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1. Introduction and preliminaries

If the image of a point x under two single-valued mappings is x itself, then x is said to be a fixed
point of these mappings. Banach [7] proved a meaningful result for contraction mappings. Due to its
significance, several authors, like Acar et al. [3], Altun et al. [5], Aslantas et al. [6], Sahin et al. [27],
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Hussain et al. [17], Hammad et al. [14-16] and Ceng et al. [8—11] presented many related useful
applications in fixed point theory. In [23,31], the authors showed a new iterative scheme for the solution
of nonlinear mixed Volterra Fredholm type fractional delay integro-differential equations of different
orders. Chistyakov [13] introduced the notion of a modular metric space. Mongkolkeha et al. [21]
established some results in modular metric spaces for contraction mappings. Chaipunya et al. [12],
Abdou et al. [2] and Alfuraidan et al. [4] showed fixed point results for multivalued mappings in
modular metric spaces. Abdou et al. [1] proved fixed point theorems of pointwise contractions in
modular metric spaces. Hussain et al. [19] discussed some fixed point theorems for generalized F-
contractions in fuzzy metric and modular metric spaces. Later, Padcharoen et al. [22] introduced
the concept of a-type F-contractions in modular metric spaces and showed fixed point and periodic
point results for such a contraction. Recently, Rasham et al. [26] introduced a modular-like metric
space and proved results for families of mappings in such spaces. In this research work, we prove
existence of fixed point results for a hybrid pair of multivalued maps fulfilling generalized rational
type F-contractions, by using a weaker class of strictly increasing mappings F' rather than the class of
mappings introduced by Wardowski [30].
Let us state the following preliminary concepts.

Definition 1.1. [26] Let B be a non-empty set. A function v : (0, 00) X B X B — [0, 00) is said to be a
modular-like metric on B, if for each e, i,0 € B and v(a, i, 0) = v,(i, 0), the following hold:

(D) v,(i,0) = v,(0,i) for all a > 0;

(ii) v,(i,0) = O for all @ > O implies i = o;

(it1) via(i, 0) < y(i, e) + vy(e,0) forall I, n > 0.

The pair (B, v) is said to be a modular-like metric space. If we change (ii) by “v,(i,0) = 0 for each
[ > 0iff i = 0”, then (B, v) becomes a modular metric space. While, by changing (ii) with “v;(i,0) = 0
for some [ > 0, such that i = 0”, we obtain a regular modular-like metric space. For s € B and € > 0,
C,(s,e)={t€ B :|yf(s,t) =yt 1) < &} is a closed ball in (B, v).

Example 1.2. Let B = [0, o0) X [0, ). Define v : (0, 00) X B X B — [0, 00) as

e+p+i+o

(l) v(a, (ea p)’ (l’ 0)) - >

a
max{e, p, i, 0}

(i) v(a, (e, p), (i, 0))

a

The functions given in (i) and (ii) are examples of a modular-like metric on B.

Definition 1.3. [26] Let (B, v) be a modular-like metric space.

(i) A sequence (a, ),y 1n B is said to be v-convergent to a point a € B for some [ > 0 if lim v(a,,a) =
vi(a,a). S

(i1) A sequence (a,)qen 1n B is said to be an v-Cauchy sequence for some / > 0 if lim v,(a,, a,) exists

n,m—oo

and is finite.
(ii1) B is called v-complete if each v-Cauchy sequence (a, ),y in B is v-convergent to some a € B, that
18,

”l_i)rPoovl(an, a) = v(a, a).

(iv) If every sequence has a convergent subsequence, then B is called compact.
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Definition 1.4. [26] Let (B, v) be a modular-like metric space and U C B. An element py in U verifying
vi(s,U) = inf v (s, po)
poeU

is called a best approximation in U for s € B. If each s € B possesses a best approximation in U, then
U is called a proximinal set.

From now on, let P(B) represent the set of proximinal compact subsets in B.

