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1. Introduction

The stability problem of functional equations originated from a question of Ulam [26] concerning
the stability of group homomorphisms in 1940. Hyers [8] gave the first partial solution to Ulam’s
question for the case of approximate additive mappings in Banach spaces. Aoki [1] generalized
Hyers’ theorem for approximately additive mappings. In 1978, Rassias [22] generalized the theorem
of Hyers by considering the stability problem with unbounded Cauchy differences. Rassias’
influential paper [22] played a key role in the development of what we call Hyers-Ulam stability or
Hyers-Ulam-Rassias stability of functional equations.

Theorem 1.1. [22] Let f : E → E′ be a mapping from a normed vector space E into a Banach space
E′ subject to the inequality

‖ f (a + b) − f (a) − f (b)‖ ≤ ε(‖a‖p + ‖b‖p), (1.1)
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for all a, b ∈ E, where ε > 0 and p < 1 are constants. Then, there exists a unique additive mapping
T : E → E′ such that

‖ f (a) − T (a)‖ ≤
2ε

2 − 2p ‖a‖
p, (1.2)

for all a ∈ E. If p < 0, then (1.1) holds for all a, b , 0, and (1.2) holds for a , 0. Also, if the function
t 7→ f (ta) from R into E′ is continuous for each fixed a ∈ X, then T is R-linear.

Note that if ε(‖a‖p + ‖b‖p) is replaced by ε in (1.1), the resulting conclusion is Hyers’ theorem.
In 1991, Gajda [6], following the same approach as that by Rassias [22], gave an affirmative solution

to the stability question for p > 1. It was shown by Gajda [6] as well as by Rassias and Šemrl [23],
that one cannot prove a Rassias-type theorem when p = 1. Gǎvruta [7] obtained a generalized result
of the Rassias theorem which allows the Cauchy difference to be controlled by a general unbounded
function.

The method provided by Hyers [8] which produces the additive function will be called a direct
method. This method is the most important and useful tool to study the stability of different functional
equations. The stability problems for several functional equations or inequalities have been
extensively investigated by a number of authors and there are many interesting results, containing
ternary homomorphisms and ternary derivations, concerning this problem (see [3–5, 9–12, 17–21]). In
this paper, we introduce hyper homomorphisms and hyperderivations in Banach algebras and we
prove the Hyers-Ulam stability of hyper homomorphisms and hyper derivations in Banach algebras.

The theory of stability of homomorphisms and derivations in Banach algebras is an important part of
functional equations theory. It has several applications in dynamical systems, physics and connections
with other parts of mathematics. With an increasing amount of theory and applications concerning
Banach algebras, it is becoming necessary to ascertain which tools are applicable for handling them.

Moreover, in modern industry, various analytical approaches for solving mathematical equations
are widely applied in analysis of problems in packaging engineering, and so mathematical modeling
and computation methods by using mathematical equations play an important role in application of
packaging engineering. From now, we wish to note that mathematical equations for stability properties
in this paper can have applications to engineering.

During the last two decades, a number of articles and research monographs have been published on
various generalizations and applications of the Hyers-Ulam stability to a number of functional
equations and mappings, for example, Cauchy-Jensen mappings, k-additive mappings, invariant
means, multiplicative mappings, bounded nth differences, convex functions, generalized orthogonality
mappings, Euler-Lagrange functional equations, differential equations, and Navier-Stokes equations
(see [2, 13–15, 24, 25, 27]).

Let X be a complex Banach algebra. A mapping g : X × X × X → X is 3-additive if

g(x1 + x2, y1 + y2, z1 + z2) =

2∑
i, j,k=1

g(xi, y j, zk), (1.3)

for all x1, y1, z1, x2, y2, z2 ∈ X. A mapping g : X × X × X → X is called 3-linear if g is 3-additive and
C-linear for each variable. For an example, let g(x, y, z) = ax + by + cz for constants a, b, c and for all
x, y, z ∈ X. Then g : X × X × X → X is clearly 3-additive and 3-linear.

Assume that X is a complex Banach algebra and that s and t are fixed complex numbers with
0 < s < 1 and 0 < t < 1 in the whole paper.
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2. Stability of hyper homomorphisms in complex Banach algebras

In this section, we introduce the concept of hyper homomorphisms in Banach algebras and we
establish the stability of hyper homomorphisms in Banach algebras by using the direct method.

