EGAOR), and 

EDGSOR were also investigated. 

3. Materials and methods 

3.1. Rotated block technique 

Abdullah [17] was the first to present the EDG iterative approach that employed block half-sweep 

technique on rotated grid to solve the two-dimensional Poisson equation. This approach is also used 

in [18–26] to solve partial differential equations. A modified version of this approach was investigated 

for the solution of the diffusion equation [24]. Meanwhile, [25] discussed early efforts on integrating 

SOR with other techniques. In the robotics literature, the classic GS [9] and SOR [3,26] algorithms 

have been utilised to solve Eq (1). To obtain the solutions of Laplace’s Eq (1), this work developed a 

robust numerical solver using rotated block iteration approach that employ half-sweep technique. 

In general, the EDG technique computes only half of all points in the region, resulting in a 

significant reduction in total processing time. The application of EDG iteration, which examines the 

interior grid points (black grid points), is compared to the conventional full-sweep (alternative name 

is Explicit Group, EG) technique, which iterates every grid point in the region (see Figure 3). The half-

sweep iteration technique was first used in robotics in [18]. In this study, the EDG iteration is 

essentially subjected to the rotated 5-points finite difference approximation (5-FDA) equation to solve 

Eq (1). The key advantage of this iterative technique is that it reduces the computing complexity by 

evaluating only a portion of the total number of node grid points. Figure 4 depicts the computational 

molecules of the iterative techniques of full-sweep (FS) and half-sweep (HS). 

 

Figure 3. The interior grid nodes for EG (left) and EDG (right) scenarios. 
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Figure 4. The 5-points stencil for full-sweep/standard (left) and half-sweep/rotated (right) FDA. 

All the algorithms in the Block iterative techniques family indicate that acquiring four Laplacian 

potentials per calculation speeds up the evaluation. In the event of computing groups of points that are 

close to the boundary, it will be managed as a set of a single point and two points, as illustrated in 

Figure 3. After all, for Block iterative techniques, the approximate values of the residual node points 

are computed directly by using direct methods [17,27]. It should be emphasised that all algorithms in 

this study are executed so long as the results meet a predefined convergence criteria denoted as  . The 

stopping criterion in this study is based on ( ) ( )1k k
u u 

+
−  . 

In general, the executions of all iterative schemes are imposed on black node points in Figure 3 

until the convergence test criterion is satisfied. As depicted in Figure 3 (left), all formulations 

employing the EG iterative techniques compute a group of four nodes at once during the iteration 

process (except for certain cases near the boundary). Meanwhile, the EDG is derived from a rotated 5-

FDA [17]. As shown in Figure 3 (right), the solution domain for the EDG method is divided into two 

types of node points, •  and . The solutions of each node point group can be executed by pairing the 

points of an equal type and can be carried out independently for each of the pairings. Due to this 

independency, almost half of the iteration over the solution domain is performed in either type of the 

points, hence saves the performance time. Furthermore, the direct method [28] is computed via Eq (3), 

as demonstrated in the next section, to compute sets that are close to the border, i.e., with only one or 

two points. 

3.2. 5-point finite difference approximation 

Consider the 2-dimensional equation of Laplace in Eq (1), which is rewritten as 

2 2
2

2 2
0

U U
U

x y

 
 = + =

 
                                                            (2) 

The Laplacian operator is denoted as 2 . To solve Eq (2), the system needs to be discretised via 

finite difference method before it can be computed efficiently using the numerical method. The 

simplest 5-FDA for the 2D Laplacian, 2 , is given as 

( )
( ) ( ) ( ) ( ) ( )2

2

, , , , 4 ,
,

u x h y u x h y u x y h u x y h u x y
U x y

h

+ + − + + + − −
  , 
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where U is a function to satisfy the equation of Laplace, u  is the potential node at point ( ),x y , and h  

is the distance between node points for each direction. The above equation can be termed as a second-

order equation since its error term is of order two, 2h . By using the central difference formula, it will 

then be deduced using Taylor series approximation into the second derivative, and be expressed as 

follows (which represents FS iteration case) 

( ) ( ) ( ) ( ) ( ) ( )2

2

1
, , , , , 4 ,U x y u x h y u x h y u x y h u x y h u x y

h
 = + + − + + + − −   . 

Meanwhile, the approximation that is based on the cross-orientation operator is formed upon 

rotating the x y−  plane by 45 in the clockwise direction [29,30]. This produces the rotated 

(skewed) 5-point approximation, also known as HS iteration, denoted as 

( )
( ) ( ) ( )

( ) ( )
2

2

, , ,1
,

2 , 4 ,

u x h y h u x h y h u x h y h
U x y

h u x h y h u x y

− − + + − + − + 
 =  

+ + + −  

. 

This also can be shown in matrix form as 

2

2

0 1 0
1

1 4 1

0 1 0

U
h

 
 

 = −
 
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and 

2

2

1 0 1
1

0 4 0
2

1 0 1

U
h

 
 

 = −
 
  

, 

for FS and HS iteration cases respectively. 