Example 1.5. Let B = [0, 00) and v,(s, 1) = #(s +r) with w > 0. Take U = [7, 8]. Then for any m € B,

vi(m, U) = v(m,[7,8]) = ,,é%f;;] vi(m,n) = v,(m, 7).

So 7 is a best approximation in U for any m € B. Moreover, [7, 8] is a proximinal set.

Definition 1.6. [26] The mapping H,, : P(B) X P(B) — [0, ), given by

Hv[(X9 Y) = maX{Sup UI(O_, Y)’ sup Ul(§9 X)}’

oeX ceY
is known as an v;- Hausdorff metric. Note that (P(B), H,,) is named as an v;- Hausdorff metric space.

Example 1.7. Let B = [0, 00) and v,(6, %) = %(0 + 1) with [ > 0. Taking W = [5,6] and Q = [9, 10] we
get H, (W, Q) = &

Definition 1.8. [26] Let (X, v) be a modular-like metric space. v is said to satisfy the Aj-condition if
lim v,(x,, x,,) = 0, where p € Nimplies lim v(x,, x,,) = 0, for some [ > 0.

Definition 1.9. [28] Let C # @, Y : C — P(C) be a multivalued mapping, E C Canda : C X C —

[0, +0) be a function. Then Y is said to be @.-admissible on E if a.(Ye, Yz) = inf{a(l,m) : l € Ye,m €
Yz} > 1, whenever a(e,z) > 1 foralle,z € E.

Definition 1.10. [29] Let B # @, Y : B — P(B) be a multi-valued mapping, RC Banda : BX B —
[0, o) be a function. Then Y is said to be a.-dominated on R if for all v € R, a.(v,Yv) = inf{a(v, j) :
JEYv>1.

Definition 1.11. [30] Let (C,d) be a metric space. A self mapping H : C — C is said to be a
Q-contraction if for each g, k € C, there is 7 > 0 such that d(Ca, Cg) > 0 implies

7+ Q(d(Ca,Cg)) < Q(d(a,8)),

where Q : (0, c0) — R satisfies the following:

(F1) For any k € (0, 1), li_)I{)1+O'kQ(O') = 0;

(F2) For each u,v > 0 sgch that u < v, Q(u) < Q(v);

(F3) lim o, = 0 if and only if nlierQ(O'n) = —oo for every positive sequence {0, }

n—+oo

(o]
n=1°

Let F denote the set of mappings such that (F1)—(F3) hold.
Lemma 1.12. [26] Let (£, v) be a modular-like metric space. Let (P(£), H,,) be a Hausdor{f v;—metric-
like space. Then, for all b € U and for each U, Y € P(£), there is b, € Y such that H,,(U,Y) > v(a, b,).
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Example 1.13. [24] Let W = R. Consider @ : W x W — [0, 00) as

a(sr)—{ lifs>r
9 - 1 .
Zlfs}r

Define L,N : W — P(W) by
Ls=[-4+s-3+sland Nr=[-2+r,-1+7].

The a.-dominated property for L and N holds. Note that L and N are not a.-admissible.
2. Main results

Let (£, v) be a modular-like metric space, 6y € £, and R,C : £ — P(£) be two multifunctions on
£. For 6, € Réy with U](éo,Réo) = U1(50,61), take 0, € Cd; such that U1(51, Cé]) = U1(61,(52). Choose
03 € Ro, such that v1(6,, R6,) = v1(63, 03). In this way, we get a sequence {CR(5,)} in £, where

O2n+1 € RO2y, 02442 € COopsr,

for all n € N U {0}. Note that v,(92,, R62,) = vU1(024,02441) and v (02p+1, CO2441) = V1(02n+1, O2n12)-
{CR(5,)} is said to be a sequence in £ generated by ¢,. If R = C, then we denote {£R(6,)} instead of
{CR(6,)}-

Theorem 2.1. Let (£, v) be a complete modular-like metric space. Suppose that v is regular and verifies
the Ay-condition. Let 6p € £, @ : £ X £ — [0,00) and R, C : £ — P(£) be a.-dominated multifunctions
on £. Assume there are T > 0 and Q € F such that

