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1. Introduction

In 1965, Zadeh [1], introduced the concept of a fuzzy set which is defined as: “a set constructed
from a function having a domain is a nonempty set W and range in [0, 1] is called a fuzzy set, that is,
if G : W — [0, 1], then the set constructing from the mapping G is called a fuzzy set”. Later on, the
theory of fuzzy sets has been extensively developed and investigated in many directions with different
types of applications. Kramosil and Michalek [2], introduced the notion of fuzzy metric spaces (FM
spaces) by using the concept of fuzzy set and some more derived concepts from the one in order.
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They compared the FM concepts with the statistical metric space and proved that both the spaces are
equivalent in some cases. After that, the modified form of the FM space was given by George and
Veeramani [3] and proved that every metric induces an FM. They proved some basic properties and
Baire’s theorem for FM spaces.

In 1988, Grabiec [4] proved two fixed point theorems of “Banach and Edelstein contraction mapping
theorems on complete and compact FM spaces, respectively” by using the concept of Kramosil and
Michalek [2]. In [5], Kiany et al. proved some fixed point results on FM spaces for set-valued
contractive type mappings. Aubin and Siegel [6], Fakhar [7], Gregori and Sapena [8], Harandi [9],
Hussain et al. [10], Mizoguchi and Takahashi [11], Rehman et al. [12], and Wlodarczyk et al. [13]
proved some set-valued and multi-valued contractive type mapping results in different spaces.

Bari and Vetro [14] proved fixed point theorems for a family of mappings on FM spaces. While
Beg et al. [15] established some invariant approximation results for fuzzy non-expansive mappings
defined on FM spaces. As an application, they obtained a fixed point result on the best approximation
in a fuzzy normed space. Further, they defined the strictly convex fuzzy normed space and obtained
a necessary condition for the set of all #-best approximations which contained a fixed point of the
arbitrary mappings. While Beg et al. [16] established some fixed point theorems on complete FM
spaces for self-mappings satisfying an implicit relation. Bari and Vetro [17], Imdad and Ali [18],
Hierro et al. [19], Jleli et al. [20], Li et al. [21], Pant and Chauhan [22], Lopez and Romaguera [23],
Rehman et al. [24], Roldan et al. [25,26], Sadeghi et al. [27], Shamas et al. [28,29] and Som [30]
proved some fixed point and common fixed point results on FM spaces by using different contractive
type mappings with applications.

In this paper, we present some unique common fixed point theorems for a pair of self-mappings
on FM spaces without continuity by using “the triangular property of fuzzy metric”. We use the
concept of Li et al. [21] and Rehman et al. [31] and establish different contractive types of common
fixed point theorems on FM spaces with illustrative examples. Further, we present weak contraction
and a generalized Cirié-contraction theorems on FM space. In addition, we present an application of
fuzzy differential equations to support our work. This paper is organized as: Section 2 presents the
preliminary concepts. Section 3 deals with different contractive types of unique common fixed point
theorems on complete FM spaces with examples. While in Section 4, we define a generalized Cirié¢-
contraction and will prove a unique common fixed point theorem on complete FM spaces. Section 3, is
the most important section of this paper which deals with the application of fuzzy differential equations
(FDE?5) to increase the validity of our work. Finally, in section 6 we discussed the conclusion.

2. Preliminaries

Definition 2.1 ( [32]). An operation * : [0, 1] X [0, 1] — [0, 1] is known as a continuous 7-norm if it
holds the following;

(1) = is associative, commutative and continuous.

(2) 1xp; = p; and p; * p, < p3 * pg, Whenever p; < p; and p, < p4, for each py, p2, 03,04 € [0, 1].

The basic continuous #-norms are (see [32]): The minimum, the product and the Lukasiewicz t-
norms are defined respectively as following;

p1 ¥ p2 =minfpy, po},  p1r*p2=p1p> and  pyx pr = max{p; +pp - 1,0}
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Definition 2.2 ( [3]). A 3-tuple (W, M, %) is said to be an FM space, if W is a nonempty arbitrary set,
* 1s a continuous f-norm and M is a fuzzy set on W X W X (0, oo) satisfying the following;

(1) Mr(w,x,t) >0and Mr(w,x,t) =1 & w = x.
(i) Mp(w,x,t) = Mp(x,w,1).
(1)) Mpw,y,t) * Mp(y, x,5) < Mp(w, x,t + ).
@iv) Mgr(w, x,-) : (0, 0) — [0, 1] is continuous.
forall w,x,y € Wandt,s > 0.
Definition 2.3 ( [3,8]). Let (W, Mg, ) be an FM space, w € W and {w,,} be a sequence in W. Then,

(i) {w,,} is said to be convergent to a point w € W if lim Mg(w,,, w,t) = 1 for ¢t > 0.

m—00

(i1) {w,,} is said to be a Cauchy sequence, if for each 0 < € < 1 and ¢ > 0, there is m, € N such that
MeWi,wp, 1) > 1 —€, ¥ k,m > my.

(ii1) (W, Mg, *) is said to be an FM space if every Cauchy sequence is convergent in W.

(iv) {w,} is called a fuzzy contractive, if 3 8 € (0, 1) so that

1 1
-1< -1 fort >0, and m > 1.
MF(Wma Wm+l’t) ﬁ(MF(Wm—la Wmst) )

Definition 2.4. [17] Let (W, Mg, %) be an FM space. Then fuzzy metric M is triangular if,

1

——1S(——1)+(——1) Yw,x € W, and ¢ > 0.
Mrp(w, x,t) Mgp(w,y, 1) Mgp(y, x,t)

Note: A fuzzy metric Fy, is triangular, if M : W X W X (0, c0) — [0, 1] is defined by

t
Mrw,x,t) = ——— VYw,x€ W, andr > 0.
t+|w— x|

Lemma 2.5 ([17]). Let (W, Mg, ) be an FM space. Let w € W and {w,,} be a sequence in W. Then
Wy = wiff lim Mp(wy,, w,t) = 1, for t > 0.

Definition 2.6 ( [8]). Let (W, Mg, ) be an FM space and G : W — W. Then F is called a fuzzy
contraction, if 3 4 € (0, 1) so that

1 1
-1 <h|l——-1] VYw,xe W, andt > 0. 2.1
MF(F]W,F]X,I) B (MF(vaat) ) Wt . g ( )
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3. Generalized common fixed point results on FM spaces

Now we present our first main result.

Theorem 3.1. Let (W, Mg, *) be a complete FM space in which My is triangular and a pair of self-
mappings F, F, : W — W satisfies,

1 1
-1+ -1
1 1 Mp(w, Fiw, 1) Mp(x, Fox, 1)
-1<a|l——-1|+b 1 1
Mp(F\w, Fax, 1) Mgp(w, x, 1)

1]
Mp(x, Fiw, 1) Mp(w, Fyx,t) G.D

1 1
+c|— -1|+d -1/,
mln{MF(W7 F1W7 t)a MF(x’ sz’ t)} maX{MF(W7 F2x’ t)a MF(X’ F1W7 t)}

YVwaxeW t >0 and a,b,c,d € [0,1). Then F, and F, have a common fixed point in W if
(a+4b+c) < 1. Moreover, if (a+2b+d) < 1, then Fy and F, have a unique common fixed point in W.

Proof. Fix wy € W and define a sequence {w,,} in W such that
Womet = Fiwa, and  wopo = Faowayyy  forallm > 0.