By letting ijU  approaches the solution of u for Laplace’s Eq (2) along the grid point ( ),i jx y , the 

discretization of these Laplace equation via conventional 5-point stencil is 

1, 1, , 1 , 1 ,4 0i j i j i j i j i jU U U U U− + − ++ + + − = ,                                          (3) 

for the FS case. Meanwhile, for HS iteration holds that 

1, 1 1, 1 1, 1 1, 1 ,4 0i j i j i j i j i jU U U U U− − − + + − + ++ + + − = .                                      (4) 

Then, by employing Eqs (3) and (4) to the 2-dimensional Laplace's problem based on Eq (2), it will 

eventually generate a linear system. This system can be formed in matrix notation and produce large 

and sparse matrices. The aforementioned linear system is displayed as 

Au b= .                                                                    (5) 

The coefficient A  and b  are both identified, where A  is in matrix form and b  is a vector. Whereas 
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coefficient u is an unknown vector. For the FS iteration case, the matrix A  is said to be a block triangle 

matrix with order ( ) ( )1 1N N−  − , and signified as 

( ) ( )1 1N N

T I

I T I

I T I
A

I T I

I T
−  −

 
 
 
 

=  
 
 
 
 

. 

From matrix A , each element of block T  is represented as 

( ) ( )1 1

4 1

1 4 1

1 4 1

1 4 1

1 4
N N

T

−  −

− 
 

−
 
 −

=  
 
 −
 

− 

, 

while I  is an identity matrix with the same order. Meanwhile, coefficients u and b  from Eq (5) may 

be defined as 

1, 2, 2, 1,

1, 2, 2, 1,

,

,

T

k k k N k N k

T

k k k N k N k

u u u u u

b b b b b

− −

− −

 =  

 =  

 

where 1,2, , 2, 1k N N= − − . 

Meanwhile, for the HS iteration case, matrix A  from the linear system Eq (5) can be described as 

( ) ( )1 1N N

T P

Q S Q

P T P

A Q S Q

Q S Q

P T
−  −

 
 
 
 
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=  
 
 
 
 
 

, 

where 
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2 2
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1
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0 1 1
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0 1 1 N N

Q

   
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 
 
 
 

=  
 
 
 
 

. 

Vectors u and b  from Eq (5) for the HS iteration case are defined respectively as 

1, 3, 3, 1,

2, 4, 4, 2,

1, 3, 3, 1,

2, 4, 4, 2,

,

,

,

,

T

i i i N i N i

T

j j j N j N j

T

i i i N i N i

T

j j j N j N j

u u u u u

u u u u u

b b b b b

b b b b b

− −

− −

− −

− −

 =  

 =  

 =  

 =  

 

with 1,3,5, , 3, 1i N N= − −  and 2,4,6, , 4, 2j N N= − − . 

As stated previously, the system of linear Eq (5) generates a sparse and large matrix. 
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Consequently, the iterative methods can be solved using either Point or Block iterative techniques 

because the proposed methods are ideal for solving this problem [17]. Hence, considering the finite 

difference of Eqs (3) and (4), the Gauss-Seidel iterative schemes for FS and HS cases can be rewritten 

and denoted respectively as follows, 

( ) ( ) ( ) ( ) ( )1 1 1

, 1, 1, , 1 , 1

1

4

k k k k k

i j i j i j i j i jU U U U U
+ + +

− + − +
 = + + +
 

,                                        (6) 

( ) ( ) ( ) ( ) ( )1 1 1

, 1, 1 1, 1 1, 1 1, 1

1

4

k k k k k

i j i j i j i j i jU U U U U
+ + +

− − + − − + + +
 = + + +
 

.                                   (7) 

As previously stated, this study concentrates on the family of Block iterative schemes for the 

proposed solvers, i.e., SOR and AOR, using EG and EDG iterative methods. With the intention of 

implementing the Block scheme, the Point iteration scheme for corresponding methods is required. 

The FSSOR method is, in fact, the standard SOR method that applies traditional FS iteration via a 5-

point discretization scheme [31]. The iterative scheme for the Point SOR method is given below. It is 

referring to Eq (6), by inserting a weighted parameter,   via SOR [31]. 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

, 1, 1, , 1 , 1 ,1
4

k k k k k k

i j i j i j i j i j i jU U U U U U



+ + +

− + − +
 = + + + + −
 

.                         (8) 

Meanwhile, the HSSOR iterative method is formulated by employing the HS concept [17]. From 

Eq (7), the Point rotated SOR iterative scheme is given as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

, 1, 1 1, 1 1, 1 1, 1 ,1
4

k k k k k k

i j i j i j i j i j i jU U U U U U



+ + +

− − + − − + + +
 = + + + + −
 

.                   (9) 

The difference between Eqs (6) and (7) to Eqs (8) and (9) are clearly on the addition of weighted 

parameters  . The basic idea of the SOR iterative method comes from Gauss-Seidel iterative schemes 

with weighted parameters [32,33]. Note that if the value of   is equal to 1, then the SOR scheme is 

effectively simplified to the standard Gauss-Seidel scheme. 