2.1

+ Q(H,,(Rt,C8)) < Q (max {vl(t, 8. v,(1, Rpy, 2LEO) 1. RH.11(6,C0) })

27 1+u(1,9)

where t,6 € {CR(6,)}, a(t,6) > 1 or a(6,t) > 1, and H,,(Rt,C6) > 0. Then the sequence {CR(5,)}
generated by &, converges to e € £ and for eachn € N, a(6,, 0,+1) > 1. Furthermore, if e satisfies (2.1),
a(0,,e) > 1 and a(e,6,) > 1 for all integers n > 0, then R and C have a common fixed point e in £.

Proof. Consider a sequence {CR(6,)}. Obviously, ¢, € £ for each integer n > 0. If j is odd, then
Jj = 2i+ 1 for some i € N. By definition of a.-dominated mappings, one has a.(d,;, Ré5;) > 1 and
@(02i11, Cony1) = 1. Since @.(92, Rd») > 1, one gets inf{a(0,;,b) : b € Ré»} > 1. Also, 6211 € ROy
and so a(0y;, 02;11) = 1. Moreover, 85,2 € Cd41 and S0 (0241, 02;42) > 1. In view of Lemma 1.12, we
have

T+ Q1(62+1,0212)) < T+ Q(H, (R63,Cb241))
( { U1 (82, 62141) , U1 (O, R , 22028002) })
0O | max

IA

v1(621,R02:).1(621+1,C2i41)
1+v1(621,02i+1)

0 (max { U1 (021, 62141) » U1 (621, O2141) Ul((szi’ézm”;'((sz”"62”2), })

IA

U1(02:,021+1)-V1(02i+1,02i+2)
1+v1(621,021+1)

O(max{v; (62, 02141) » U1 (02141, O242)})-

IA
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This implies
T+ Q1(021+1, 02142)) < Q(max{v; (6n, 02i+1) > V10241, 02142)})- (2.2)

Now, if
max{v; (02i, 621+1) » V1 (02141, 02142)} = U1(02141, 02142),

then from (2.2), we have
O (62111, 02142)) < O(W1(62141,02142)) — T,

which is a contradiction. Therefore,
max{vy (621, 02+1)  V1(02141, 02142)} = U1(621, O241)
for all i > 0. Hence, from (2.2), we have
QW1(621+1, 621+2)) < QW1(62,02141)) — 7. (2.3)

Similarly, we have
Q1(621,62141)) < Q(1(621-1,62)) — T (2.4)
for all i > 0. By (2.3) and (2.4), we have

OW1(02141, 02142)) < O(V1(02-1,02)) — 27.
Repeating these steps, we get
OW1(0241, 02142)) < O(v1(60,01)) — (21 + D7 (2.5)

Similarly, we have
O1(62,02+1)) < Q1(60,61)) — 2it. (2.6)

By (2.5) and (2.6), we obtain

QW1(0n, 6p+1)) < Q1(9,61)) — nT. (2.7)

Letting n — oo in (2.7), one obtains
1}1—{1; Q(Ul(én’ 6n+1)) = —0.

Since Q € F,
lim v{(,, 0,41) = O. (2.8)

Due to (F1) of F, there is k € (0, 1) such that
Iim (v1(,, 62:1) (QW1 (6, 641)) = 0. (2.9)
By (2.7), for all n € N, we obtain
16> 6041)) (QW1(S1> 6011)) = QW1(80,61)) < =18y, Gs1)) T < 0. (2.10)
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Using (2.8), (2.9) and taking n — oo in (2.10), we have
lim n(1(6,, 6,1))" = 0. (2.11)
By (2.11), there is n; € N such that n(v(5,, 6,41))* < 1 for all n > ny, or
v1(0,, 0p41) < n% for all n > n;.