Definition 2.1. Let X be a complex Banach algebra. A mapping h : X × X × X → X is called a hyper
quadratic mapping if h satisfies

8h(x1, y1, z1) =

2∑
i, j,k=1

h(x1 + (−1)ix2, y1 + (−1) jy2, z1 + (−1)kz2), (2.1)

for all x1, y1, z1, x2, y2, z2 ∈ X.

Definition 2.2. Let X be a complex Banach algebra. A 3-linear mapping h : X × X × X → X is called
a hyper homomorphism if h satisfies

h(x1x2x3, y1y2y3, z1z2z3) = h(x1, x2, x3)h(y1, y2, y3)h(z1, z2, z3),

for all x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X.

Example 2.3. Let X be a complex Banach algebra and h1, h2, h3 : X → X be homomorphisms. Let
h(x1x2x3, y1y2y3, z1z2z3) = h1(x1y1z1)h2(x2y2z2)h3(x3, y3, z3) for all x1, x2, x3, y1, y2, y3, z1, z2, z3 ∈ X.
Then h : X3 → X is a hyper homomorphism in case that X is commutative, but it may not be a hyper
homomorphism in case that X is not commutative.

Lemma 2.4. Let h : X × X × X → X be a hyper quadratic mapping and h(2x, 2y, 2z) = 8h(x, y, z) for
all x, y, z ∈ X3, then h is 3-additive.

Proof. Let x1, x2, y1, y2, z1 and z2 be arbitrary members in X. Define

u1 :=
x1 + x2

2
, u2 :=

x1 − x2

2
, v1 :=

y1 + y2

2
,

v2 :=
y1 − y2

2
, w1 :=

z1 + z2

2
and w2 :=

z1 − z2

2
.

By the use of (2.1) we have

h(x1 + x2, y1 + y2, z1 + z2) = h(2u1, 2v1, 2w1) = 8h(u1, v1,w1)

=

2∑
i, j,k=1

h(u1 + (−1)iu2, v1 + (−1) jv2,w1 + (−1)kw2) =

2∑
i, j,k=1

h(xi, y j, zk),

which completes the proof. �

Theorem 2.5. If a mapping h : X3 → X satisfies

h(0, a, b) = h(a, 0, b) = h(a, b, 0) = 0,

for all a, b ∈ X and∥∥∥∥∥∥∥8h(x1, y1, z1) −
2∑

i, j,k=1

h(x1 + (−1)ix2, y1 + (−1) jy2, z1 + (−1)kz2)

∥∥∥∥∥∥∥ (2.2)
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≤

∥∥∥∥∥∥∥8t

 2∑
i, j,k=1

h
(

x1 + (−1)ix2

2
,

y1 + (−1) jy2

2
,

z1 + (−1)kz2

2

)
− h(x1, y1, z1)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3, then the mapping h : X3 −→ X is hyper quadratic.

Proof. Letting x1 = x2 := x, y1 = y2 := y and z1 = z2 := z in (2.2), we get

‖h(2x, 2y, 2z) − 8h(x, y, z)‖ ≤ 0,

for all x, y, z ∈ X. So h(2x, 2y, 2z) = 8h(x, y, z) for all x, y, z ∈ X. It follows from (2.2) that∥∥∥∥∥∥∥8h(x1, y1, z1) −
2∑

i, j,k=1

h(x1 + (−1)ix2, y1 + (−1) jy2, z1 + (−1)kz2)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥t

8h(x1, y1, z1) −
2∑

i, j,k=1

h(x1 + (−1)ix2, y1 + (−1) jy2, z1 + (−1)kz2)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3. Thus

8h(x1, y1, z1) =

2∑
i, j,k=1

h(x1 + (−1)ix2, y1 + (−1) jy2, z1 + (−1)kz2),

for all (x1, y1, z1), (x2, y2, z2) ∈ X3, since 0 < t < 1. So the mapping h is hyper quadratic. �

Theorem 2.6. Let φ : X6 −→ [0,∞) be a function such that

∞∑
j=1

83 jφ
( x
8 j ,

y
8 j ,

z
8 j ,

x
8 j ,

y
8 j ,

z
8 j

)
< ∞, (2.3)

for all x, y, z ∈ X. Let h : X3 −→ X be a mapping satisfying

h(0, a, b) = h(a, 0, b) = h(a, b, 0) = 0,

for all a, b ∈ X and∥∥∥∥∥∥∥8λh(x1, y1, z1) −
2∑

i, j,k=1

h(λx1 + (−1)iλx2, λy1 + (−1) jλy2, λz1 + (−1)kλz2)