The AOR method belongs to the family of over-relaxation methods. It is a generalisation of the 

SOR method with two parameters. For this study, these two relaxation parameters are denoted as r

and  . Both parameters can be utilised to generate iterative methods that can speed up the convergence 

rates, and AOR are more flexible and suitable than any other methods in this family. To perform the 

AOR iterative scheme proposed in [34], replacing 
( )1

1, 1

k

i ju
+

− −  and 
( )1

1, 1

k

i ju
+

+ −  with 
( )

1, 1

k

i ju − −  and 
( )

1, 1

k

i ju + − , 

respectively, as well as appending the nodes of 

( ) ( )( )1

1, 1 1, 1

4

k k

i j i jr u u
+

− − − −−
 and 

( ) ( )( )1

1, 1 1, 1

4

k k

i j i jr u u
+

+ − + −−
 into Eq (8) 

are required. Thus, the Point AOR iterative scheme is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

, 1, 1, , 1 , 1

1, 1, , 1 , 1 ,

4

1
4

k k k k k

i j i j i j i j i j

k k k k k

i j i j i j i j i j

r
U U U U U

U U U U U




+ + +

− − − −

− + − +

 = − + −
 

 + + + + + −
 

.                         (10) 

Whereas, based on the explanation above and implementing every replacement of terms into Eq (9), 

the rotated Point AOR schemes are stated as 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

, 1, 1 1, 1 1, 1 1, 1

1, 1 1, 1 1, 1 1, 1 ,

4

1
4

k k k k k

i j i j i j i j i j

k k k k k

i j i j i j i j i j

r
U U U U U

U U U U U




+ + +

− − − − + − + −

− − + − − + + +

 = − + −
 

 + + + + + −
 

.               (11) 

Based on Laplace Eq (2), all of the proposed iterative techniques simply replace each node's value 

from the average of four neighbours of the corresponding node. The node values that indicate the 

boundaries, obstacles, and target position in this study remains constant. 

3.3. Explicit group accelerated over relaxation scheme 

To facilitate the formulation of the Block EGSOR method, observe a set of four node points 

( )4 4  in Figure 3 (left). By examining Eqs (3) and (8), the scheme generally can be expressed 

as [17,28,30]. 

, 1

1, 2

, 1 3

1, 1 4

4 1 1 0

1 4 0 1

1 0 4 1

0 1 1 4

i j

i j

i j

i j

U S

U S

U S

U S

+

+

+ +

− −     
    

− −      =
    − −
    

− −      

,                                            (12) 

where 

1 1, , 1

2 2, 1, 1

3 1, 1 , 2

4 2, 1 1, 2

,

,

,

.

i j i j

i j i j

i j i j

i j i j

S U U

S U U

S U U

S U U

− −

+ + −

− + +

+ + + +

= +

= +

= +

= +

 

Apparently, Eq (12) may also be converted into the form of a system of linear Eq (5). It will then be 

translated upon establishing the inverse of a matrix to coefficient A , as shown below 

, 1

1, 2

, 1 3

1, 1 4

6

61

624

6

i j a

i j b

i j b

i j a

U S S

U S S

U S S

U S S

+

+

+ +

+   
   

+   =
   +
   

+    

,                                                      (13) 

where 

( )

( )

2 3 1 4

1 4 2 3

2 ,

2 .

a

b

S S S S S

S S S S S

= + + +

= + + +
 

Now, the Block EGSOR scheme for Eq (13) is indicated as 
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( )

( )

( )1

, ,1

1, 1,2

, 1 , 13

1, 1 1, 14

6

6
1

624

6

k k

i j i ja

i j i jb

i j i jb

i j i ja

U US S

U US S

U US S

U US S




+

+ +

+ +

+ + + +

+    
    

+    = + −
    +
    

+       

.                             (14) 

Meanwhile, the formulation of the Block EGAOR method also considers the node points in 

Figure 3 (left), but assessing the approximation equation from Eq (3) and (10). Then, the AOR block 

scheme of AOR is stated as [35] 

, 1

1, 1 2

1, 3

, 1 4

4 1 0 0

1 4 0 0

0 0 4 1

0 0 1 4

i j

i j

i j

i j

U S

U S

U S

U S

+ +

+

+

−     
    

−      =
    −
    

−      

,                                             (15) 

with 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 1

1 1, 1, , 1 , 1 1, , 1

1

2 1, 1 1, 1 1, 1 2,

1

3 1, 1 1, 1 1, 1 , 2

4 2, 1 1, 2

,

,

,

.

k k k k k k

i j i j i j i j i j i j

k k k k

i j i j i j i j

k k k k

i j i j i j i j

k k

i j i j

S r U U U U U U

S r U U U U

S r U U U U

S U U









+ +

− − − − − −

+

+ − + − + − +

+

− + − + − + +

+ + + +

= − + − + +

= − + +

= − + +

= +

 

Again, Eq (15) may also be transformed into a system of linear Eq (5) and translated as below, by 

initiating the inverse of matrix A  

, 1

1, 1 2

1, 3

, 1 4

6

61

624

6

i j a

i j b

i j b

i j a

U S S

U S S

U S S

U S S

+ +

+

+

+   
   

+   =
   +
   

+    

,                                                      (16) 

with 

( )

( )

2 3 1 4

1 4 2 3

2 ,

2 .

a

b

S S S S S

S S S S S

= + + +

= + + +
 

Finally, the Block EGAOR iterative scheme for Eq (16) is presented as 

( )

( )