Letting p >0and m =n+ p > n > n;, we get

.l
Up(5r1a 6m) < Ul(éna 5n+1) + U1(5n+17 5n+2) +--t Ul(ama 5m+1) < Z 1

1
j=n J*
Since k € (0, 1), % > 1 and so the series 2;11 L converges. Thus,
j%
lim v,(6,,0,) = 0.
Since v satisfies the Aj,-condition, we have
lim v4(6,,6,,) = 0. (2.12)

n,m— oo

Hence {CR(6,)} 1s Cauchy in the regular complete modular-like metric space (£, v) and so there is e € £
such that {CR(5,)} — e as n — oo and thus

lim v1(d,,¢e) = 0. (2.13)
Now, by Lemma 1.12, one obtains
7+ Q1(62n41, Ce) < T+ Q(H,, (R624, Ce)). (2.14)

Now, there exists 07,11 € R, such that v1(63,, R62,) = v1(02, 02441). From assumption, a(d,,e) > 1.
Assume that vy(e, Ce) > 0. Then there is an integer p > 0 such that v,(65,4+1, Ce) > 0 for n > p. Now,
if H,,(R62,, Ce) > 0, then by (2.1), we have

U1(O2n, €), U1(02y, €),

0211,021+41)+V1(02,+1,C'
T4+ Q(U1(52n+1,C€)) < Q max v1(92 2+1)2U1( 2n+1 e)’
U1(620,R024).v1(Q,Ce)
1+U1(52n,6)

Letting n — oo and using (2.13), we get
7+ Q(ui(e, Ce)) < Q(vi(e, Ce)).
Since Q is strictly increasing, (2.14) implies
vi(e,Ce) < vi(e, Ce).

This is a contradiction. Hence v(e, Ce) = 0 and so e € Ce.
Similarly, we can show that v;(e, Re) = 0, that is, e € Re. Hence e is a common fixed point of both
mappings R and C in £. O
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Corollary 2.2. Let (£,v) be a complete modular-like metric space. Suppose that v is regular and
verifies the Ay-condition. Let @ : £ X £ — [0,00) and R, C : £ — P(£) be a.-dominated multifunctions
on £. Assume there are T > 0 and Q € F such that

wa(t, Co) v (t, Rt).v,(06, Co) })

7+ Q(H,,(Rt, C6)) < Q(maX {vl(f, 0), 1 (&, Rt), ———, —— v1(1,0)

where t,0 € £, a(t,0) > 1 or a(6,t) > 1, and H,,(Rt,CS) > 0. Then there exists a sequence {0,} in £
converging to e € £ and for each n € N, a(6,,0,+1) = 1. Also, if a(6,,e) > 1 and a(e, ,) > 1 for all
integers n > 0, then R and C have a common fixed point e in £.

Example 2.3. Let £ = R, U {0}. Take v,(r,m) = r + m and v (e, t) = %(e + ¢t) for all e, t € £. Define
R,C: £ — P(£) by

Rv:{ [gg] ifrefl,d, L L L .
[7v,10v] if v € {1, %, 35, 3¢, 770" - }
and
[5v,13v] if v ¢ {1, % %,%,ﬁ,...}
Suppose that vo = 1. Then v,(vy, Rvy) = vi(1,R1) = vl(l,%) and so v; = Now, vi(v1,Cvy) =

1 1 1 1 1 1
U](g,Cg) = U](g,ﬁ) and thus Vo = 12° NOW U](VQ,RVQ) = U1(12’ 12) = U1(12’36) and so V3 = 36"

Continuing in this way, we have {CR(v,)} = {1, 1, 15, 3¢, 13- - - }- Define @ : £ X £ — [0, 00) as

o 1) 1 ifr>t
r, = . .
5 otherwise

Let v,y € {CR(v,)} with a(v,y) > 1. Then

H, (Rv,Cy) = max{supv,(a,Cy),sup v;(Rv,b)}

acRv beCy
v |y 3y
_ U (?7 I:Z’ T])?
= max v 2v] 3y
Ui\[3 3| %

Also,

1, CY) (v, Rv).ui(y, Cy>} - { VYV, }
_ "
4

2 T 1+uny) v+ ), L)

max {vl(v, ), vi(v,Ry),

If Q(r) = Int and T = In(1.2), then we have

v (v, Cy) vi(v, Rv).u(y, Cy) })