Now by a view of (3.19), we have
1 1

_1= -1
MeWoni1, Woms2, 1) Me(Fiwop, Fowopmyt, 1)
1 1
-1+ -1
< a( 1 _ 1) +b Mp(Wop, Fiwop, t) MrWans1s FoWomyr, 1)
A\ Mr(Wam Woms1, 1) 1 1+ 1 1
MF(W2m+1, F1W2ma t) MF(WZm’ F2W2m+l, t)
( 1 )
+c|— -1
min{Mp(Wap, F1Wom, 1), ME(Wami1, FoWapsr, )}
1
+ d( - 1)
max{MpWap, Fowami1, 1), MEWopi1, Fiwom, 1)}
1 1
-1+ -1
1 Mp(Wom, Wons1, 1) MrWoni1, Woms2, 1)
<a —11+b 1
Mp(Wams Woms1, 1) +

MF(W2m, Wom+2, t) -
1 1
+ c( - - 1) + d( - 1)
min{Mp(Wap, Woms1, 1)y MEWami1, Womsa, )} max{Mp(Wap, Wams2, 1), 1}
Then, for ¢t > 0, we have

1 1
-1< a( - l)
Mr(Wamni1, Woms2, 1) MW, Wams1, 1)

1 1 1
+b( -1+ I+ —1) (3.2)

Mp(Wapm, Wans1, 1) Me(Wani1, Womsa, 1) Mp(Wom, Wons2, 1)

1
+ c( - - 1)
mln{MF(WZma Wom+1, t), MF(W2m+1 s Wom+2, t)}
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Now two possibilities arise,

(i) If Mp(Wom, Womst, 1) 18 @ minimum term in {Mp(Wam, Woms1, 1), ME(Wams1, Wams2, 1)}, then after
simplification, (3.2) can be written as;

1 _a+ 2b + ¢ ( 1
Mr(Wopmi1, Wams2, 1) - 1-2b \Mp(Wapm, Woms1, 1)

- 1) for > 0. 3.3)

(i) If Mp(Womi1, Wams2, 1) is @ minimum term in {Mp(Wap, Wani1, £y ME(Wapmi1, Wamsa, 1)}, then after
simplification, (3.2) can be written as;

1 a+2b ( 1

< -1 for > 0. (3.4)
Me(Woni1, Womsa, 1) — 1 1 =2b—c\Mpr(Wam, Wam1, 1) )

a+2b+c _a+2b

Let us define 8 := max({ } < 1, then from the above two cases, we get that

1-2b > T—2b—
1 1
-1<p -1 for ¢ > 0. 3.5
Mpe(Wami1, Womsa, 1) Me(Wam, Woms1, 1)
Similarly,
1 ) 1 |
Mr(Womi2, Wome3, 1) M (Fowomst, F1wopmsn, 1)
1 1
- 1 + —
( 1 B 1) +h MrWams2, F1Womia, 1) MrWamst, FoWomi1, 1)
MF(W2m+2a Wom+1s t) + 1 _ + 1
Mr(Woms1, Fiwomsa, 1) Mr(Womsa, FoWopmyr, 1)

1
-1
(mln {Mr(Wamsa, Fiwamia, 1), MEWomi1, Fowamer, 1)) )

+d

1 1
-1

-1+
Me(Wani1, Womsa, 1) Me(Wani2, Wome3, 1)
-1|+b 1
+ -1
MeWami1, Woms3, t)

1
-1
(max {MrWomi1, Fiwami2, 1), MEWopia, Fowame, 1)) )

MF(W2m+1 s Woms2, 1)

1
(min{MF(WzmH, Woms2, 1), ME(Wami2, Wome3, 1)} )

1
d( _ 1)
max{Mp(Waps1, Wam3, 1}
Then, for ¢t > 0, we have

1 1
-1< a( - 1)
Me(Woni2, Wome3, 1) Me(Womi1, Womsa, 1)

1 1 1
+b( -1+ -1+ -1 3.6)

MeWoni1, Womsa, 1) Mp(Woni2, Woms3, 1) MpeWami1, Woms3, 1)

1
c|l— -1
(mln{MF(W2m+1 s W2, 1)y ME(Woms2, Wome3, )} )
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Now again there are two possibilities that arises,

(1) If Mp(Wams1, Woms2, 1) is @ minimum term in {Mr(Wams1, Wams2, 1), MF(Wapmi2, Wams3, 1)}, then after
simplification, (3.6) can be written as;

1 a+2b+c( 1

-1< —1] for t>0. 3.7
Mp(Wani2, Wome3, 1) 1=2b \Mp(Wyjs1, Wi, 1) )

(i) If Mr(Woms2, Wome3, 1) is @ minimum term in {Mg(2j1, Woms2, 1), Mp(Womso, Womes, 1)}, then after
simplification, (3.6) can be written as;

1 a+2b ( |
<

< —1| for t>0. (3.8)
MF(W2m+2, Wom+3, t) - 1 1 - 2b —-C MF(W2m+1, Wom+2, t) )

Then

! 1 S,B( ! - 1) for >0, (3.9)

Mp(Wami2, Woms3, 1) MEeWami1, Womsa, 1)

where £ is similar as in (3.5). Then, from (3.5) and (3.9), and by induction, for # > 0, we have

1 1
-1< ﬂ( - 1)
Mp(Wani2, Wome3, 1) Me(Wami1, Womsa, 1)

< ﬂz( ! - 1)
Mr(Wam, Wons1, 1)

S"'Sﬁ2m+2( 1

— 1| >0, asj— oo.
MF(WO’Wlat) )

Hence, proved that {w,,}.>0 1s a fuzzy contractive sequence in W, that is,

lim MWy, Wis1,t) =1 forz > 0. (3.10)

m—00
Since My is triangular, for kK > m and ¢ > 0, then we have

1

el |
Mp(Wp, Wi, 1)

1 1 1

s( _1)+( _1)+...+(—_1)

MpeWp, W1, 1) MeWpi1, Wins2, 1) Mp(Wi_1, wi, 1)

1
< m+ m+1+”.+ k—1 (—_1)
('8 F F ) Mp(wo, wi, 1)
i 1

S(ﬁ )( —1)—)0, as m — oo,

1 =B \Mp(wo,wi,1)

which shows that {w,,} is a Cauchy sequence. Since, by the completeness of (W, M, ), 4 k € W such
that
lim Mg(k,w,,,t) =1 fort> 0. 3.11)

m—0oo
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Now we have to show that F'ix = k, since M is triangular, therefore

1 1
——1S(——1)+( —1] fort>0. (3.12)
MF(K’ F1K7 t) MF(Ka Wom+2, t) MF(W2m+2’F1K7 t)
Now by using (3.19), (3.11) and (3.10), for ¢ > 0, we have
! 1= ! 1
Mp(Wops2, Fik, 1) Mp(Fowopsr, Fik, 1)
1 1
-1+ -
< a( 1 B 1) b MF(W2m4il’ Fawypi1, 1) MF(IK, Fik,1)
MF(W2m+]7K’ t)

— 1 + —
Mgk, Fowopyt, 1) Mr(Woms1, Fik, 1)

1
-1
(mln {Mr(Wams1, Fowomir, 1), Mp(k, F ik, 1)} )

1
+d -1
(maX{MF(WzmH,FlK D, Mp(k, Fowazi1, 1)} )
1 N 1
( 1)+b Mp(Wani1, Woms2, 1) Mgk, Fik, 1)
MF(W2m+1,K 1) I 1

- 1+ —
MF(K9 Wom+2, t) MF(W2m+19FlK9 t)

1
-1
(mm {Mr(Woms1, Woms2, 1), ME(k, F1k, 1)} )
1
+d -1
( 1)

max{Mp(Waps1, F1&, 1), Mp(K, Womi2, 1)

2b+c)|—— -1 i .
- ( C)(MF(K, Fir) ) as j — oo
Then,
1
lim su —-1|<2b+0) (— - 1) fort > 0. (3.13)
m—eo p(MF(W2m+29 FlK’ t) ) MF(K9 FlK’ t)
The above (3.13) is together with (3.11) and (3.12), we get that
— —1<2b+c)|———— 1| fort>0.
MEg(k, Fik, 1) ( 9 (MF(K, Fik, 1) ) o

As (2b + ¢) < 1, where (a + 4b + ¢) < 1, therefore Mg (k, Fk,t) = 1, this implies that F i« = «.
Similarly, again by triangular property of My,

1 1
L (— _ 1) N (
Mp(k, Fok, t) Mgk, Waps1, 1) Mp(Woni1, Fak, 1)

Again by using (3.19), (3.10) and (3.11), similar as above, after simplification, we get

- 1) fort > 0. (3.14)

lim sup( ! - 1) <(2b+ c)( - 1) fort > 0. (3.15)

m—eo MF(W2m+17F2K, t) MF(K7 F2K, t)
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The above (3.15) is together with (3.11) and (3.14), we get that

1

-  _ for ¢ > 0.
Mgk, Fak, t)

13(2b+0)(m—1)

As (2b + ¢) < 1, where (a + 4b + ¢) < 1, therefore Mg(k, Fk,t) = 1, this implies that F,x = «. Hence
proved that « is a common fixed point of F; and F5.