( )1

, ,1

1, 1 1, 12

1, 1,3

, 1 , 14

6

6
1

624

6

k k

i j i ja

i j i jb

i j i jb

i j i ja

U US S

U US S

U US S

U US S




+

+ + + +

+ +

+ +

+    
    

+    = + −
    +
    

+       

.                              (17) 
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3.4. Explicit decoupled group accelerated over relaxation scheme 

The EDG approximation equation is on the basis of the cross-orientation operator, which allows 

it to be formed upon rotating or turning the i j−  plane by 45 in clockwise direction. Now, to 

simplify the formulation of the Block EDGSOR scheme, a set of four node points (see Figure 3 (right)) 

is examined in order to construct a ( )4 4  algebraic linear system [17,27,36], expressed by Eq (15), 

where 

1 1, 1 1, 1 1, 1

2 , 2 2, 2 2,

,

,

i j i j i j

i j i j i j

S U U U

S U U U

− − − + + −

+ + + +

= + +

= + +
                                                (18) 

and 

3 , 1 2, 1 2, 1

4 1, 1, 2 1, 2

,

.

i j i j i j

i j i j i j

S U U U

S U U U

− + − + +

− − + + +

= + +

= + +
                                                 (19) 

The linear system equation in matrix form as in Eq (15), can be reduced to Eqs (18) and (19) and 

solved individually using two ( )2 2  linear algebraic equations as follows 

, 1

1, 1 2

4 11

1 415

i j

i j

U S

U S+ +

    
=    

    
,                                                  (20) 

1, 3

, 1 4

4 11

1 415

i j

i j

U S

U S

+

+

    
=    

    
.                                                   (21) 

The Block EDGSOR scheme for both Eqs (20) and (21) can be defined independently as shown below, 

respectively, 

( )

( )
( )1

, ,1 2

1, 1 1, 11 2

4
1

415

k k

i j i j

i j i j

U US S

U US S




+

+ + + +

+    
= + −    

+    
,                            (22) 

( )

( )
( )1

1, 1,3 4

, 1 , 13 4

4
1

415

k k

i j i j

i j i j

U US S

U US S




+

+ +

+ +

+    
= + −    

+    
.                               (23) 

The algorithm for Block EDGSOR iterative scheme can be implemented by using either Eq (22) 

or (23). Both equations can be used to obtain solution. 

Applying similar approach to EGAOR, by using the rotated AOR formula (7) to the Block scheme 

gives rise to a new formula called EDGAOR [37]. As a result, the AOR scheme for the EDG iteration 

is stated as 

( )

( )
( )1

, ,1 32

1, 1 1, 11 32

44
1

415 15

k k

i j i j

i j i j

U US SSr

U US SS




+

+ + + +

+     
= + + −     

+      
,                            (24) 
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where 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1, 1 1, 1 1, 1

1 1 1

2 1, 1 1, 1 1, 1 1

3 , 2 2, 2 2,

,

,

.

k k k

i j i j i j

k k k

i j i j i j

k k k

i j i j i j

S U U U

S U U U S

S U U U

− − − + + −

+ + +

− − − + + −

+ + + +

= + +

= + + −

= + +

 

Contrasting from SOR, no generic formula exists for determining the optimum r  and   values 

that result in the minimal iteration counts. According to [34], the r  value is often set to be close to the 

SOR   value, and the numerical analysis is then repeated for a certain range of  , with 1 2  . As 

some values do not converge in certain cases, r  and   values for each full- sweep and half-sweep 

cases are different in order to obtain the optimal value. The effect of complexity on discovering 

parameter values to overall computation does not change, since the value of each parameter is set 

before the execution/computation. The optimal values used throughout the experiments are listed in 

Table 1. 

Table 1. Values of weighted parameters. 

Methods   r  

EGSOR 1.82 - 

EGAOR 1.83 1.82 

EDGSOR 1.81 - 

EDGAOR 1.82 1.84 

The implementation of Block EDGAOR scheme based on Eq (24) into solving the two-

dimensional Laplace's problem, as expressed in Eq (2), is stated in Algorithm 1. 

Algorithm 1: EDGAOR method  

(i). Setup the configuration space with a specified start and goal position. 

(ii). Initialising the starting point 15, 10 , 0U iteration −  . 

(iii). 

Set the variables 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1, 1 1, 1 1, 1

1 1 1

2 1, 1 1, 1 1, 1 1

3 , 2 2, 2 2,

,

,

.

k k k

i j i j i j

k k k

i j i j i j

k k k

i j i j i j

S U U U

S U U U S

S U U U

− − − + + −

+ + +

− − − + + −

+ + + +

 + +

 + + −

 + +

 

(iv). 

For all non-occupied node points of type •  using Eq (24), calculate 

( )   ( ) ( )

( )   ( ) ( )

1

, 2 1 3 ,

1

1, 1 2 1 3 1, 1

4 4 1 ,
15 15

4 1 .
15 15

k k

i j i j

k k

i j i j

r
U S S S U

r
U S S S U







+

+

+ + + +

 + + + −

 + + + −

 

(v). 

Compute the remaining group of points (with one or two points) near to the boundary via direct 

method by using Eq (11). 

