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1. Introduction

For a prime p ≡ 1(mod3), let Fp be the finite field of residues (modp), let G be the multiplicative
group of non-zero residues (modp) and let H be the subgroup of non-zero cubic residues (modp). For
any a ∈ G, we defined the sums

S (a) =

p−1∑
k=0

e(ak3/p)

and

G(χ) =

p−1∑
k=1

χ(k)e(k/p),

where χ is a multiplicative character of order 3 over Fp and e(x) = e2πix in this paper. Both S (a) and
G(χ) are called Gauss sums of order 3. Gauss sums is very important in the analytic number theory and
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related research filed. Many scholars studied its properties and obtained a series of interesting results
(see [5, 6, 8–11, 13]).

Let z ∈ G \ H. By a classical result of Gauss [4] (also see Theorem 4.1.2 of [1]), S (1), S (z) and
S (z2) are three roots of the cubic equation

x3 − 3px − pc = 0,

where c is uniquely determined by

4p = c2 + 27d2, c ≡ 1(mod3). (1.1)

However, how to determine which of the three roots corresponds to S (1) is still an open problem.
In this paper, for a fixed z ∈ G \ H, we find a relation between S (1), S (z) and S (z2).

Theorem 1.1. Let p ≡ 1(mod3) and z ∈ G \ H. Then

S (1) = 2
√

p cos
(
θp

)
, S (z) = 2

√
p cos

(
θp − sgn(d)

2
3
π

)
, S (z2) = 2

√
p cos

(
θp + sgn(d)

2
3
π

)
,

where θp = 1
3 arccos

(
− c

2
√

p

)
+ jp

2
3π; jp is one of three values −1, 0, 1 and only dependent on p; c and

d are uniquely determined by

4p = c2 + 27d2, c ≡ 1(mod3), 9d ≡ c(2z
p−1

3 + 1)(mod p). (1.2)

Moreover, there is a unique multiplicative character χ of order 3 over Fp such that

χ(z) =
−1 +

√
3i

2
, G(χ) =

√
peisgn(d)θp .

As application, we consider some congruence equations modp. For a1, a2, a3 ∈ G, let M(a1, a2, a3)
be the number of solutions of

a1x3
1 + a2x3

2 + a3x3
3 ≡ 0(mod p),

and let N(a1, a2, a3) be the number of solutions of

a1x3
1 + a2x3

2 ≡ a3(mod p).

In [2], Chowla, Cowles and Cowles showed that M(1, 1, 1) = p2 + c(p − 1). As pointed out in [3],
the following is essentially included in the derivation of the cubic equation of periods by Gauss [4]:
For a prime p ≡ 1(mod3) and for z ∈ G \ H, then one has

M(1, 1, z) = p2 +
1
2

(p − 1)(9d − c),

where c and d are uniquely determined by (1.1) (except for the sign of d).
Chowla, Cowles and Cowles [3] determined the sign of d for the case 2 ∈ G \ H as the following

result shows.
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Proposition 1.2. [3] Let a prime p ≡ 1(mod3). If 2 ∈ G \ H, then for any z ∈ G \ H, one has

M(1, 1, z) = p2 +
1
2

(p − 1)(9d − c),

where c and d are uniquely determined by (1.1) with

d ≡ c(mod4) for z ≡ 2(modH)

and
d ≡ −c(mod4) for z ≡ 4(modH).

Recently, Hong and Zhu [7] solve the Gauss sign problem. In fact, they gave the following result.

Proposition 1.3. [7] Let a prime p ≡ 1(mod3) and z ∈ G \ H. Let g be a generator of the
multiplicative group G. one has

M(1, 1, z) = p2 +
1
2

(p − 1)(−c − δz(p)d),

where c and d are uniquely determined by (1.1) with d > 0 and

δz(p) = (−1)〈indg(d)〉3 · sgn
(
Im(r1 + 3

√
3r2i)

)
.

Here r1 and r2 are uniquely determined by

4p = r2
1 + 27r2

2, r1 ≡ 1(mod3), 9r2 ≡ (2g
p−1

3 + 1)r1(mod p).