Uniqueness: let k* € W be the other common fixed point of F; and F; such that F1«* = Fk* = «*, then
again by the view of (3.19), for r > 0, we have

1 1
- 1= -1
MF(K’ K*at) (MF(FIKa FZK*’I) )
1 1
1 Mok Fen e
<a —1+b FK’llK’ FK’IZKa
Mp(k, k*, 1)

O S O ——
Mp(k, Fok*, 1) M, (k*, Fik,1)

1
+c|— -1
(mln{MF(K, Fik, 1), Mp(k*, FoK*, 1)} )

1
+d|— . -1
min{ Mg (k, Fak*, 1), Mp(k*, Fik, 1)}

1
= 2b+d)|—— - 1| = 2b+d -1
(@x2brd) (MF(K,K*,z) ) (ax2bs )(MF(FIK,sz*,ﬁ )
1 1
< 2 2——— _ql<..-< 2 L |
<(a+2b+d) (MF(K,K*,t) )_ <(a+2b+d) (MF(K,K*,t) )—>O, as m — oo,

where (a + 4b + d) < 1. Hence we get that Mp(k, «*,t) = 1, this implies that k = «*. Thus, F| and F,
have a unique common fixed point in W.
If we put d = 0 in Theorem 3.1, we get the following corollary;

Corollary 3.2. Let (W, Mg, *) be a complete FM space in which M is triangular and a pair of self-
mappings Fy, F, : W — W satisfies,

1 1
_ l+— -1
1 Meg(w, Fiw, 1) Mg(x, Frx, 1)
-l <al—————-1|+b 1 1
Mp(Fiw, Fax,t) Mg(w, x, 1)

+ -1+ -1
Mp(x, Fiw, 1) Me(w, Fax, 1) (3.16)
1
+c|l— 1
(mm{MF(W, Fiw, 1), Mp(x, Fx, 1))

YVw,xeW, t>0, anda,b,c € [0,1) with (a+4b + c) < 1. Then Fy and F, have a unique common
fixed point in W.

If we put ¢ = 0 in Theorem 3.1, we get the following corollary;
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Corollary 3.3. Let (W, Mp,*) be a complete FM space in which My is triangular and a pair of self-
mappings F, F, : W — W satisfies,

1 1
1 Moo Fond) T Mo Fort)
—1l<qg|l——-1|+b F(W’llw’) F(xa12xa)
Mp(Fyw, Fox,1) Mp(w, x, 1)

+ -1+ -1
MF(x7 FlW,t) Mr(w, Fox, [) (317)

1
+d -1],
max{Mp(w, Fox,1), Mp(x, Fiw, 1)}

VYw,xe W, t>0, and a,b,d € [0, 1) with (a +4b +d) < 1. Then F and F, have a unique common
fixed point in W.

If we put ¢ = d = 0 in Theorem 3.1, we get the following corollary;

Corollary 3.4. Let (W, My, *) be a complete FM space in which My is triangular and a pair of self-
mappings Fy, F, : W — W satisfies,

1
—-1<a ; —1|+c|— ! -1
Mp(Fiw, Fax,t) Mp(w, x, 1) min{Mg(w, Fyw, ), Mp(x, Fax, )} (3.18)

1
+d -1
maX{MF(W’ FZX, t)7 MF(-X’ F]W’ t)}

YVw,xeW t>0, and a,c,d € [0,1). Then F and F, have a common fixed point if (a + ¢) < 1.
Moreover, if (a + d) < 1, then F and F, have a unique common fixed point in W.

If the mapping F| = F, in Theorem 3.1, we get the following corollary;

Corollary 3.5. Let (W, Mg, *) be a complete FM space in which M. is triangular and a self-mapping
F,: W — W satisfies,

1
-1+ ! -1
1 B u 1 B +b Mp(w, Fiw, t) Mp(x, Fix,1)
Mp(Fiw, Fix,1) Mp(w, x, 1) 1 !

+ -1+ -1
Mp(x, Fyw, 1) Me(w, Fix, 1) (3.19)

1 1
—1l+4 -1
C(min{MF(W, Fiw, ), Mp(x, Fx,1)} )+ (maX{MF(W, Fix,t), Mp(x, Fiw, 1)} )

VYVw,xe W, t>0, and a,b,c,d € [0,1). Then F, has a fixed point if (a + 4b + ¢) < 1. Moreover, if
(a+4b+d) < 1, then Fy has a unique fixed point in W.

Example 3.6. Let W = [0, c0) and 7-norm is a product continuous t-norm. Let My : WX W x (0, c0) —
[0, 1] be defined as

t 2w — x|
- h =
T dov ) where d(w, x) 3

¥V w,x e Wandt > 0. Then (W, Mg, ) is complete. The mappings Fi, F, : W — W be defined as

Mg(w, x,1) =

AIMS Mathematics Volume 7, Issue 6, 11243—-11275.
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2 1
N ifwelo, 1],
5 10
F1W = 3
—%+3,ﬁwe(Lm)
And,
2 1
X ifxelo1],
5 10
Far=1,0 60
22 ifxe(l, o)
7 7
Then we have
1 1_2|F1w—F2x|_4|w—)c|_2 1 1
Me(Fiw, Fax, 1) B 3t 15t 5\ Me(w, x, 1)
1 1
S ——— |
< z 1 1)+ i Mp(w, Fiw, 1) Mg(x, Fox, 1)
=5\ Mrom, 2 0) 0 , 1 !

S R ——
Mp(x, Fiw, 1) Mp(w, Fax,t)

2 1 2 1
+ = -1]+= -1].
7 (min{MF(w, Fiw, 1), Mp(x, Fax, 1)} ) 7 (maX{MF(w, Fax,t), Mp(x, Fiw, 1)} )

Hence all the conditions of Theorem 3.1 are satisfied with a = 2,b = 5, and ¢ = d = 2, where

(a+4b+c) = % <land (@a+2b+d) = % < 1, the self mappings F; and F, have a unique common
fixed point, that is, F1(12) = F»(12) = 12 € [1, o0).

In the following theorem, we use a function ¢ : [0, co) — [0, co) such that ¥(0) = 0, and Y(¢) < &,
for £ > 0, and prove a unique common fixed point result in FM spaces.
Theorem 3.7. Let F\,F, : W — W be a pair of self-mappings on a complete FM space (W, M, %) in
which My is triangular. Suppose that there exists a non-decreasing function  : [0, 00) — [0, co0) with

W(0) =0, Y(€) <&, foré>0and Y W (€) < oo, & > 0 such that the following inequality holds;
m=0

: 1<y ! -1
MF(F1W9 sza t) N(F19F2’ w, X, t)
1 ). L) (3.20)
Mp(w, Fiw,t) Mg(x, Fox,t)

+ £ min 1 1 1 1 ,
Mp(x, Fyw, 1) "\ Mp(w, Fyx,t)
where

1
(MF(w, X0 1)’
1

1 1
-l=max{ |[—— - 1],|—— -1},
N(FI’F2’W’x?t) MF(W,FlW,t) MF(X,FZX,I)

1 1 1
Sl L S . S
4(MF(X7FIW’I) MF(W,FZX,I) )
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forallw,x € W, £ € (0, 1), then F and F, have a unique common fixed point in W.

Proof. Fix wy € W and define a sequence {w,,} in W such that

Wome1 = Fiwa,  and - wopo = Fowops

Now by the view of (3.20), for 7 > 0,
1 1

= -1
MrWami1, Womsa, 1) Mp(Fiwop, FoWopyi, 1)

1
<o -
N(F1, Fo, Wom, Wom1, 1)

1
-1},
(MF(Wzm,Flwzm,f) ) (

)

1
MF(W2m+1’ F1W2ma t)

+ { min (

1
| )
N(F\, Fa, Wom, Wams1, 1)

1
-1},
(MF(Wzm,W2m+1J) ) (

+ ¢ min 1
(MF(W2m+1,W2m+la )
where
! -1
N(F1, F2, Wom, Wame1, 1)

1
(MF(Wzm’ Wom+1, t)

&l

for all m > 0.