Then, evaluate the remaining points of type  using Eq (6) 

( ) ( ) ( ) ( ) ( )1 1 1

, 1, 1, , 1 , 1

1

4

k k k k k

i j i j i j i j i jU U U U U
+ + +

− + − +
  + + +
  . 

(vi). Check the convergence test for 
1510 − . If yes, go to step (vii). Otherwise go back to step (iii). 

(vii). Execute GDS to generate the path from start to goal point. 
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4. Results and discussion 

The implementation of the EDG iterative method computes approximately half of the group of 

node points in the block scheme (see Figure 3) during the iteration process. Therefore, it will drastically 

reduce the computational complexity, i.e., approximately 50%. With the purpose of measuring the 

performance of these algorithms, the simulations are conducted on four configuration regions in three 

different sizes, i.e.,300 300 , 600 600 , and 900 900 . Their performances are examined using three 

criteria: 

(i). Number of iteration count, 

(ii). CPU time, and 

(iii).Success of pathfinding. 

The number of iterations and CPU time required by each algorithm is captured when the tolerance 

rate of the iteration process is met. The computed Laplacian potentials are then used by the GDS 

algorithm to ensure that a path from the initial to the target position can be successfully created. 

A variety of obstacles of various shapes are placed in the given region. In the preliminary 

configuration, the Dirichlet boundary condition was used, where the boundaries and obstacles are fixed 

at high-temperature values. The target position was placed at the lowest temperature reading, whereas 

no initial value was assigned at the start position. Other grid nodes remained at zero temperature. The 

execution had been performed using a computer, operating with a 2.50GHz processor and 8GB of 

RAM. The iterative procedure of numerical computation continued until the stopping condition was 

satisfied. The loop is supposed to be halted if potential values have not changed further and the changes 

within Laplacian potentials at the computation of current (k) and next (k+1) iterations are very small, 

i.e., 101.0− . This level of precision was required to avoid flat areas in the solutions, often known as 

saddle points, which means the sudden non-existence of descending gradient patterns. As a result, the 

algorithm simply stops searching and gets stuck in flat areas at the lowest point. Tables 2 and 3 indicate 

the number of iterations along with CPU time (in seconds) for each numerical method compared in the 

tests. Clearly, the EDGAOR approach showed to be faster than other approaches tested. On average, 

the EDGAOR successfully reduced the number of iterations compared to EDGSOR by 19%, 

approximately 24% for EGAOR, and 33% for EGSOR. In terms of CPU time reduction, the EDGAOR 

averagely reduces the execution by 16%, 36%, and 40% against EDGSOR, EGAOR, and EGSOR 

respectively. 

Table 2. Findings of the suggested techniques for the number of iterations. 

 
Techniques 

N x N 

300 600 900 

Sample 1 

EGSOR 1258 5899 12844 

EGAOR 1042 4994 10928 

EDGSOR 953 4495 9916 

EDGAOR 766 3730 8200 

Sample 2 

EGSOR 1729 6782 14874 

EGAOR 1610 6368 13953 

EDGSOR 1324 5599 13252 

EDGAOR 1188 4767 10490 

Continued on next page 



11544 

AIMS Mathematics  Volume 7, Issue 7, 11529–11550. 

 

 
Techniques 

N x N 

300 600 900 

Sample 3 

EGSOR 2666 11076 24519 

EGAOR 2480 10389 22995 

EDGSOR 2035 10243 24864 

EDGAOR 1835 7741 17131 

Sample 4 

EGSOR 1629 6487 14194 

EGAOR 1392 5648 12367 

EDGSOR 1238 5958 13501 

EDGAOR 1116 4223 9369 

Table 3. Findings of the suggested techniques for the CPU time (in seconds). 

 
Techniques 

N x N 

300 600 900 

Sample 1 

EGSOR 6.88 163.72 871.66 

EGAOR 6.05 137.87 751.78 

EDGSOR 4.34 110.88 603.41 

EDGAOR 3.67 95.08 498.19 

Sample 2 

EGSOR 7.67 199.59 1009.48 

EGAOR 8.25 185.36 926.49 

EDGSOR 4.70 142.64 787.53 

EDGAOR 4.17 122.85 624.48 

Sample 3 

EGSOR 13.24 315.87 1602.81 

EGAOR 13.83 301.27 1633.35 

EDGSOR 8.00 261.74 1529.74 

EDGAOR 7.67 203.61 1072.61 

Sample 4 

EGSOR 7.80 187.33 990.20 

EGAOR 7.56 167.65 891.51 

EDGSOR 4.33 152.73 828.24 

EDGAOR 4.53 109.96 615.38 

After determining the configuration region's potential values, a smooth path is formed by 

following the potentials distribution using the gradient descent method, in which the algorithm follows 

the descending gradient from the initial position to the next sequential points at lower potentials until 

it reaches the lowest potential (the target) point. Figure 5 depicts the pathways that were efficiently 

generated in a given stationary environment using the numerically computed potentials distribution. 

Every starting location (green/square point) reached the designated target location (red/circle point), 

avoiding every obstacle placed in the environments. The solution can be calculated and repeated as 

often as desired in a stationary situation where the target point and obstacles are set. It must be 

recalculated only if the obstacles or the target position are changed. The trajectory of the paths can be 

very quick, as they involve only the gradient evaluation of precomputed Laplacian potential [9]. The 

flow diagram of the pathfinding technique of this study is shown in Figure 6. 
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Figure 5. The paths generated from different environments (from top to bottom: Sample 1, 

Sample 2, Sample 3, and Sample 4) from various starting and goal locations. 