T+ Q(HUI(RV, Cy)<Q (max {vl(v, ¥),u1(v,Rv), D ’ 1+u(n,y)

AIMS Mathematics Volume 7, Issue 6, 10582—-10595.
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Hence all the conditions in Theorem 2.1 hold and so R and C possess a common fixed point.
Note that

3’3

v 2v
Rv =
[7v, 10v] if v ¢ {1,

—] ifv e{l,

and

v 3v . 1 1 1 1

CV:{ [Z Z] ifvetl, s 550w
L1 1

[Sv, 13v] if v ¢ {1 ,3,12,36,144,"'}

If v=2and y = 3, then we have

H, (R2,C3) = max {sup vi(a, C3), sup v (R2, b)}

a€R?2 beC3

{ sup v (a,[15,39]), sup v, ([14,20],b)}]

a€[14,20] be[15,39]

ae[14,20] be[15,39]

v; (20, 15),v, (14,39)}
20+ 15,14 + 39} = 53.

= max

= [{ sup v (a,15), sup v1(14,b)}]
X {
X {

= max

Also

vL,(v, Cy) vi(v,Rv).v1(y, Cy)
maX{vl(v,y),vl(v,RV), < 5 yu 1+v1(\1/)))/) y}

2,[15,39 2,[14,20]).v1(3,[15,39
{u1(2,3),v1(2,[14,201),”2( [2 ]),Ul( [ 1+]311(f£(3)[ ])}

17 (16)(18)) _
{5 16, — T T}—48.

= max

Now,
In(1.2) + In(53) > In(48).

This implies that
T+ F(H,,(R2,C3) > F(v1(2,3)).

So the condition (2.1) does not hold on the whole space. Hence Corollary 2.2 and the other existing
results in modular metric spaces cannot be applied to ensure the existence of a common fixed point.
However, Theorem 2.1 is valid here.

Taking R = C in Theorem 2.1, we may state the following corollary.

Corollary 2.4. Let (£,v) be a complete modular-like metric space. Suppose v is regular and the Ay-
condition holds. Let 6y € £, @ : £ X £ — [0,00) and R : £ — P(£) be a a.-dominated set-valued
function on £. Assume there are T > 0 and Q € F such that

vy (t,0), vi(t, Rt), vy (t, RO),
T+Q(Hu,(Rr,R6))sQ(max{ 1 )MZ( )})

1+v(2,0)

(2.15)
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where t,6 € {£R(6,)}, a(t,0) > 1, and H,,(Rt, R6) > 0. Then, the sequence {£R(5,)} generated by 6
converges to e € £ and for each integer n > 0, a(0,,0,+1) = 1. Also, if e satisfies (2.15) and either
a(0,,e) > 1 orale,o,) > 1 for all integers n > 0, then R has a fixed point e in £.

3. Applications to graph theory

Jachymski [20] initiated the graph concept in fixed point theory. Hussain et al. [18] gave new
results for graphic contractions. Recently, Younis et al. [32] discussed a significant result on the
graphical structure of extended b-metric spaces and Shoaib ef al. [29] established some results on
graph dominated set-valued mappings in the setting of b-metric like spaces. Further results on graph
theory can be seen in [24,25,28].

Definition 3.1. [29] Let A be a non-empty set and Y = (V(T), L(Y)) be a graph with V(T) = A.
A mapping P from A into P(A) is said to be multi-graph dominated on A if for each 1 € A, we have
(1, 7) € L(Y), where j € Pa.