1
-1},
MeWans1, FoWomyr, 1) )

1
-1
Mp(Wap, FaWopsi, ) )

_ 1),
Me(Wamni1, Womsa, 1)

1

_1),

1

MEe(Wom, Womi2, 1)

-1+

1

1
(MF(W2m7 Wom+1, t)
1

1

= max ( —1),( —1),
Mp(wWa, F1W2m, 1) MrWams1, FoWomer, 1)
1
4

-1
(MF(W2m+1aF1W2mat) Mp(Wap, Fawapst, 1) )

_1),

= max —
Me(Wom, Wons1,1)

1
-1+

1

"\ Mr(Wams1 Wams2, 1)

_1),

1
4 (MF(WZmH’ Womnt1, 1) Me(Wom, Womi2, 1)

1 1
Mp(Wam, Wons1, 1) Mp(Wani1, Woms2, 1)

1

which is further implies that

1 1
—1 <y (max
Me(Wani1, Wamsa, 1) l//( {(MF(Wzm,WzmH, 1)

AIMS Mathematics

)

1))

)
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Now if,

1 1
—1>( —1) fort > 0,
MF(W2m+l’ Wom+2, t) MF(WZm’ Wom+1, t)

then for ¢ > 0, we have

1 1 1
—1sw( —1)<( —1),
Me(Wani1, Womsa, 1) MeWami1, Woms2, 1) MeWami1, Woms2, 1)

which is a contradiction. Hence,

! 1<zp( ! 1) for ¢t > 0.

MF(W2m+la Wom+2, t) B MF(WZma Wom+1 t)

Similarly, it can be shown that

1 1
13;0( —1) for ¢t > 0.

Mre(Womi2, Woms3, 1) MEeWomni1, Womsa, 1)

Thus, by induction for all m > 0 and ¢ > 0, we have that

1 1
1< ¢( _ 1)
MF(Wma Wi+l t) MF(Wm_l, Wi, t)

< a/ﬂ( 1 ~ 1)
MF(Wm—Z’ Win-1, t)
< .. Slﬁm(;— 1).
MF(WOa W19t)

Hence, for k > m and ¢ > 0,

1

S |
MF(Wm’ Wi, t)

1 1 1
s( —1)+( _1)+...+(—_1)
MF(Wm’ Wi+l t) MF(Wm+la Win+2s t) MF(Wk—b W, t)
1 1 1
R el M
Mg(wo, wi, 1) MEg(wo, wi, 1) MEg(wo, wy, 1)

S |
s ;'ﬁ (MF(WO,WlJ) B 1)'

Since, mZ:O Y (m - 1) < oo, hence {w,} is a Cauchy sequence and from the completeness of

(W, Mg, %), it follows that w,, — « € W, as m — oo. This can be written as
lim Mg(w,,,k,t) =1 for ¢t > 0. (3.21)

Now we have to show that F'\x = «, since M is triangular, therefore

1 1
——13(——1)+( 1
MF(K’ F1K7 t) MF(Ka Wom+2, t) MF(W2m+2’F1K7 t)

fort > 0. (3.22)
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Now from (3.20), for ¢ > 0, we have
1 - 1
Mr(Wani2, F1k, 1) Mp(Fik, FoWopst, 1)

-1

<¢/( ! 1)
B N(F17F25K5W2m+l’t)

1 1
-1}, -1],
(MF(K, Fik, 1) ) (MF(W2m+laF2W2m+lat) )

+ { min ( 1 1) ( 1 1)
Mr(Waps1, Fik, 1) "\ Mp(k, FaWoms, 1)

1

N Foxmnd) 1) in the above inequality and then from (3.21), for

Now we substitute the value of (
t > 0, we have that
1

Mp(Wopnia, Fik, 1) -

1
E—————]
(MF(W2m+l’ K$ t) )

1 1
< /| max (—_1),( _1),
Mp(k, Fik, 1) MrWams1, Fowamir, 1)

1 1 1
- -1+ -1
4 (MF(WZmH’ Fik,1) Mgk, FoWopsr, 1) )

1 1
_ 1Y, -1],
Mgk, Fik, 1) ) (MF(W2m+1,F2W2m+1,l) )

+ ¢ min ( 1 1)( | 1)
MW, Fi1k, 1) "\ Mg(k, FaWaps1, 1)

1
E———
(MF(W2m+1,K, 1) )

1 1
= | max (—_1),( _1),
Mp(k, Fik, 1) MeWamni1, Womsa, 1)

1 1 1
- -1+ -1
4 (MF(WZmHa Fik, 1) Mgk, Woms2, 1) )

1
S
+ fmin M (k, Flf,t) ) (MF(W2m+1,W2m+2,f) )
-1
(MF(W2m+1»F1K’ 1) ) (MF(K W2m+2’t) )

1
s> Yyl—-1].
Mp(k, Fik, 1)
Then,

1 1
. )<yl 1) forr>o. 323
jn sup (MF(w2m+2,F1K,t) ) l//(MF(KaFIK,t) ) o 429

The above (3.23) is together with (3.21) and (3.22), for ¢t > 0, we have that

1 1 1
— <y|l— ) <[——1],
MF(Ka FIK’ t) MF(K’ Flka t) MF(K7 F1K, t)
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which is a contradiction. Hence, Mp(k, Fik,t) = 1 = Fkx = k for t > 0. Similarly, by the triangular
property of M,

1 1
_L (— . 1) +(
MF(K’ F2K9 t) MF(Ka Wom+1, t) MF(W2m+l’ F2Ka t)

- 1) for ¢ > 0. (3.24)

Again by using (3.20) and (3.21), similar as above, after simplification, we get that

1
ml_r’Ic}o Sup(MF(W2m+17F2K7 t) ) (//(MF(K’ FZK’ t)

The above (3.25) is together with (3.21) and (3.24), we have that

1 1
— 1<yl <[— 1],
Mp(k, Fak, t) Mp(k, Fak, t) Mp(k, Fak, t)

which is a contradiction. Hence, Mp(k, Fok,t) = 1 = Fyk = k for t > 0. Hence proved that « is a
common fixed point of F; and F>,.

Uniqueness: let k* € W be the other common fixed point of F; and F; such that F1«* = Fk* = k", then
again by the view of (3.20), for r > 0, we have

- 1) forr > 0. (3.25)

1 1
_ 1= —
MF(K7 K*at) MF(F]K7 FZK*at)

1
<y 1
N(F19F29K5K*’t)
(ireren ) s )
+ {min Mp(k, 1171K, )] MF(K*’fZK*at)
)
(MF(K*’F1K7 t) ) (MF(K9 FZK*at) )
1
——
(MF(K,K*J) )

1 1
=y |max{ [——-1|,|—— - 1],
MF(K’FIKat) MF(K*’FZK*’I)

1 1 1
o
4 (MF(K*,F1K, 1) Mg (k, Fok*, 1) )

1 |
— i) [———1).
+£mln MF(K’};IK’t) ) (MF(K*7I172K*7I) )

————— e
MF(K*’FIK’ t) MF(K9 FZK*at)

1
(MF(K K*, 1) B 1)’
1
= ¢ |max ( Mp(k, k, t) ) (MF(K*,K*,I) B 1)’
1 1
4 MF(K K, t) MF(K K*, 1)
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+ ¢ min (

1 1
—_— -1, |—-1].
Mpg(k, &, 1) ) (MF(K*,K*,I) )

1 1

) ——
MF(K*’K’ t) ) MF(Ka K*7t) )

1
- l/’(MF(K, K*, 1)

Hence, we get that

1
Mp(k,k*,1)

_1),

< tl/(— - 1) <
Mp(k, k*, t) Mp(k, k*, 1)

_1,

which is a contradiction. Hence, Mg(k,k*,t) =1 = k= «*fort > 0.
If we define a mapping ¢ by ¥(€) = A€ in Theorem 3.7, where 4 € (0, 1), we get the following

corollary;

fort > 0,

Corollary 3.8. Let (W, My, x) be a complete FM space in which My is triangular and a pair of self

mappings F, F, : W — W satisfies,

1 1
-1<4 -1
MF(F]W,FQX,I) N(F17F27W7-x7t)

+ £ min

where

1

— 1 = max
N(Fy, Fy,w,x,1)

1
(MF(w, Fiw,1)

1
(MF(x, Fiw,1)

1
1], ———
) (Mp(x,sz,t)

1
1 -
), (MF(W9 F2x’ t)

1
(MF(w,x, H 1)’

(MF(W Fiw, 1)

(MF(X Fiw, f)

1
-1, |—
) (Mp(x,sz,t)
1

+ -
Mp(w, Fax,t)

_1),
)

_1),
)

(3.26)

Vw,xe W, 1€ (0,1)and € > 0. Then F, and F, have a unique common fixed point in W.