 

Figure 6. Flow diagram of the pathfinding technique. 
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The performance graphs in terms of iteration numbers (see Figure 7) and CPU time (see Figure 8) 

are also illustrated. By referring to both graphs, it can be seen that the EDGAOR had outperformed 

their corresponding methods, either in terms of iteration counts or CPU time. The EDGAOR method 

gave the best performance. This idea can be clearly seen in Tables 2 and 3. As we can see from the 

table of results, the graphs for the number of iterations as well as CPU time, shows the same pattern. 

 

Figure 7. The performance graph with regards to the number of iterations. 

 

Figure 8. The performance graph with regards to the CPU time. 

5. Conclusions 

This study demonstrated that the paths can be obtained from the GDS algorithm by utilising the 

Laplacian potentials computed using the presented EDG iterative schemes. After succeeding in 

obtaining the potential values present in the environment, the path of the navigating robot can be 

constructed. It follows the principle of heat distribution by using the steepest descent method. The 

algorithms follow the temperature descent flow to the sink, which in this case is the goal point, thus 

providing a path line for the navigation. The path line can be generated using different starting and 

goal points by computing the Laplacian potentials numerically. The generated path line had 

successfully avoided any obstacles while navigating from the start green point to the target red point. 

Harmonic functions offer a rapid approach to generating paths in a structured environment. The 

approach avoids the local minimum problem at some cost in computational speed for very large 

environments. However, given that the proposed solver is well suited for parallel processing, it can be 

applied to quickly solve Laplace’s equation. The authors feel that this is not a serious drawback. 

Moreover, most inner and outer boundaries of an indoor structured environment remain static most of 

the time, so only the regions occupied by moving obstacles and people need to be re-computed. The 
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computation of harmonic functions for these dynamic regions can be completed very quickly. In the 

future, the suggested Block iteration procedure such as EDGAOR can be extended using the log-space 

approach as demonstrated in [38], where the parallel implementation of the proposed approach showed 

great performance improvement. 

The experiments conducted in this research revealed that numerical computation of Laplace’s 

equation to solve the problem of robot pathfinding is notably appealing and practical due to recent 

developments and newly discovered numerical techniques, as well as the current availability of fast 

machines. The EDGAOR iterative approach proved to be much faster than the previous SOR and AOR 

approaches. An increase in the number of obstacles has no negative effect on performance; in fact, the 

calculation becomes faster considering the regions occupied by obstacles are ignored throughout the 

computation. In the future work, studies on half-sweep and quarter-sweep [36,39–41] iterations, would 

be explored in order to further improve the rate of convergence of the proposed approach. 

Acknowledgments 

The authors acknowledge the National Defence University of Malaysia for the funding of this 

article. 

Conflict of interest 

The researchers declare that there is no conflict of interest regarding the publication of this study. 

References 

1. B. Patle, G. Babu L, A. Pandey, D. Parhi, A. Jagadeesh, A review: on path planning strategies for 

navigation of mobile robot, Def. Technol., 15 (2019), 582–606. 

http://dx.doi.org/10.1016/j.dt.2019.04.011 

2. N. Buniyamin, N. Sariff, W. Wan Ngah, Z. Mohamad, Robot global path planning overview and 

a variation of ant colony system algorithm, International Journal of Mathematics and Computers 

in Simulation, 5 (2011), 9–16. 

3. S. Sasaki, A practical computational technique for mobile robot navigation, Proceedings of the 

IEEE International Conference on Control Applications, 1998, 1323–1327. 

http://dx.doi.org/10.1109/CCA.1998.721675 

4. C. Connolly, R. Gruppen, The applications of harmonic functions to robotics, J. Robotic Syst., 10 

(1993), 931–946. http://dx.doi.org/10.1002/rob.4620100704 

5. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Proceedings of 

IEEE International Conference on Robotics and Automation, 1985, 500–505. 

http://dx.doi.org/10.1109/ROBOT.1985.1087247 

6. S. Waydo, R. Murray, Vehicle motion planning using stream functions, Proceedings of IEEE 

International Conference on Robotics and Automation, 2003, 2484–2491. 

http://dx.doi.org/10.1109/ROBOT.2003.1241966 

7. H. Ghassemi, S. Panahi, A. Kohansal, Solving the Laplace's equation by the FDM and BEM using 

mixed boundary conditions, American Journal of Applied Mathematics and Statistics, 4 (2016), 

37–42. http://dx.doi.org/10.12691/ajams-4-2-2 

http://dx.doi.org/10.1016/j.dt.2019.04.011
http://dx.doi.org/10.1109/CCA.1998.721675
http://dx.doi.org/10.1109/CCA.1998.721675
http://dx.doi.org/10.1109/ROBOT.1985.1087247
http://dx.doi.org/10.1109/ROBOT.2003.1241966
http://dx.doi.org/10.12691/ajams-4-2-2


11548 

AIMS Mathematics  Volume 7, Issue 7, 11529–11550. 