Indeed, their result need to use the generator of group G (that is the primitive root of module p).
However, for a large prime p, it is not easy to find the primitive root of module p. In this paper, we
consider M(a1, a2, a3), N(a1, a2, a3) and determine the sign of d immediately by the coefficients a1, a2

and a3. We have the following three more general results.

Theorem 1.4. Let a prime p ≡ 1(mod3) and a1, a2, a3 ∈ G.
(1) For the case a1a2a3 ∈ H, M(a1, a2, a3) = p2 + c(p − 1);
(2) For the case a1a2a3 < H, M(a1, a2, a3) = p2 + 1

2 (p − 1)(9d − c),
where c and d are uniquely determined by

4p = c2 + 27d2, c ≡ 1(mod3), 9d ≡ c(2(a1a2a3)
p−1

3 + 1)(mod p). (1.3)

Theorem 1.5. Let p ≡ 1(mod3) and a1, a2, a3 ∈ G.
(1) For the case a1a2a3 ∈ H,

N(a1, a2, a3) =

{
p − 2 + c, if a1 ≡ a2(modH);
p + 1 + c, otherwise.

(2) For the case a1a2a3 < H,

N(a1, a2, a3) =

{
p − 2 + 1

2 (9d − c), if a1 ≡ a2(modH);
p + 1 + 1

2 (9d − c), otherwise,

where c and d are uniquely determined by (1.3).
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Corollary 1.6. Let p ≡ 1(mod3) and a1, a2, a3 ∈ G. Then

M(a1, a2, a3) ≡ −c(a1a2a3)
p−1

3 (mod p).

In [14], H. Zhang and W. P. Zhang proposed the following open problem:
Can the number of solutions to the cubic congruence equation

x3
1 + x3

2 + x3
3 + x3

4 ≡ z(mod p) (1.4)

be calculated when z ∈ G?
Let L(z) be the number of solutions of the above Eq (1.4). In [12], W. P. Zhang and J. Y. Hu proved

that

L(z) =

{
p3 − 6p − 1

2 p(5c ± 27d), if z ∈ G \ H;
p3 − 6p + 5cp, if z ∈ H.

(1.5)

However, in [12], they also proposed an interesting open problem: How to determine the choice of
sign in (1.5). In this paper, we solve the sign problem in (1.5), and get the following result.

Theorem 1.7. Let p be a prime number and p ≡ 1(mod3), let z ∈ G \ H. Then

L(z) = p3 − 6p −
1
2

p(5c − 27d),

where c and d are uniquely determined by

4p = c2 + 27d2, c ≡ 1(mod3), 9d ≡ c(2z
p−1

3 + 1)(mod p).

2. Some useful lemmas

Lemma 2.1 (Theorem 3.1.3 of [1]). Let p ≡ 1(mod3) and χ be a multiplicative character of order 3
over Fp. Then

J(χ, χ) =
c + 3

√
3di

2
,

where the Jacobi sum J(χ, χ) =
∑p−1

a=1 χ(a)χ(1 − a), c and d are uniquely determined by

4p = c2 + 27d2, c ≡ 1(mod3), 9d ≡ c(2g
p−1

3 + 1)(modp)

with g being the generator of the multiplicative group G of non-zero residues (modp) such that χ(g) =
−1+

√
3i

2 .

Lemma 2.2 (Lemma 4.1.1 of [1]). Let p ≡ 1(mod3). Let g be a generator of the multiplicative group
G of non-zero residues (mod p) with χ(g) = −1+

√
3i

2 . Then

G3(χ) = pJ(χ, χ).
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Lemma 2.3. Let p ≡ 1(mod3) and z ∈ G \ H. Then there is a unique multiplicative character χ of
order 3 over Fp such that

χ(z) =
−1 +

√
3i

2
, G3(χ) = p ·

c + 3
√

3di
2

,

where c and d are uniquely determined by (1.2).