If we put ¢ = 0 in Corollary 3.8, we get the following corollary;

Corollary 3.9. Let (W, Mg, *) be a complete FM space in which M is triangular and a pair of self

mappings Fy, F, : W — W satisfies,

1

-1 < Amax
MF(FIW?FZX’I)

1
(MF(W, X, 1) B 1) ’

1
(MF(w, Fiw,1)

1
) ’ (MF(x, Fyx, 1)
1

1 1
4 MF(X, F]W, t)

+
MF(W7 sz, t)

Vw,xe W, 1€ (0,1). Then Fy and F, have a unique common fixed point in W.

AIMS Mathematics

)
)

, (3.27)

Volume 7, Issue 6, 11243—-11275.



11258

Definition 3.10. A self-mapping F; will be called weakly contractive on a complete FM space
(W, Mg, %), i.e., F; : W — W, if there exists a continuous and non-decreasing function ¢ : [0, c0) —
[0, 00) such that ¢(7) = 0 if and only if 7 = 0, lim ¢(7) = oo and satisfying

1

— 1< |—-1]- Yw,xe Wand > 0. (3.28)
Mrp(w, x, 1) Mr(w, x, 1)

1
(’O(MF(W,x, H 1)’

Theorem 3.11. Let a pair of weakly self-contractive on a complete FM space (W, Mg, *), that is,
F\,Fy : W — W in which a fuzzy metric My is triangular and satisfies,

1
s —1]-
MF(FIW’ sz, t) MF(W7 X, t)

® Yw,xeWandt >0, (3.29)

1
(MF(W, xt) 1) ’

where ¢ : [0, 00) — [0, ) is a continuous and monotone non-decreasing function with ¢(t) = 0 if and
only if T = 0 and lim ¢(1) = co. Then F and F, have a unique common fixed point in W.
T—00

Proof. Fix wy € W and define a sequence {w,,} in W such that
Wome1 = Fiwo,, and  wo0 = Fowy,y  forallm > 0.

Now by view of (3.29), for ¢ > 0,
1 1

= -1
MrWami1, Wamsa, 1) Mp(F1wopm, FoWopyr, 1)

1 1
< -1]- -1 3.30
(MF(WZm’ W, 1) ) SD(MF(Wzm,Wzm,f) ( )

1
< ( — 1).
MpWapm, Wons1, 1)

Similarly, for ¢ > 0,

1 1
Mp(Wams2s Wams3, )  Mp(Fi1Wamsz, FaWoet, 1)
1 1
R
MF(W2m+zI Wom+1, ) MrWams2, Wom, 1) (3.31)
< - 1)
MreWams1> Woms2, 1)
1
< — 1|, by using (3.30).
Mp(Wam, Wams1, 1) ) Y s
Thus (m - 1) is a monotone decreasing sequence of non-negative real numbers and

convergent to some point g as j — co. Let we denote (m - 1) by 02,+2. Then, we have that

Oami2 — 0 as m — co. Now we have to prove that o = 0. If not, then on taking m — oo, we have

1 1
-1]< -1+ -1 fort > 0,
(MF(Wm7 Wm+1’t) ) (MF(Wm—l’Wm’ t) ) (p(MF(Wm—l’wm’ t) )
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which gives that
0<0-¢lo)<o,

1

Ve 1) = 0, — 0as m — oo, this can be written as

a contradiction. Hence, we conclude that (

lim Mp(Wp, Wis1, 1) =1 forz > 0. (3.32)

m—00

Next we have to prove that {w,,} is a Cauchy sequence. Let {m(7)} and {k(i)} be the increasing sequences
of integers and there exists € such that for all integers i and p(i), n(i) > 0,

m(i) =2p(A) + 1 > k(i) =2n@{@) > i, or m(i) =2p@) > k@) =2n@)+1>1.

This implies that

1
( —1)25 for ¢ > 0,

MWy Wingiy» 1) (3.33)

1 1
:>( —1)2801‘( —1)28fort>0,
M (Wangiys Wap(iy+1» ) M EWangiys1, Wap(iy, 1)

and

1
( —1)<s fort > 0,
M EWigiys Wingiy-1, 1)

1 1
:,,( —1)<sor( —1)<8fort>0.
M E(Wangiy-1, Wap(iy» 1) M E(Wangiys Wap(iy-1,1)

(3.34)

By taking limit i — oo on the above (3.34) and by using (3.32), we have that

1
_lim(M( t)—l):s fort > 0,
=00 W i’Wmi—’

F(Wi(i)s Wn(i)-1 (3.35)

1 1
:>lim( —l)zsor lim

. . ( —l)zsfort>0.
i=oo \ Mp(Wangiy-1, Wap(iy» 1) i=oo \ Mp(Wangiys Wop(i-1» 1)

Then, from (3.33), (3.29) and (3.34), for ¢t > 0, if

1
L -
MrWiiy, Wingiy» 1)
_ 1
MEWaniys Wangiy+1, 1)
1

M p(Fiwapiy, FaWoniy-1,1)

1

1

1 1
< - 1) - 90( -1].
M (Wangiy-1, Wapiy» 1) MEWan(iy-1, Wap(iy> 1)

Now by applying limit i — oo and from (3.35), we get

e<e—ye) <e, (3.36)
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which is a contradiction. Similarly, again from (3.33), (3.29) and (3.34), for ¢ > 0, if

1
e < -
MWy Wingiy» 1)
_ 1
M (Wangiye1, Wapiy» 1)
1

Me(F 1wy, Fowapiy-1,1)

1

1 1
< — 1) - (,0( - 1) .
M (Wangiy, Wap(iy-1» 1) M E(Wangiys Wap(iy-1,1)

By taking limit i — oo and from (3.35), we get
ee—yple)<e, (3.37)

which is also a contradiction. Therefore, in both cases, that is (3.36) and (3.37), we got a contradiction.
Hence proved that {w,,} is a Cauchy sequence in W. Now from the completeness of (W, M, %), it
follows that w,, — xk € W, as m — oo. This can be written as

lim Mp(Wp,k,t) =1 for ¢t > 0. (3.38)

Now we have to show that Fix = k. Since M is triangular and from (3.29) and (3.38) for r > 0, we

have that
1 1 1
— < |— 1]+ - 1)
Mg (k, Fik, 1) Mp(k, Wopsa, 1) Mp(Wopnia, FiK, 1)

1 1
={— + -1
Mp(k, W2, 1) Mp(Fawopir, Frk, 1) )

< 1

1 1 1
— 1]+ ——1)—¢(——
MF(K’ Wom+2, l) MF(W2m+1 » K, l) MF(W2m+1 » K, t)

— 0 asj— oo

Hence, Mp(k, F1x,t) = 1 = Fik =k for t > 0. Similarly, by the triangular property of My, and again
from (3.29) and (3.38) for ¢ > 0, we have that

1 1 1
S Y (S — - 1)
Mp(k, Fak, 1) Mgk, W1, 1) Mp(Woni1, Fok, 1)

1 1
=]l — 1 + - 1
Mgk, W1, 1) Mp(F 1w, Fak, 1) )

1 1 1
B Y S N A R
Mgk, W1, 1) Mp(Woyp, &, 1) Mp(Won, &, 1)

— 0 asm — oo.

Hence, Mp(k, Fok,t) = 1 = Fyk = k for t > 0, which shows that « is a common fixed point of the
mappings F; and F,.
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Uniqueness: let k* € W be the other common fixed point of F; and F; such that F1«* = F«* = k", then
again by the view of (3.29), for r > 0, we have

1 1
- 1= -1
Mp(k, k*,t) Mp(F ik, Fok*, 1)

i ot )
Mrp(k, k*, 1) Mrp(k, k*, 1)

which by the property of ¢ is contradiction unless Mg(x,k*,t) = 1, = k = «*. Hence proved that F;
and F, have a unique common fixed point in W.

Example 3.12. Let W = [0, 00) and #-norm is a product continuous -norm. Let My : WX W x (0, c0) —
[0, 1] be defined as

Mr(w, x,t) = Yw,x € W, and ¢t > 0.

t+w—x

Then (W, Mg, %) is complete and M is triangular. Now we define F,F, : W — W by Fi(w) =
Fr(w) = @, ¥ w € [0, 1]. Further, a mapping ¢ : [0, 00) — [0, o) be defined as ¢(r) = 7, for 7 > 0.