8. P. Kuo, C. Wang, H. Chou, J. Liu, A real-time streamline-based obstacle avoidance system for 

curvature-constrained nonholonomic mobile robots, Proceedings of 6th International Symposium 

on Advanced Control of Industrial Processes, 2017, 618–623. 

http://dx.doi.org/10.1109/ADCONIP.2017.7983851 

9. C. Connolly, J. Burns, R. Weiss, Path planning using Laplace’s equation, Proceedings of IEEE 

International Conference on Robotics and Automation, 1990, 2102–2106. 

http://dx.doi.org/10.1109/ROBOT.1990.126315 

10. J. Barraquand, B. Langlois, J. Latombe, Numerical potential field techniques for robot path 

planning, IEEE T. Syst. Man Cyb., 22 (1992), 224–241. http://dx.doi.org/10.1109/21.148426 

11. M. Karnik, B. Dasgupta, V. Eswaran, A comparative study of Dirichlet and Neumann conditions 

for path planning through harmonic functions, In: Lecture notes in computer science, Berlin: 

Springer, 2002, 442–451. http://dx.doi.org/10.1007/3-540-46080-2_46 

12. N. Montes, F. Chinesta, M. Mora, A. Falco, L. Hilario, N. Rosillo, E. Nadal, Real-time path 

planning based on harmonic functions under a proper generalized decomposition-based 

framework, Sensors, 21 (2021), 3943. http://dx.doi.org/10.3390/s21123943 

13. A. Falco, L. Hilario, N. Montes, M. Mora, E. Nadal, A path planning algorithm for a dynamic 

environment based on proper generalized decomposition, Mathematics, 8 (2020), 2245. 

http://dx.doi.org/10.3390/math8122245 

14. K. Al-Khaled, Numerical solutions of the Laplace’s equation, Appl. Math. Comput., 170 (2005), 

1271–1283. http://dx.doi.org/10.1016/j.amc.2005.01.018 

15. K. Shivaram, H. Jyothi, Finite element approach for numerical integration over family of eight 

node linear quadrilateral element for solving Laplace equation, Materials Today: Proceedings, 46 

(2021), 4336–4340. http://dx.doi.org/10.1016/j.matpr.2021.03.437 

16. Y. Liu, C. Fan, W. Yeih, C. Ku, C. Chu, Numerical solutions of two-dimensional Laplace and 

biharmonic equations by the localized Trefftz method, Comput. Math. Appl., 88 (2021), 120–134. 

http://dx.doi.org/10.1016/j.camwa.2020.09.023 

17. A. Abdullah, The four point explicit decoupled group (EDG) method: a fast poison solver, Int. J. 

Comput. Math., 38 (1991), 61–70. http://dx.doi.org/10.1080/00207169108803958 

18. A. Saudi, J. Sulaiman, Half-sweep Gauss-Seidel (HSGS) iterative method for robot path planning, 

Proceedings of the 3rd International Conference on Informatics and Technology, 2009, 34–39. 

19. M. Muthuvalu, J. Sulaiman, Half-sweep arithmetic mean method with composite trapezoidal 

scheme for solving linear Fredholm integral equations, Appl. Math. Comput., 217 (2011), 5442–

5448. http://dx.doi.org/10.1016/j.amc.2010.12.013 

20. M. Muthuvalu, T. Htun, E. Aruchunan, M. Ali, J. Sulaiman, Performance analysis of half-sweep 

successive over-relaxation iterative method for solving four-point composite closed newton-cotes 

system, Proceedings of 7th International Conference on Intelligent Systems, Modelling and 

Simulation, 2016, 375–379. http://dx.doi.org/10.1109/ISMS.2016.84 

21. S. Matsui, H. Nagahara, R. Taniguchi, Half-sweep imaging for depth from defocus, Image Vision 

Comput., 32 (2014), 954–964. http://dx.doi.org/10.1016/j.imavis.2014.09.001 

22. F. Muhiddin, J. Sulaiman, A. Sunarto, Solving time-fractional parabolic equations with the four 

point-HSEGKSOR iteration, In: Lecture notes in electrical engineering, Singapore: Springer, 

2021, 281–293. http://dx.doi.org/10.1007/978-981-33-4069-5_24 

http://dx.doi.org/10.1109/ADCONIP.2017.7983851
http://dx.doi.org/10.1109/ADCONIP.2017.7983851
http://dx.doi.org/10.1109/21.148426
http://dx.doi.org/10.1007/3-540-46080-2_46
http://dx.doi.org/10.3390/s21123943
http://dx.doi.org/10.3390/math8122245
http://dx.doi.org/10.1016/j.amc.2005.01.018
http://dx.doi.org/10.1016/j.matpr.2021.03.437
http://dx.doi.org/10.1016/j.camwa.2020.09.023
http://dx.doi.org/10.1080/00207169108803958
http://dx.doi.org/10.1016/j.amc.2010.12.013
http://dx.doi.org/10.1109/ISMS.2016.84
http://dx.doi.org/10.1016/j.imavis.2014.09.001
http://dx.doi.org/10.1007/978-981-33-4069-5_24


11549 

AIMS Mathematics  Volume 7, Issue 7, 11529–11550. 