Theorem 3.2. Let (U, v) be a complete modular-like metric space endowed with a graph (" and 6, € R
satisfying the following:

(i) R and C are multi-graph dominated functions on {CR(6,)};

(ii) There are T > 0 and Q € F such that

vi(w, h), vy (w, Rw), 2050 }) (3.1)

T+ Q(Hul (RW, Ch)) < Q (max{ v (w,Rw).v1 (h,Ch)
1+vi(w,h)
where w,h € {CR(6,)}, wh) € L(Y) or (h,w) € L(Y), and H,,(Rw,Ch) > 0.Suppose that the
regularity of R and the Ay-condition are verified. Then (6,,0,+1) € L(Y) and {CR(6,)} — ¢°. Also,
if 0" satisfies (3.1), (0,,0%) € L(Y) and (6%,0,) € L(Y) for all integers n > 0, then R and C have a
common fixed point in U.

Proof. Define @ : U X U — [0,00) as a(w,h) = 1 if w € U and (w,h) € L(T), and a(w,h) = 0,
otherwise. The graph domination on U yields that (w, h) € £(T) for all h € Rw and (w, h) € L(T) for
each h € Cw. So a(w,h) = 1 for all h € Rw and a(w, h) = 1 for each h € Cw. Thus inf{a(w,h) : h €
Rw} =1 and inf{a(w, h) : h € Cw} = 1. Hence a.(w,Rw) = 1 and a.(w,Cw) = 1 for any w € R. So R
and C are a.-dominated on U. Furthermore,

vi(w, h), vy (w, Rw), 2020
T+ Q(H,,(Rw,Ch)) < QO (max{ : ul(w{Rw).ul(h,Ch) 2 ,

1+vi(w,h)

where w, h € UN{CR(6,)}, a(w, h) > 1 and H,,,(Rw, Ch) > 0. Also, (i1) is fulfilled. Due to Theorem 2.1,
{CR(5,)} 1s a sequence in U and {CR(6,)} — ¢" € U. Here, 9,,0" € U and either (9,,0") € L(T) or
(0%,0,) € L(T) yields that either a(6,,0") > 1 or a(6",0,) > 1. So all the hypotheses of Theorem 2.1
hold. Thus 6" is a common fixed point of R and C in U and v,(6%, 6*) = 0. O

4. On single-valued mappings

In this section, some corollaries related to single-valued mappings in modular-like metric space are
derived. Let (£, v) be a modular-like metric space, ¢y € £ and R, C : £ — £ be a pair of mappings. Let
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01 = Réy, 65 = Cdy, 03 = Ro,. Consider a sequence {0,} in £ such that 65,1 = Ry, and 62,42 = C2p41,
for integers n > 0. We represent this type of iteration by {CR(9,)}. {CR(6,)} is a sequence in £ generated
by dp. If R = C, then we use {£R(9,)} instead of {CR(5,)}.

Theorem 4.1. Let (£, v) be a complete modular-like metric space. Suppose that the regularity of v and
the Ay-condition hold. Taker > 0,0p € £, @ : £ X £ — [0,00) and let R,C : £ — £ be a,.-dominated
multifunctions on £. Then there are T > 0 and Q € F such that

vi(t,6), vy (t, Rr), 2452,
7+ Q(vi(Rt,C9)) < Q| max o1 (RO G.CH) , 4.1)
T+01(1,6)
where t,6 € {CR(5,)}, a(t,0) > 1, or a(6,t) > 1, and v(Rt,C6) > 0. Then a(6,,0,+1) = 1 for all
integers n > 0 and {CR(5,)} — h € £. Also, if h verifies (4.1), a(6,,h) > 1 and a(h,d,) > 1 for all
integers n > 0, then R and C admit a common fixed point h in £.
Proof. The proof is similar to the proof of Theorem 2.1. O

Letting R = C in Theorem 4.1, we have the following corollary.

Corollary 4.2. Let (£,v) be a complete modular like metric space. Suppose that the regularity of v
and the Ay-condition hold. Choose 6y € £, a : £ X £ — [0,00) and let R : £ — £ be a single-valued
function on £. Then there are T > 0 and Q € F such that

vi(t,6), vy (t, Rr), 2452,
T+ Q1 (Rt,R6)) < QO (max{ : ul(t,llet).ul(a,Ra) 2 ,

1+v1(2,0)

4.2)

where t,d € {£R(6,)}, a(t,0) > 1, or a(d,t) > 1, and vi(Rt, R6) > 0.Then a(d,, 0,+1) = 1 for all integers
n > 0and{6,} — h € £. Also, if (4.2) holds for h, a(6,,h) > 1 and a(h,6,) > 1 for all integers n > 0,
then R has a fixed point h.