Proof. Let g′ be a generator of the group G. Note that z ∈ G \ H. So we have indg′z ≡ ±1(mod3).
If indg′z ≡ 1(mod3), we take g = g′; If indg′z ≡ −1(mod3), we take g = (g′)−1. Hence g also is a
generator of the group G and indgz ≡ 1(mod3). Thus we have

z
p−1

3 ≡
(
gindgz

) p−1
3
≡ g

p−1
3 indgz ≡ g

p−1
3 (mod p).

We take the multiplicative character χ(·) = e
( indg(·)

3

)
. Obviously, we have

χ(z) = e
(
indgz

3

)
= e

(
1
3

)
=
−1 +

√
3i

2
= χ(g).

Obviously, all of the multiplicative non-principal characters of order 3 over Fp are χ and χ, χ(z) =

χ(z) = −1−
√

3i
2 . Thus χ is the unique multiplicative character of order 3 over Fp with χ(z) = −1+

√
3i

2 .
Note that G3(χ) = pJ(χ, χ) by Lemma 2.2. Finally, using the Lemma 2.1, one immediately arrive

the Lemma 2.3 as required. �

Lemma 2.4. Let χ be a multiplicative character of order 3. Then for any a ∈ G, we have

S (a) = χ(a)G(χ) + χ(a)G(χ). (2.1)

Proof. Let χ be any multiplicative character of order 3. Then we have

1 + χ(k) + χ(k) =

{
3, if k ∈ H;
0, if k ∈ G \ H.

Thus for any a ∈ G, we have

S (a) =

p−1∑
k=0

e(ak3/p) = 1 +

p−1∑
k=1

(1 + χ(k) + χ(k))e(ak/p)

= 1 +

p−1∑
k=1

e(ak/p) +

p−1∑
k=1

χ(k)e(ak/p) +

p−1∑
k=1

χ(k)e(ak/p)

= χ(a)
p−1∑
k=1

χ(ak)e(ak/p) + χ(a)
p−1∑
k=1

χ(ak)e(ak/p)

= χ(a)G(χ) + χ(a)G(χ).

�
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. First, by Lemma 2.3, there is a unique multiplicative
character χ of order 3 such that

χ(z) =
−1 +

√
3i

2
, G3(χ) = p ·

c + 3
√

3di
2

,

where c and d are uniquely determined by (1.2). We can rewrite G3(χ) by argument, and get

G3(χ) = p
3
2 e3iθsgn(d),

where θ = 1
3 arccos(− c

2
√

p ). Thus we have

G(χ) =
√

pei(sgn(d)θ+ j 2
3π) =

√
peisgn(d)(θ+sgn(d) j 2

3π),

where j is one of three values −1, 0, 1. Let jp = sgn(d) j. Thus we have

G(χ) =
√

peisgn(d)(θ+ jp
2
3π).

Next, we will prove that jp does not depend on the sign of d. Note that G(χ) = χ(−1)G(χ) =
√

pe−isgn(d)(θ+ jp
2
3π). By Lemma 2.4, we have

S (1) = χ(1)G(χ) + χ(1)G(χ) = G(χ) + G(χ)

= 2
√

p cos[sgn(d)(θ + jp
2
3
π)]

= 2
√

p cos(θ + jp
2
3
π).

Obviously, by the definition of S (1), the value of S (1) doesn’t depend on the sign of d. Thus we
have that jp does not depend on the sign of d.

Take θp = θ+ jp
2
3π. We have G(χ) =

√
peisgn(d)θp and S (1) = 2

√
p cos(θp). By Lemma 2.4, we have

S (z) = χ(z)G(χ) + χ(z)G(χ)

=
−1 −

√
3i

2
·
√

peisgn(d)θp +
−1 +

√
3i

2
·
√

pe−isgn(d)θp

=
√

pei(sgn(d)θp−
2π
3 ) +

√
pe−i(sgn(d)θp−

2π
3 )

= 2
√

p cos(sgn(d)θp −
2π
3

) = 2
√

p cos(θp − sgn(d)
2π
3

).

Similarly, we have

S (z2) = 2
√

p cos(θp + sgn(d)
2
3
π).