∥∥∥∥∥∥∥ (2.4)

≤

∥∥∥∥∥∥∥8t

λh(x1, y1, z1) −
2∑

i, j,k=1

h
(
λ

x1 + (−1)ix2

2
, λ

y1 + (−1) jy2

2
, λ

z1 + (−1)kz2

2

)
∥∥∥∥∥∥∥

+ φ(x1, y1, z1, x2, y2, z2),

for all λ ∈ T1 := {ξ ∈ C : |ξ| = 1} and all (x1, y1, z1), (x2, y2, z2) ∈ X3. If the mapping h : X3 −→ X
satisfies

‖h(x1x2x3, y1y2y3, z1z2z3) − h(x1, x2, x3)h(y1, y2, y3)h(z1, z2, z3)‖ (2.5)
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≤ φ(x1x2x3, y1y2y3, z1z2z3, x1x2x3, y1y2y3, z1z2z3),

for all x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X, then there exists a unique hyper homomorphism H : X × X ×
X −→ X such that

‖h(x, y, z) − H(x, y, z)‖ ≤
∞∑
j=0

8 jφ
( x
2 j+1 ,

y
2 j+1 ,

z
2 j+1 ,

x
2 j+1 ,

y
2 j+1 ,

z
2 j+1

)
. (2.6)

for all x, y, z ∈ X.

Proof. Letting λ = 1, x1 = x2 := x, y1 = y2 := y and z1 = z2 := z in (2.4), we get

‖h(2x, 2y, 2z) − 8h(x, y, z)‖ ≤ φ(x, y, z, x, y, z),

and so ∥∥∥∥∥h(x, y, z) − 8h
( x
2
,

y
2
,

z
2

)∥∥∥∥∥ ≤ φ ( x
2
,

y
2
,

z
2
,

x
2
,

y
2
,

z
2

)
,

for all x, y, z ∈ X. Hence∥∥∥∥∥2lh
( x
2l ,

y
2l ,

z
2l

)
− 2l+3mh

( x
2l+m ,

y
2l+m ,

z
2l+m

)∥∥∥∥∥ (2.7)

≤

m−1∑
j=0

∥∥∥∥∥2l+3 jh
( x
2l+ j ,

y
2l+ j ,

z
2l+ j

)
− 2l+3( j+1)h

( x
2l+ j+1 ,

y
2l+ j+1 ,

z
2l+ j+1

)∥∥∥∥∥
=

m−1∑
j=0

2l+3 j
∥∥∥∥∥h

( x
2l+ j ,

y
2l+ j ,

z
2l+ j

)
− 8h

( x
2l+ j+1 ,

y
2l+ j+1 ,

z
2l+ j+1

)∥∥∥∥∥
≤

m−1∑
j=0

2l+3 jφ
( x
2l+ j+1 ,

y
2l+ j+1 ,

z
2l+ j+1 ,

x
2l+ j+1 ,

y
2l+ j+1 ,

z
2l+ j+1

)
,

for all positive integers l,m and x, y, z ∈ X. It follows from (2.7) that the sequence {2l+3kh( x
2l+k ,

y
2l+k ,

z
2l+k )}

is Cauchy for all natural number l and for all (x, y, z) ∈ X3. Since X is a Banach space, the sequence
{2l+3kh( x

2l+k ,
y

2l+k ,
z

2l+k )} converges. So one can define the mapping H : X3 → X by

H(x, y, z) := lim
n→∞

23kh
( x
2k ,

y
2k ,

z
2k

)
,

for all (x, y, z) ∈ X3. Moreover, letting l = 0 and passing to the limit m → ∞ in (2.7), we get (2.6). It
folllows from (2.4) that∥∥∥∥∥∥∥8λH(x1, y1, z1) −

2∑
i, j,k=1

H(λx1 + (−1)iλx2, λy1 + (−1) jλy2, λz1 + (−1)kλz2)