23. A. Dahalan, A. Saudi, Rotated TOR-5P Laplacian iteration path navigation for obstacle avoidance 

in stationary indoor simulation, In: Advances in intelligent systems and computing, Cham: 

Springer, 2021, 285–295. http://dx.doi.org/10.1007/978-3-030-70917-4_27 

24. J. Sulaiman, M. Hassan, M. Othman, The half-sweep iterative alternating decomposition explicit 

(HSIADE) method for diffusion equation, In: Lecture notes in computer sciences, Berlin: Springer, 

2004, 57–63. http://dx.doi.org/10.1007/978-3-540-30497-5_10 

25. J. Sulaiman, M. Othman, M. Hassan, Nine point-EDGSOR iterative method for the finite element 

solution of 2D Poisson equations, In: Lecture notes in computer sciences, Berlin: Springer, 2009, 

764–774. http://dx.doi.org/10.1007/978-3-642-02454-2_59 

26. A. Saudi, J. Sulaiman, Robot path planning using Laplacian behaviour-based control (LBBC) via 

half-sweep SOR, Proceedings of the International Conference on Technological Advances in 

Electrical, Electronics and Computer Engineering, 2013, 424–429. 

http://dx.doi.org/10.1109/TAEECE.2013.6557312 

27. A. Ibrahim, A. Abdullah, Solving the two dimensional diffusion equation by the four point explicit 

decoupled group (EDG) iterative method, Int. J. Comput. Math., 58 (1995), 253–263. 

http://dx.doi.org/10.1080/00207169508804447 

28. D. Evans, Group explicit iterative methods for solving large linear systems, Int. J. Comput. Math., 

17 (1985), 81–108. http://dx.doi.org/10.1080/00207168508803452 

29. G. Dahlquist, A. Bjorck, Numerical methods, New Jersey: Prentice Hall, 1974. 

30. W. Yousif, D. Evans, Explicit group over-relaxation methods for solving elliptic partial 

differential equations, Math. Comput. Simulat., 28 (1986), 453–466. 

http://dx.doi.org/10.1016/0378-4754(86)90040-6 

31. D. Young, Iterative methods for solving partial difference equations of elliptic type, PhD Thesis, 

Harvard University, 1950. 

32. D. Young, Iterative methods for solving partial difference equations of elliptic type, Trans. Amer. 

Math. Soc., 76 (1954), 92–111. http://dx.doi.org/10.2307/1990745 

33. D. Young, Iterative solution of large linear systems, London: Academic Press, 1971. 

34. A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 32 (1978), 149–157. 

http://dx.doi.org/10.2307/20006264 

35. M. Martins, W. Yousif, D. Evans, Explicit group AOR method for solving elliptic partial 

differential equations, Neural, Parallel & Scientific Computations, 10 (2002), 411–422. 

36. M. Othman, A. Abdullah, An efficient four points modified explicit group poisson solver, Int. J. 

Comput. Math., 76 (2000), 203–217. http://dx.doi.org/10.1080/00207160008805020 

37. N. Ali, S. Lee, Group accelerated OverRelaxation methods on rotated grid, Appl. Math. Comput., 

191 (2007), 533–542. http://dx.doi.org/10.1016/j.amc.2007.02.131 

38. K. Wray, D. Ruiken, R. Grupen, S. Zilberstein, Log-space harmonic function path planning, 

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016, 

1511–1516. http://dx.doi.org/10.1109/IROS.2016.7759245 

39. J. Navnit, The application of sixth order accurate parallel quarter sweep alternating group explicit 

algorithm for nonlinear boundary value problems with singularity, Proceedings of International 

Conference on Methods and Models in Computer Science, 2010, 76–80. 

http://dx.doi.org/10.1109/ICM2CS.2010.5706722 

40. A. Sunarto, J. Sulaiman, Investigation of fractional diffusion equation via QSGS iterations, J. 

Phys. Conf. Ser., 1179 (2019), 012014. http://dx.doi.org/10.1088/1742-6596/1179/1/012014 

http://dx.doi.org/10.1007/978-3-030-70917-4_27
http://dx.doi.org/10.1007/978-3-540-30497-5_10
http://dx.doi.org/10.1007/978-3-642-02454-2_59
http://dx.doi.org/10.1109/TAEECE.2013.6557312
http://dx.doi.org/10.1080/00207169508804447
http://dx.doi.org/10.1080/00207168508803452
https://doi.org/10.1016/0378-4754(86)90040-6
https://doi.org/10.2307/1990745
http://dx.doi.org/10.2307/20006264
http://dx.doi.org/10.1080/00207160008805020
https://doi.org/10.1016/j.amc.2007.02.131
http://dx.doi.org/10.1109/IROS.2016.7759245
http://dx.doi.org/10.1109/ICM2CS.2010.5706722
http://dx.doi.org/10.1088/1742-6596/1179/1/012014


11550 

AIMS Mathematics  Volume 7, Issue 7, 11529–11550. 

41. J. Lung, J. Sulaiman, On quarter-sweep finite difference scheme for one-dimensional porous 

medium equations, International Journal of Applied Mathematics, 33 (2020), 439–450. 

http://dx.doi.org/10.12732/ijam.v33i3.6 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

http://dx.doi.org/10.12732/ijam.v33i3.6