Then, from (3.29), for r > 0, we have

1 1_|F1W—F2X|
MF(F]W7 sz, t) B 1t
w2 = )
4
lw — x|
-2t
_w=a wa
¢ 2t

1 1
B (Mp(w,x, 1) B 1) _('D(Mp(w,x, 1) B 1)’

for all w, x € W. Hence the conditions of Theorem 3.11 are satisfied and the mappings F; and F, have
a unique common fixed point in W, thatis, F(2) = F,(2) =2 e W.

4. Generalized Ciri¢-contraction results on FM spaces

In this section, we define a generalized Ciri¢ type of fuzzy contraction on FM spaces and present a
unique common fixed point theorem for a pair of self-mappings on a complete FM space.

Definition 4.1. Let (W, Mg, x) be an FM space. A self-mapping F'; : W — W is said to be a generalized
Ciri¢ type fuzzy-contraction if 3 « € (0, 1) such that
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1

MF(F1W7 le’ t)

Yw,xe Wandt > 0.

— 1 < amax

1
(Mp(w,x, n 1)’

(MF(W F1W I) 1)’(

1

MF(x’ Fl-x’ t)

1
(M (x, Flw 1) 1)’(MF(W, Fix,t)
1( b1
2\ Mrp(w, F1w t) Mp(x, F1x,1)
1( o1
2\ Mp(x, Flw t) Mr(w, Fix,t)

_1),
_1),
_1),
_1)

4.1)

In the following, we present a more generalized Ciri¢ type fuzzy contraction result for a pair of
self-mappings to prove that a pair of self-mappings on a complete FM space have a unique common

fixed point.

Theorem 4.2. Let (W, Mg, *) be a complete FM space in which My is triangular and a pair of self-

mappings F, F; :

1

Mp(Fiw, Fax, 1)

W — W satisfies,

+ S max

1
_a(MF(w,x,t) B 1)

1
(Mp(w, X, 1) B 1)’

1
Mp(w, Fyw, 1)
1

(MF(x, Fiw,t) 1)’(MF(W, F)x, 1)
1

1

1) ’ (MF(X, FZX, t)

1

1
2 (MF(w, Fiw,1)

+
Mg (x, Fox,t)

1

1 1
2\ Mp(x, Fyw, 1)

+
Mp(w, Fax, 1)

_1),
_1),
_1),
_1)

4.2)

forallw,xe W, t>0, a € (0,1)and g > 0 with (a +28) < 1. Then Fy and F, have a unique common

fixed point in W.

Proof. Fix wy € W and define a sequence {w,,} in W such that

Wom+1

= Fiwy,

Now, from (4.2), for t > 0, we have

1

M(W2m+l s Wom+2, l)

AIMS Mathematics

and  wour = FoWwope

1

= — 1 <«
M(F 1wy, FoWopy1, 1)

form > 0.

1

Mp(Wam, Woms1, 1)

(4.3)
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1

1

1

(MF(WZma Fiwop, 1)

+ S max
p (MF(W2m+la Fiwyy, 1)

1

1

E (MF(WZm, F1W2m’ t)

1

-1},
(MF(WZm,W2m+1’ )] )

1

-1], _
) (MF(WZmH’ Fowomit, 1)

)

1
MF(WZm’ F2W2m+1 ) t) ) ’ ’
1

b

+ —
MrWaps1, FoWomi1, 1)

after simplification, we get that

1

MWoni1, Womsas 1)

1

1
2 (MF(W2m+1,F1W2m,f)

1=

|

1
+ - 1)
Me(Wom, Fowopit, 1)

1
MW, Woms1, 1) )

1
MF(Wzma W2m+lat) ),

+ S max ( -
Me(Womni1, Womsa, 1)

1

1
2 (MF(Wzm, Woms1, 1)

Then, we may have the following four cases;

N (A R
(1) If MF(Wzm,W2m+1J)

1

MWapmi1, Wams2, 1)

.. 1
(11) If MFWom+1,Wam+2,1)

1

MWami1, Womsa, 1)

“es 1
(111) If MF(WZnuWZInJrZJ)

1

MWami1, Womsa, 1)

: 1 1
(IV) If 2 (MF(Wzm,WzmHJ) 1+ Mp(Wom+1,W2m+2,1)

t > 0, we obtain

1
M(W2m+l s Wom+2, l)

AIMS Mathematics

1

) 1)
MEe(Wom, Woms2, 1)

1
1+ - 1),
Mr(Wamni1, Woms2, 1)

— 1 is the maximum in (4.4), then after simplification for # > 0, we obtain

IS/ll(

— 1 is the maximum in (4.4), then after simplification for # > 0, we obtain

1S/12(

— 1 is the maximum in (4.4), then after simplification for # > 0, we obtain

13/13(

1S/14(

1
—1), where 4, =a+ 6 < 1.

Mp(Wam, Wams1, 1)

1
- 1), where A, =

Mp(Wam, Woms1, 1)

1 o+
—1), where A3 =
MW, Wams1, 1)

1
—1), where Ay =
MpWap, Wons1, 1) ) !

4.4)

4.5)

(4.6)

4.7)

1) is the maximum in (4.4), then after simplification for

(4.8)
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Let us define y; := max{A, Ay, 43, 44} < 1, then from (4.5)—(4.8), we get that

1 1
-1< -1 fort > 0. 4.9)
MWams1, Womsa, 1) H (MF(WZma Womi1, 1) )
Similarly, again by the view of (4.2), for > 0, we have
1 1 1
—-1= -1<a -1
M(Woni2, Woms3, 1) M(Fiwopmi2, Fowomi, 1) Me(Wani2, Wome1, 1)
(o)
-1,
Mre(Wani2, Woms1, 1)
( A e i)
Mr(Waps2, Fl Woms2, 1) "\ MrWams1, FaWaps1, 1) ’
1
+ f max ( 1),( —l), ,
Mp(Woni1s F1W2m+2’ 1) MpWami2, FoWopsr, 1)
1 1
- _ -1,
2 (MF(W2m+2, Fiwopmo, 1) MeWomsr, Fowopsr, 1) )
1 ( 1 1 1)
2\ MpWams1, Fiwomia, 1) Mp(Wami2, FoWopyr, 1)
after simplification, we get that
1 1
-l=a -1
MEe(Womi2, Wome3, 1) Me(Wami1, Womsa, 1)
(o)
MpWaps1, Woms2, 1) , (4.10)

1

+ S max (

Me(Wani2, Wome3, 1)

1

1
-1+

1
— 1},
) (MF(W2m+19W2m+3’t)

_1),

d

Me(Wami2, Wome3, 1)

Mp(Wani1, Womsa, 1)

_1),

Again we may have the following four cases;

) If (— - 1) is the maximum term in (4.10), then after simplification for # > 0, we obtain
MFWam+1,Wam+2,1)

—1), where 4y =a+ B8 < 1. “4.11)

1 ( 1
-1<
MWami2, Woms3, 1) Mr(Womi1, Wams2, 1)

(1) If (m 1) is the maximum term in (4.10), then after simplification for # > 0, we obtain

< 1.

- 1), where A, = 7 nd (4.12)

1 1
C1<h (
MWapms2, Woms3, 1) Me(Wami1, Woms2, 1)

(i) If (m 1) is the maximum term in (4.10), then after simplification for # > 0, we obtain

1 1 a +,8
-1< A3 -1], where 43 = —
MWapms2, Wame3, 1) Mr(Wani1, Womsa, 1) 1-8

<1 (4.13)

AIMS Mathematics Volume 7, Issue 6, 11243—-11275.