∥∥∥∥∥∥∥
= lim

n→∞
8n

∥∥∥∥∥∥∥8λh
( x1

2n ,
y1

2n ,
z1

2n

)
−

2∑
i, j,k=1

h
(
λx1 + (−1)iλx2

2n ,
λy1 + (−1) jλy2

2n ,
λz1 + (−1)kλz2

2n

)∥∥∥∥∥∥∥
AIMS Mathematics Volume 7, Issue 6, 10700–10710
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≤ lim
n→∞

8n

∥∥∥∥∥∥∥8t

λh
( x1

2n ,
y1

2n ,
z1

2n

)
−

2∑
i, j,k=1

h
(
λx1 + (−1)iλx2

2n+1 ,
λy1 + (−1) jλy2

2n+1 ,
λz1 + (−1)kλz2

2n+1

)
∥∥∥∥∥∥∥

+ lim
n→∞

8nφ
( x1

2n ,
y1

2n ,
z1

2n ,
x2

2n ,
y2

2n ,
z2

2n

)
=

∥∥∥∥∥∥∥t

8λH(x1, y1, z1) −
2∑

i, j,k=1

H(λx1 + (−1)iλx2, λy1 + (−1) jλy2, λz1 + (−1)kλz2)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3 and λ ∈ T1. Thus∥∥∥∥∥∥∥8λH(x1, y1, z1) −
2∑

i, j,k=1

H(λx1 + (−1)iλx2, λy1 + (−1) jλy2, λz1 + (−1)kλz2)

∥∥∥∥∥∥∥ (2.8)

≤

∥∥∥∥∥∥∥t

8λH(x1, y1, z1) −
2∑

i, j,k=1

H(λx1 + (−1)iλx2, λy1 + (−1) jλy2, λz1 + (−1)kλz2)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3 and λ ∈ T1. Let λ = 1 in (2.8). By Theorem 2.5, the mapping
H : X3 → X is 3-additive. Since 0 < t < 1,

8λH(x1, y1, z1) =

2∑
i, j,k=1

H(λx1 + (−1)iλx2, λy1 + (−1) jλy2, λz1 + (−1)kλz2),

and H(λ(x1, y1, z1)) = λH(x1, y1, z1) for all (x1, y1, z1) ∈ X3 and λ ∈ T1. Since H is 3-additive, H : X3 →

X is 3-linear (see [16]). It follows from (2.5) and the 3-additivity of H that

‖H(x1x2x3, y1y2y3, z1z2z3) − H(x1, x2, x3)H(y1, y2, y3)H(z1, z2, z3)‖

= 83k
∥∥∥∥∥h

( x1x2x3

8k ,
y1y2y3

8k ,
z1z2z3

8k

)
− h

( x1

2k ,
x2

2k ,
x3

2k

)
h
(y1

2k ,
y2

2k ,
y3

2k

)
h
( z1

2k ,
z2

2k ,
z3

2k

)∥∥∥∥∥
≤ 83kφ

( x1x2x3

8k ,
y1y2y3

8k ,
z1z2z3

8k ,
x1x2x3

8k ,
y1y2y3

8k ,
z1z2z3

8k

)
,

which tends to zero as k → ∞, by (2.3). So

H(x1x2x3, y1y2y3, z1z2z3) = H(x1, x2, x3)H(y1, y2, y3)H(z1, z2, z3),

for all x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈ X. This completes the proof. �

3. Stability of hyper derivations in complex Banach algebras

In this section, we introduce the concept of hyper derivation on Banach algebras and we establish
the stability of hyper derivation on Banach algebras by using the direct method.

Definition 3.1. Let X be a complex Banach algebra. A 3-linear mapping g : X × X × X → X is called
a hyper derivation if g satisfies

g(x1x2, y1y2, z1z2) = x1y1z1g(x2, y2, z2) + g(x1, y1, z1)x2y2z2,

for all x1, y1, z1, x2, y2, z2 ∈ X.
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Lemma 3.2. If a mapping g : X3 −→ X satisfies∥∥∥∥∥∥∥g(x1 + x2, y1 + y2, z1 + z2) −
2∑

i, j,k=1

g(xi, y j, zk)

∥∥∥∥∥∥∥ (3.1)

≤

∥∥∥∥∥∥∥s

8g
( x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)
−

2∑
i, j,k=1

g(xi, y j, zk)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3, then the mapping g : X3 −→ X is 3-additive.