This completes the proof of the Theorem 1.1.
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4. Some applications for cubic congruence equations and an example

In this section, we prove Theorem 1.4, 1.5 and 1.7. First, we begin with the proof of Theorem 1.4.
Proof of Theorem 1.4. By the orthogonality of additive character, we have

M(a1, a2, a3) =
1
p

p−1∑
m=0

p−1∑
x1=0

p−1∑
x2=0

p−1∑
x3=0

e
(
m(a1x3

1 + a2x3
2 + a3x3

3)
p

)

= p2 +
1
p

p−1∑
m=1

S (ma1)S (ma2)S (ma3).

Then by Lemma 2.4, for any multiplicative character χ of order 3, we have

M(a1, a2, a3) = p2 +
1
p

p−1∑
m=1

 3∏
j=1

(
χ(ma j)G(χ) + χ(ma j)G(χ)

)
= p2 +

1
p

p−1∑
m=1

[
χ(a1a2a3)G3(χ) + χ(a1a2a3)G3(χ)

]
+ G(χ)(χ(a1a2a3) + χ(a1a2a3) + χ(a1a2a3))

p−1∑
m=1

χ(m)

+ G(χ)(χ(a1a2a3) + χ(a1a2a3) + χ(a1a2a3)))
p−1∑
m=1

χ(m)

= p2 +
p − 1

p

[
χ(a1a2a3)G3(χ) + χ(a1a2a3)G3(χ)

]
.

If a1a2a3 ∈ H, thus we have χ(a1a2a3) = χ(a1a2a3) = 1. Then by Lemma 2.3, we have

M(a1, a2, a3) = p2 +
p − 1

p
(G3(χ) + G3(χ))

= p2 + (p − 1)
c + 3

√
3di

2
+

c − 3
√

3di
2


= p2 + c(p − 1).

If a1a2a3 ∈ G \ H, then by Lemma 2.3, we can take multiplicative character χ of order 3 satisfying

χ(a1a2a3) =
−1 +

√
3i

2
, G3(χ) = p ·

c + 3
√

3di
2

,

where c and d are uniquely determined by (1.3). Thus we have

M(a1, a2, a3) = p2 + (p − 1)
−1 −

√
3i

2
·

c + 3
√

3di
2

+
−1 +

√
3i

2
·

c − 3
√

3di
2


= p2 +

1
2

(p − 1)(9d − c).
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This completes the proof of the Theorem 1.4.
Proof of Theorem 1.5. We have

M(a1, a2, a3) =

p−1∑
x1 ,x2 ,x3=0

a1 x3
1+a2 x3

2+a3 x3
3≡0( mod p)

1

=

p−1∑
x3=1

p−1∑
x1 ,x2=0

a1 x3
1+a2 x3

2+a3 x3
3≡0( mod p)

1 +

p−1∑
x1 ,x2=0

a1 x3
1+a2 x3

2≡0( mod p)

1

=

p−1∑
x3=1

p−1∑
x1 ,x2=0

a1(−x1 x3)3+a2(x2 x3)3≡a3( mod p)

1 + 1 +

p−1∑
x1=1

p−1∑
x2=1

(−x1 x2)3≡a1a2( mod p)

1

= (p − 1)
p−1∑

x1 ,x2=0

a1 x3
1+a2 x3

2≡a3( mod p)

1 + 1 +

p−1∑
x1=1

p−1∑
x=1

x3≡a1a2( mod p)

1

= (p − 1)N(a1, a2, a3) + 1 +

p−1∑
x1=1

p−1∑
x=1

x3≡a1a2( mod p)

1.

If a1 ≡ a2(modH), the number of solutions of the congruence equation x3 ≡ a1a2(modp) is
exactly 3. Thus we have

M(a1, a2, a3) = (p − 1)N(a1, a2, a3) + 1 + 3(p − 1) = (p − 1)N(a1, a2, a3) + 3p − 2.

If a1 . a2(modH), the congruence equation x3 ≡ a1a2(mod p) has no solution. Thus we have

M(a1, a2, a3) = (p − 1)N(a1, a2, a3) + 1.