11265

i i(__ 1t  _ I D . . .
(v) If 2( P 1+ M isd) 1) is the maximum term in (4.10), then after

simplification for ¢ > 0, we obtain

1 1 20 +
-1< /14( - 1), where A4 = @+ < 1. 4.14)
MWami2, Woms3, 1) MeWape1, Womeas 1) 2-p
Hence, from (4.11)—(4.14), we get that
! 1< ( 1 1) fort >0 4.15)
-1< - or , )
MWoni2, Woms3, 1) H MeWomie1, Woms2, 1)

where p; = max{A;, 43, 43, 44} < 1. Now from (4.9) and (4.15), we have that

1 1
-1< M1 ( - 1)
MWaps2, Woms3, 1) Me(Womi1, Womsa, 1)

1
< )2( - 1)
(IJI MF(WZM’ W2m+l9t)
1
<. .. < 2m+2—_1 0, .
- =) (MF(WO,WlJ) ) ~ asm = e

Hence proved that {w,,},.-0 is a fuzzy contractive sequence, therefore

Iim MW, Wpi1, 1) =1 fort > 0. (4.16)

m—0oo
Since My is triangular, for kK > m and ¢ > 0, then we have

1

S
MF(Wma Wi, t)

1 1 1
s( -1)+( _1)+...+(—_1)
Me(Wp, Wint1, 1) MeWpi1, Winsa,s 1) Mp(Wi—1, wi, 1)

1
< ()" + ™+ ) (m - 1)
" 1
= (1%L1)(MF(W0,W1J) - 1) =0, asm e,
which shows that {w,,} is a cauchy sequence. By the completeness of (W, Mg, %), 4 k € W such that
n%l_{t;} Mgk, Wy, t) =1 fort> 0. 4.17)

Now we have to show that F'ix = k. Since, M is triangular, therefore

1 1
_L . (— _ 1) +( _
MF(Ka F1K9 t) MF(Ka W2m+2’t) MF(W2m+25FlKa t)

Now, by the view of (4.2), (4.16) and (4.17) for t > 0, we have that

1) fort > 0. (4.18)

1 1 1
-1= -1< a(— - 1)
Mp(Wopnia, Fik, 1) Mp(Fawynir, Fik, 1) Mp(Wans1, K, 1)
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|

MF(K FlK t) 1)’(

+ S max

(7o
|

MF(W2m+1 ik, 1)

Mp(Wapni1, K, 1)

1
_ 1)’
1
MrWapms1, Fowomii, 1)

e

Mp(k, FaoWope1 1)
1

(MF(K, Fik,0)

+ —
MpWapms1, FoWomi1, 1)

1

1
2
1 1
d

MF(W2m+13 K9 t)

[S—

i)

My(Womor, Fik,t)

+ —_—
Mgk, FoWwomyr, 1)

1
E————
(MF(W2m+la Ka t) )
1
(1) )
Mg (k, F1K 1) MeWoni1, Womsa, 1)
1
+ B max -1, -1},
F (MF(W2m+1’F1K 1) ) (MF(K,W2m+2J) )
1
_ -1,
(MF(K, Fik, 1) Me(Wani1, Womsa, ©) )
1 ( 1 1 1)
2 MF(W2m+1’F1K’ t) MF(K’ W2m+2, t)
1 1 1 .
- pBmax{ ——— — I, = |———— - 1], asj— oo,
{MF(K, Fik, 1) 2 (MF(K, Fik,1) )}
Then,
li ( ! 1)<,B( ! 1) fort>0 4.19)
im su -11<B8l—— - or . .
m—eo P Mp(Wopnia, Fik, 1) Mp(k, Fik, 1)
The above (4.19) is together with (4.18) and (4.17), we get that
! <B 1] fort>0
- - R or .
Mp(k, Fik, 1) - \Mp(k, Frk, 1)

Since (1

—B) # 0, therefore we get that Mg(k, Fik,t) = 1, this implies that Fjx = k. Similarly, we can

show F,k = k. Hence proved that « is a common fixed point of F; and F», that is, Fik = Fyk = k.
Uniqueness: let k* € W be the other common fixed point of F; and F; such that F1«* = F«* = «*, then

by the view of (4.2), for ¢ > 0, we have

1 1 1
— 1= “1)<e[——-1
MF(Kvk*’t) MF(F1K7 FQK*’I) MF(K’K*’I)
AIMS Mathematics
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1
E——— ,
(MF(K, K*, 1) )
1 1 1 |
MF(K7 FIK’ t) ’ MF(K*aFZK*5t) ’

1 1
+ 1|, |— 1],
pmax (MF(K*,Flk,t) ) (MF(K,FzK*,t) )

1 1

L S S S——
2\ Mp(k, Fik, 1) Mp(k*, Fak*, 1)

1

2

1 1
s
MF(K*aFlK’ t) MF(K’FZK*’I)

1 1
- ””(m ) 1) - +ﬁ)(MF(F1K, Fa1) 1)

! —1)§---S(a+,8)’"( !

_— — —1|—=0, asm— oo.
Mp(k, k*, 1) Mp(k, k*, 1)

<(a+ ,8)2 (
Hence we get that Mp(k, k*,t) = 1, this implies that k = «*. Thus, F; and F, have a unique common

fixed point in W.
If the mapping F; = F, or one of them considers an identity map in Theorem 4.2, then we get the

following corollary:
Corollary 4.3. Let (W, Mg, x) be a complete FM space in which M is triangular and a pair of self-
mappings Fy : W — W satisfies,

1 1
-1 <ag|l———— -1
Mp(Fiw, Fix,1) (MF(W, X, 1) )
1
——
(MF(W, X, 1) )
Mp(w, Fow,0) ) \Mp(x, Frxn ) (4.20)

1 1
+ 1, -1],
fmax Mp(x, Fiw, 1) ) (MF(W,FNCJ) )

— —

1
S —— ————————
(MF(w, Fiw,1) Mp(x, Fix,t) )

|,_.l\)|’—‘

1 1
1l — -1
2 MF(X,F]W,t) MF(W’Fl-x’t)
Vw,xeW,t>0, ae(0,1)andB > 0 with (a +2B) < 1. Then F has a unique fixed point.
Remark 4.4. If we put 8 = 0 in Theorem 4.2, we get “a fuzzy Banach contraction theorem for FP”” on
a complete FM space.
Example 4.5. Let W = [0, 1] and from Example 3.6, the mappings F, F, : W — W be defined as

Fiu=Fu= % + 14—5 for all u € W. Then, we have

1 1_2|F1w—F2)c|_7|w—x|_ 7

1
- Sl 1) Vw.xewand:s>o.
M(Fyw. Fax. 1) 3t 157 10( ) wx e W andl>

MF(Wa X, t)
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Hence, the mappings F; and F, are contractive and satisfied the conditions of Theorem 4.2 with @ =

&, B = 1. The mappings F and F, have a common fixed point, that is, F;($) = F»(3) = 3 € [0,1].

5. Application

In this section, we present an application of fuzzy differential equations (FDEs) to support our
results. Some differential equation results in different directions can be found in (see [33-37] the
references are therein). From the book of Lakshmikantham et al. [38], we have the following FDEs.

Let E be the space of all fuzzy subsets w of R where w : R — I = [0, 1].

w”(s) = h(s, w(s), w(s)), sel=][a,b],

w(sy) = wy, w(s2) =wa,  s1,8 €J=1a,b],

(5.1)
where /1 : ] X E X E — E is a continuous function. This problem is equivalent to the integral equation

w(s) = f " K. (A w(T), W' (1)) dT + B(s),

S1

where Green’s function K is given by

Sy — S)I(T — 8
( )( ), 51ST3S3S2,
K(s,7) = 270
,T) =
(s2 —7)(s — s1)
, S1<s<T1< 8.
$2 = 8

And B(s) satisfies B =0, B(s;) = wy, B(s) = w,. Let here we recall some properties of K(s, 1), that

are;
52 _ 2
f K(s.tydr < S2= 51 8““) ,
51

and

X% _
f K (s, 7)dtr < % 5 sl.
S1

Let C = C! (J, B), = is a continuous z-norm, and My : C X C X (0, 00) — [0, 1] be defined as

t
MF(W, X, t) = HD—(M),)C) where D(W, .X') = |W - Xl, (52)

for all w, x € C and ¢ > 0. Then one can verify that M is triangular and (C, M, %) is complete.
Now, we are in the position to prove the existing result for the above boundary value problem by
applying Theorem 3.1.