Proof. Letting x1 = x2 := x, y1 = y2 := y and z1 = z2 := z in (3.1), we get

‖g(2x, 2y, 2z) − 8g(x, y, z)‖ ≤ 0,

for all x, y, z ∈ X. So g(2x, 2y, 2z) = 8g(x, y, z) for all x, y, z ∈ X. It follows from (3.1) that∥∥∥∥∥∥∥g(x1 + x2, y1 + y2, z1 + z2) −
2∑

i, j,k=1

g(xi, y j, zk)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥s

g(x1 + x2, y1 + y2, z1 + z2) −
2∑

i, j,k=1

g(xi, y j, zk)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3. Thus

g(x1 + x2, y1 + y2, z1 + z2) =

2∑
i, j,k=1

g(xi, y j, zk),

for all (x1, y1, z1), (x2, y2, z2) ∈ X3, since 0 < s < 1. So the mapping g : X3 → X is 3-additive. �

Theorem 3.3. Let φ : X6 → [0,∞) be a function such that

∞∑
j=1

64 jφ
( x
2 j ,

y
2 j ,

z
2 j ,

x
2 j ,

y
2 j ,

z
2 j

)
< ∞, (3.2)

for all x, y, z ∈ X. Let g : X3 → X be a mapping satisfying∥∥∥∥∥∥∥g(λ(x1 + x2, y1 + y2, z1 + z2)) − λ
2∑

i, j,k=1

g(xi, y j, zk)

∥∥∥∥∥∥∥ (3.3)

≤

∥∥∥∥∥∥∥s

8g
(
λ
( x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

))
− λ

2∑
i, j,k=1

g(xi, y j, zk)


∥∥∥∥∥∥∥ + φ(x1, y1, z1, x2, y2, z2),

for all λ ∈ T1 and all (x1, y1, z1), (x2, y2, z2) ∈ X3. Here g(λ(x, y, z)) := g(λx, λy, λz). If the mapping
g : X3 → X satisfies

‖g(x1x2, y1y2, z1z2) − x1y1z1g(x2, y2, z2) − g(x1, y1, z1)x2y2z2‖ ≤ φ(x1, x2, y1, y2, z1, z2), (3.4)
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for all (x1, y1, z1), (x2, y2, z2) ∈ X3, then there exists a unique hyper derivation D : X × X × X −→ X
such that

‖g(x, y, z) − D(x, y, z)‖ ≤
∞∑
j=0

8 jφ
( x
2 j+1 ,

y
2 j+1 ,

z
2 j+1 ,

x
2 j+1 ,

y
2 j+1 ,

z
2 j+1

)
, (3.5)

for all x, y, z ∈ X.

Proof. Letting λ = 1, x1 = x2 := x, y1 = y2 := y and z1 = z2 := z in (3.3), we get

‖g(2x, 2y, 2z) − 8g(x, y, z)‖ ≤ φ(x, y, z, x, y, z),

and so ∥∥∥∥∥g(x, y, z) − 8g
( x
2
,

y
2
,

z
2

)∥∥∥∥∥ ≤ φ ( x
2
,

y
2
,

z
2
,

x
2
,

y
2
,

z
2

)
,

for all x, y, z ∈ X. Hence∥∥∥∥∥8lg
( x
2l ,

y
2l ,

z
2l

)
− 8mg

( x
2m ,

y
2m ,

z
2m

)∥∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥∥8 jg
( x
2 j ,

y
2 j ,

z
2 j

)
− 8 j+1g

( x
2 j+1 ,

y
2 j+1 ,

z
2 j+1

)∥∥∥∥∥
≤

m−1∑
j=l

8 jφ
( x
2 j+1 ,

y
2 j+1 ,

z
2 j+1 ,

x
2 j+1 ,

y
2 j+1 ,

z
2 j+1

)
, (3.6)

for all natural numbers l,m(m > l) and x, y, z ∈ X. It follows from (3.6) that the sequence
{8kg( x

2k ,
y
2k ,

z
2k )} is Cauchy for all (x, y, z) ∈ X3. Since X is a Banach space, the sequence {8kg( x