Hence Theorem 1.5 immediately follows from Theorem 1.4.
Proof of Theorem 1.7. First, by Lemma 2.3, there is a unique multiplicative character χ of order 3 such
that

χ(z) =
−1 +

√
3i

2
, G3(χ) = p ·

c + 3
√

3di
2

,

where c and d are uniquely determined by (1.2).
Note that χ(−1) = 1. By the orthogonality of additive character and Lemma 2.3, we have

L(z) =
1
p

p−1∑
m=0

p−1∑
x1=0

p−1∑
x2=0

p−1∑
x3=0

p−1∑
x4=0

e
(
m(x3

1 + x3
2 + x3

3 + x3
4 − z)

p

)

= p3 +
1
p

p−1∑
m=1

S 4(m)e
(
−mz

p

)

= p3 +
1
p

p−1∑
m=1

[χ(m)G(χ) + χ(m)G(χ)]4e
(
−mz

p

)
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= p3 − 6p +
1
p

p−1∑
m=1

[
χ(m)G4(χ) + 4pχ(m)G2(χ) + 4pχ(m)G2(χ) + χ(m)G4(χ)

]
e
(
−mz

p

)

= p3 − 6p +
1
p

G4(χ)
p−1∑
m=1

χ(m)e
(
−mz

p

)
+

1
p

G4(χ)
p−1∑
m=1

χ(m)e
(
−mz

p

)

+ 4G2(χ)
p−1∑
m=1

χ(m)e
(
−mz

p

)
+ 4G2(χ)

p−1∑
m=1

χ(m)e
(
−mz

p

)
= p3 − 6p +

1
p

G4(χ)χ(−z)G(χ) +
1
p

G4(χ)χ(−z)G(χ) + 4χ(−z)G3(χ) + 4χ(−z)G3(χ)

= p3 − 6p + χ(z)G3(χ) + χ(z)G3(χ) + 4χ(z)G3(χ) + 4χ(z)G3(χ)

= p3 − 6p + p ·
−1 +

√
3i

2
·

c + 3
√

3di
2

+ p ·
−1 −

√
3i

2
·

c − 3
√

3di
2

+ 4p ·
−1 −

√
3i

2
·

c + 3
√

3di
2

+ 4p ·
−1 +

√
3i

2
·

c − 3
√

3di
2

= p3 − 6p −
1
2

p(5c − 27d).

This completes the proof of the Theorem 1.7.

Example 4.1. We take F31 := {0, 1, · · · , 30}. Consider the cubic equations x3
1 + 2x3

2 + 3x3
3 ≡ 0(mod31)

and x3
1 + 2x3

2 ≡ 3(mod31).
If the integers c and d satisfying that 4 ·31 = c2 +27d2, c ≡ 1( mod 3), 9d ≡ c(2×6

31−1
3 +1)( mod 31),

then c = 4, d = 2. One can check that 2
31−1

3 ≡ 1(mod31) and 6
31−1

3 ≡ 25(mod31), so 6 is not a cubic
element in F31 and 2 is a cubic element in F31. Thus 6 < H and 1 ≡ 2(modH).

It then follows from Theorems 1.4 and 1.5 that the numbers M(1, 2, 3) and N(1, 2, 3) of the cubic
equations x3

1 + 2x3
2 + 3x3

3 ≡ 0(mod31) and x3
1 + 2x3

2 ≡ 3(mod31) are given by

M(1, 2, 3) = 312 +
1
2

(31 − 1)(9 × 2 − 4) = 1171

and
N(1, 2, 3) = 31 − 2 +

1
2

(9 × 2 − 4) = 36.

We list the solutions of equation x3
1 + 2x3

2 ≡ 3(mod31) as belove:

(1, 1); (1, 5); (1, 25); (5, 1); (5, 5); (5, 25); (25, 1); (25, 5); (25, 25);

(6, 4); (6, 7); (6, 20); (26, 4); (26, 7); (26, 20); (30, 4); (30, 7); (30, 20);

(4, 8); (4, 9); (4, 14); (7, 8); (7, 9); (7, 14); (20, 8); (20, 9); (20, 14);

(16, 17); (16, 22); (16, 23); (18, 17); (18, 22); (18, 23); (28, 17); (28, 22); (28, 23).
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