Theorem 5.1. Assume that hy,h, : I X E XE — E and let there exists p,q € (0, 1) with p < q such that
for all w, x € C'(J, B), satisfies

|h1(s, w, w,) — hy(s, x, x')| <pw—-xl+¢ |w' — x,| . (5.3)
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Let there exists n € (0, 1) such that

D(Wa x) < nM(Fl,FZ’ w, X), (54)
where
lw— x|, |[Fyw — w| + |[Fox — x| + |Fiw — x| + |[Fox — w|
M(F,, F5,w, x) = max (5.5
min{|Fyw — wl, |Fax — x|}, max{|Fw — x|, [Fox — wl}
Then the integral equations
X
w(s) = f K(s, 1) (h](T, w(T), W,(T)) dr+ 8B(s), sel,
s
and .
x(s) = f K(s,7) (ha(r, x(0), x (1)) dT + B(s), s€],
have a unique common solution in C'[[sy, s»], E].
Proof. Suppose that C = [[sy, 5,], E] with metric
D(w,x) = max (pw(s) = x(s)] +¢|w'(s) = x'(s)]). (5.6)

The space (C, D) is a complete metric space. Now, the operators F, F;, : C — C are defined as

Fi(w)(s) = f K. (h1(z.w(), W (D)) dT + Bs), se,

and

Fa(x)(s) = f K. (ha(r. x(7), X (1)) dT + B(s), s€T,

1

where h,h, € CUXEXE,E), w € C'(J,E), and 8 € C(J, E). Now by the properties of K(s,7) and
by using our hypothesis,

|[Fiw(s) — Fox(s)| < fsz |K(s, 7)| ‘hl (T, W(T),W,(T)) —hy (T, x(7), x'(T))‘ dr

< D(w, x)f |K(s, 7)ldt

(53— s1)°
- 8
< D(w, x)
8

D(w, x)

And

WWM94&ﬂmHfﬁ&mﬂ%@mawm%mhamﬂwwr

1
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52
< D(w, x) f |K(s, Dldt
S1

<2 ; U D(w, x)

D(w, x)
>

<
Now, from the above and by the view of (5.3) and (5.6), we have that

D(Fyw, F2x) = max (plFiw(s) = Fax(s)] + ¢ [(Fiw) (5) = (F2x) (s)))
D(w, D(w,
<p (v; X)+q (V; x)
5
< (gq) D(w, x)

Now, from (5.4), we have that
5
D(FIW’ FZX) < (gq) D(W, )C) < §M(F1’F2’ w, X), (57)

where & = %qn < 1. Now we apply Theorem 3.1 to get that F'; and F, have a unique common fixed
point w* € C, i.e., w* is a solution of the BVP. We may have the following main four cases:

1) If |w — x| is the maximum term in (5.5), then M(Fy, F,,w, x) = |w — x|. Now from (5.2), (5.4) and
(5.7), we have

1 _, _ DFEw. P2
MF(F]W,FZX,t) B t
SfM(Fl’FZ’W’x)
t
|lw — x| 1
= = —1].
g t f(MF(M/; X, t) )
This implies that
! l<él————1) fore>0 (5.8)
_ - or , .
MF(F1W7 sza t) B MF(W7 X, t)

for all w, x € C. Thus, the operators F; and F satisfy the conditions of Theorem 3.1 with ¢ = a
and b = ¢ = d = 01n (3.19). Then the operators F; and F, have a unique common fixed point
w* € C,i.e., w"is a solution of the BVP (5.1).

2) If |Fiw—w|+|Fyx— x|+ |Fyw— x|+ |F>x—w]| is the maximum term in (5.5), then M(Fy, F>, w, X) =
|[Eyw — w| + |Fox — x| + |Fiw — x| + |[Fox — w|. Now from (5.2), (5.4) and (5.7), we have

1 | _ DU w. Fo)
Mp(F\w, Fax, 1) B t
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M(F1, Fa,w, x)
<& ;
_§|F1w—w| + |[Fox — x| + |Fiw — x| + |Fox — w|
t

1 1

U S ——

oy Mp(w, Fiw, 1) Mpg(x, Fyx, 1)

B 1
44— -1+ ; -1

Mp(x, Fiw, 1) Mp(w, Frx, t)
This implies that
1 1
1 Mrw Fov) - My Foxn)
t<g| UM e fort>0,  (5.9)

Mp(Fyw, Fax,1) —_ |
Mp(x, Fyw, 1) Mp(w, Fax, 1)

for all w, x € C. Thus, the operators F; and F’, satisfy the conditions of Theorem 3.1 with ¢ = b
and a = ¢ = d = 01in (3.19). Then the operators F; and F, have a unique common fixed point
w* € C,i.e., w"is a solution of the BVP (5.1).

3) If min{|Fyw — w|, |Fx — x|} is the maximum term in (5.5), then M(F, F»,w, x) = min{|F\w —
w|, |F>x—x|}. Now, if |Fyw—w| is the minimum term in {|F;w—w/|, |F,x—x|}, then M(F{, F>, w, x) =
|F'yw — w|. Therefore, from (5.2), (5.4) and (5.7), we have

1 |- D(Fw, Fx)
Mp(Fiw, Fax, 1) - t

M(FI’FZ,W, x)

<¢

t

Fiw— 1

:gl w—wl _¢ 1)

t Mp(w, Fiw, 1)
This implies that
! 1<é& ! 1 fort>0 (5.10)
-1 <é|l— - or . .
MF(FIW’ F2x7 t) MF(W’ FlW, t)

Similarly, if |Fx—x| is the minimum term in {|F;w—w/|, |Frx—x|}, then M(Fy, F>, w, x) = |Frx—x].
Therefore, again from (5.2), (5.4) and (5.7), we have

1 | _ D(Fw. Fax)
Me(F\w, Fax, 1) B t
< gM(Fl,Fz,W,X)
t
t Mp(x, Fax,t)
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This implies that

1 1
-1<él———-1| fort>0, 5.11
MF(F1W, sz,t) é:(MF(X,FZX’ t) ) ot ( )

for all w,x € C. Thus, from (5.10) and (5.11) the operators F; and F, satisfy the conditions of
Theorem 3.1 with é = cand a = b = d = 01in (3.19). Then the operators F and F, have a unique
common fixed point w* € C, i.e., w* is a solution of the BVP (5.1).

4) If max{|Fiw — x|, |F,x — w|} is the maximum term in (5.5), then M(Fy, F5,w, x) = max{|F;w —
x|, |[Fax—wl|}. Now, if |Fyw— x| is the maximum term in {|F;w—x]|, |Fox—w|}, then M(F{, F>, w, x) =
|F'yw — x|. Therefore, from (5.2), (5.4) and (5.7), we have

1 1= D(Fw, F>x)
Mp(F\w, Fax,t) t
SfM(F]’FZ’W’x)
t
Fiw— 1
:gl 1w — x| ¢ 1l
13 MF(-xa F1W7 t)
This implies that
! 1<¢& ! 1] forr>0 (5.12)
MF(FIWa F2xa t) h MF(X, FlW, t) . '

Similarly, if |F,x—w] is the maximum term in {|Fyw—x]|, |F,x—wl}, then M(Fy, F», w, x) = |Frx—w|.
Therefore, again from (5.2), (5.4) and (5.7), we have

1 1= D(F1W9 FZX)
Mp(F\w, Fax, 1) B t
SgM(Fl,FZ,W,X)
t
Frx— 1
:§| 2X = W| ¢ 1)
t Mrp(w, Fox,t)
This implies that
! 1<¢& ! 1 fort>0 (5.13)
- _— or . .
Mp(Fw, Fax, 1) T \Mp(w, Fox, 1)

for all w,x € C. Thus, from (5.12) and (5.13) the operators F; and F), satisty the conditions of
Theorem 3.1 with é = d and a = b = ¢ = 0in (3.19). Then the operators F and F, have a unique
common fixed point w* € C, i.e., w* is a solution of the BVP (5.1).
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6. Conclusions

In this paper, we presented some generalized unique common fixed point theorems for a pair of
self-mappings on complete FM spaces. The triangular property of fuzzy metric is used as a basic
tool throughout the complete paper and proved all the results without continuity of self-mappings. We
defined weak-contraction and a generalized Ciri¢-contraction on FM space and proved unique common
fixed point theorems. The results are supported by suitable examples and showed the uniqueness of
common fixed points. In addition, we presented an application of fuzzy differential equations and
proved the existing result for a unique common solution to support our main work. By using this
concept, one can prove more generalized different contractive type single-valued mapping results for
fixed point, common fixed point, and coincidence point on FM spaces without the continuity of self-
mappings by using different types of applications such as differential equations and integral equations
applications.
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