2k ,
y
2k ,

z
2k )}

converges. So one can define the mapping D : X3 → X by

D(x, y, z) := lim
n→∞

8kg
( x
2k ,

y
2k ,

z
2k

)
,

for all (x, y, z) ∈ X3. Moreover, letting l = 0 and passing to the limit m→ ∞ in (2.7), we get (3.5).
It folllows from (3.3) that∥∥∥∥∥∥∥D(λ(x1 + x2, y1 + y2, z1 + z2)) − λ

2∑
i, j,k=1

D(xi, y j, zk)

∥∥∥∥∥∥∥
= lim

n→∞
8n

∥∥∥∥∥∥∥g
(
λ
( x1 + x2

2n ,
y1 + y2

2n ,
z1 + z2

2n

))
− λ

2∑
i, j,k=1

g
( xi

2n ,
y j

2n ,
zk

2n

)∥∥∥∥∥∥∥
≤ lim

n→∞
8n

∥∥∥∥∥∥∥s

8g
(
λ
( x1 + x2

2n+1 ,
y1 + y2

2n+1 ,
z1 + z2

2n+1

))
− λ

2∑
i, j,k=1

g
( xi

2n ,
y j

2n ,
zk

2n

)
∥∥∥∥∥∥∥

+ lim
n→∞

8nφ
( x1

2n ,
y1

2n ,
z1

2n ,
x2

2n ,
y2

2n ,
z2

2n

)
=

∥∥∥∥∥∥∥s

8D
(
λ
( x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

))
− λ

2∑
i, j,k=1

D(xi, y j, zk)


∥∥∥∥∥∥∥ ,
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for all (x1, y1, z1), (x2, y2, z2) ∈ X3 and λ ∈ T1. Thus∥∥∥∥∥∥∥D(λ(x1 + x2, y1 + y2, z1 + z2)) − λ
2∑

i, j,k=1

D(xi, y j, zk)

∥∥∥∥∥∥∥ (3.7)

≤

∥∥∥∥∥∥∥s

8D
(
λ
( x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

))
− λ

2∑
i, j,k=1

D(xi, y j, zk)


∥∥∥∥∥∥∥ ,

for all (x1, y1, z1), (x2, y2, z2) ∈ X3 and λ ∈ T1. Let λ = 1 in (3.7). By Theorem 3.2, the mapping
D : X3 → X is 3-additive. It follows from (3.7) and the 3-additivity of D that∥∥∥∥∥∥∥D(λ(x1 + x2, y1 + y2, z1 + z2)) − λ

2∑
i, j,k=1

D(xi, y j, zk)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥s

D(λ(x1 + x2, y1 + y2, z1 + z2)) − λ
2∑

i, j,k=1

D(xi, y j, zk)


∥∥∥∥∥∥∥ ,

for all λ ∈ T1, (x1, y1, z1) and (x2, y2, z2) ∈ X3. Since 0 < s < 1,

D(λ(x1 + x2, y1 + y2, z1 + z2)) − λ
2∑

i, j,k=1

D(xi, y j, zk) = 0,

and D(λ(x1, y1, z1)) = λD(x1, y1, z1) for all (x1, y1, z1), (x2, y2, z2) ∈ X3 and λ ∈ T1. Since D is 3-additive,
D : X3 → X is 3-linear (see [16]). It follows from (3.4) and the 3-additivity of D that

‖D(x1x2, y1y2, z1z2) − x1y1z1D(x2, y2, z2) − D(x1, y1, z1)x2y2z2‖

= 64k
∥∥∥∥∥g

( x1x2

4k ,
y1y2

4k ,
z1z2

4k

)
−

x1

2k

y1

2k

z1

2k g
( x2

2k ,
y2

2k ,
z2

2k

)
− g

( x1

2k ,
y1

2k ,
z1

2k

) x2

2k

y2

2k

z2

2k

∥∥∥∥∥
≤ 64kφ

( x
2k ,

y
2k ,

z
2k ,

x
2k ,

y
2k ,

z
2k

)
,

which tends to zero as n→ ∞, by (3.2). So

D(x1x2, y1y2, z1z2) = x1y1z1D(x2, y2, z2) + D(x1, y1, z1)x2y2z2,

for all x1, y1, z1, x2, y2, z2 ∈ X. This completes the proof. �

4. Conclusions

We have introduced the concept of hyper homomorphisms and hyper derivations in Banach algebras
and we have established the Hyers-Ulam stability of hyper homomorphisms and hyper derivations in
Banach algebras for the 3-additive functional Eq (1.3).
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