5. Integral equations

In this section, we apply our work to solve integral equations.

Theorem 5.1. Let (£,v) be a complete modular-like metric space. Suppose that the regularity of v and
the Ay-condition hold. Take r > 0, 6y € £ and let R,C : £ — £ be a,.-dominated multifunctions on £.
Then there are T > 0 and Q € F such that

vi(t,6), vy (t, Rr), 2452,
, (5.1

7+ Q(1(Rt,C9)) < Q (max{ 1 (LR (5,C5)

1+v1(1,0)

where t,d € {CR(5,)}, and vi(Rt,C6) > 0. Then {CR(6,)} — f € £. Also, if f verifies (5.1), then R and
C admit a unique common fixed point f in £.

Let W = C([0, 1],R,) be the family of continuous functions defined on [0, 1]. The following are
two integral equations:

u(e) = f He, f.u(f)d, (52)
0
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e

o)1= [ Gte.f.ctnar (5.3)
0
for all e € [0, 1], where H,G : [0,1] X [0,1] X W — R. For ¢ € C([0, 1],R,), define supremum norm as

loll, = sup {|6(s)|e~™}, and take T > O arbitrarily. For all ¢, w € C([0, 1], R.), define
s€[0,1]

1 1
vi(6,w) = 5 sup {[(s) + w(s)e™™} = 116 + wllr.
sel0,1]

It is clear that (C([0, 1],R,),d;) is a complete modular-like metric space. So we have the following
result.

Theorem 5.2. Suppose that
(i) H,G : [0, 1] x [0, 1] x C([0, 1], Ry) = R;

(ii) Define
®axe) = [ Hee. futyar,
0
coxe) = [ Gles.ar.
0
Assume that there is T > 0 such that
TM(u, o)
|H(€, f, Lt) + G(e, f, 5)| < W

foralle, f €[0,1] and u,6 € C([0, 1],R*), where

llee + 6l , llee + Rul|-,
[lu+Rul|+[16+Cdl|

2

M(u,d8) = max| - 3
2 llu+Rull-[]6+Cl,
1+||u+0ll,

Then (5.2) and (5.3) possess a unique solution.

Proof. By (ii),

TM(u, o)

de
Hauo+1t

|Ru + C9|

f |He, f,u) + e, £,0)| df < f
0 0

e

TM(M, 6) f £ M(l/l, 6)

T d < Te.

Hao+1l) ¢ Y= s 1€
0

This implies
M(u, d)

Ru+Cole™ < ——22)
Ru+ Cole ™ < e 1
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M(u, o)
T™(u,6) + 1’
TM(u,6) + 1 < 1

M(u,8) = ||[Ru+Céll;’
T+ ! < ! .

M(u,6) — ||Ru+ C9||,

||Ru + C6||T <

Thus
1 -1

T— < .
IRu(e) + Cé(e)ll: — M(u,9)
All the conditions of Theorem 5.1 hold for Q(f) = _71 for f > 0 and v (f,0) = %Ilf + ¢||,. Hence both
the integral Eqs (5.2) and (5.3) admit a unique common solution. O

6. Conclusions

In this article, we have achieved some new results for a pair of set-valued mappings verifying a
generalized rational Wardowski type contraction. Dominated mappings are applied to obtain some
fixed point theorems. Applications on integral equations and graph theory are given. Moreover, we
investigate our results in a more better new framework. New results in ordered spaces, modular metric
space, dislocated metric space, partial metric space, b-metric space and metric space can be obtained as
corollaries of our results. One can further extend our results to fuzzy mappings, bipolar fuzzy mappings
and fuzzy neutrosophic soft mappings.
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