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1. Introduction and preliminaries

If the image of a point x under two single-valued mappings is x itself, then x is said to be a fixed
point of these mappings. Banach [7] proved a meaningful result for contraction mappings. Due to its
significance, several authors, like Acar et al. [3], Altun et al. [5], Aslantas et al. [6], Sahin et al. [27],
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Hussain et al. [17], Hammad et al. [14–16] and Ceng et al. [8–11] presented many related useful
applications in fixed point theory. In [23,31], the authors showed a new iterative scheme for the solution
of nonlinear mixed Volterra Fredholm type fractional delay integro-differential equations of different
orders. Chistyakov [13] introduced the notion of a modular metric space. Mongkolkeha et al. [21]
established some results in modular metric spaces for contraction mappings. Chaipunya et al. [12],
Abdou et al. [2] and Alfuraidan et al. [4] showed fixed point results for multivalued mappings in
modular metric spaces. Abdou et al. [1] proved fixed point theorems of pointwise contractions in
modular metric spaces. Hussain et al. [19] discussed some fixed point theorems for generalized F-
contractions in fuzzy metric and modular metric spaces. Later, Padcharoen et al. [22] introduced
the concept of α-type F-contractions in modular metric spaces and showed fixed point and periodic
point results for such a contraction. Recently, Rasham et al. [26] introduced a modular-like metric
space and proved results for families of mappings in such spaces. In this research work, we prove
existence of fixed point results for a hybrid pair of multivalued maps fulfilling generalized rational
type F-contractions, by using a weaker class of strictly increasing mappings F rather than the class of
mappings introduced by Wardowski [30].

Let us state the following preliminary concepts.

Definition 1.1. [26] Let B be a non-empty set. A function υ : (0,∞) × B × B→ [0,∞) is said to be a
modular-like metric on B, if for each e, i, o ∈ B and υ(a, i, o) = υa(i, o), the following hold:
(i) υa(i, o) = υa(o, i) for all a > 0;
(ii) υa(i, o) = 0 for all a > 0 implies i = o;
(iii) υl+n(i, o) ≤ υl(i, e) + υn(e, o) for all l, n > 0.
The pair (B, υ) is said to be a modular-like metric space. If we change (ii) by “υl(i, o) = 0 for each
l > 0 iff i = o”, then (B, υ) becomes a modular metric space. While, by changing (ii) with “υl(i, o) = 0
for some l > 0, such that i = o”, we obtain a regular modular-like metric space. For s ∈ B and ε > 0,
Cυl(s, ε) = {t ∈ B : |υl(s, t) − υl(t, t)| ≤ ε} is a closed ball in (B, υ).

Example 1.2. Let B = [0,∞) × [0,∞). Define υ : (0,∞) × B × B→ [0,∞) as

(i) υ(a, (e, p), (i, o)) =
e + p + i + o

a
,

(ii) υ(a, (e, p), (i, o)) =
max{e, p, i, o}

a
.

The functions given in (i) and (ii) are examples of a modular-like metric on B.

Definition 1.3. [26] Let (B, υ) be a modular-like metric space.
(i) A sequence (an)n∈N in B is said to be υ-convergent to a point a ∈ B for some l > 0 if lim

n→+∞
υl(an, a) =

υl(a, a).
(ii) A sequence (an)n∈N in B is said to be an υ-Cauchy sequence for some l > 0 if lim

n,m→∞
υl(am, an) exists

and is finite.
(iii) B is called υ-complete if each υ-Cauchy sequence (an)n∈N in B is υ-convergent to some a ∈ B, that
is,

lim
n→+∞

υl(an, a) = υl(a, a).

(iv) If every sequence has a convergent subsequence, then B is called compact.
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Definition 1.4. [26] Let (B, υ) be a modular-like metric space and U ⊆ B.An element p0 in U verifying

υl(s,U) = inf
p0∈U

υl(s, p0)

is called a best approximation in U for s ∈ B. If each s ∈ B possesses a best approximation in U, then
U is called a proximinal set.

From now on, let P(B) represent the set of proximinal compact subsets in B.

Example 1.5. Let B = [0,∞) and υl(s, r) = 1
w (s + r) with w > 0. Take U = [7, 8]. Then for any m ∈ B,

υl(m,U) = υl(m, [7, 8]) = inf
n∈[7,8]

υl(m, n) = υl(m, 7).

So 7 is a best approximation in U for any m ∈ B. Moreover, [7, 8] is a proximinal set.

Definition 1.6. [26] The mapping Hυl : P(B) × P(B)→ [0,∞), given by

Hυl(X,Y) = max{sup
σ∈X

υl(σ,Y), sup
ς∈Y

υl(ς, X)},

is known as an υl- Hausdorff metric. Note that (P(B),Hυl) is named as an υl- Hausdorff metric space.

Example 1.7. Let B = [0,∞) and υl(θ, ϑ) = 1
l (θ + ϑ) with l > 0. Taking W = [5, 6] and Q = [9, 10] we

get Hυl(W,Q) = 15
l .

Definition 1.8. [26] Let (X, υ) be a modular-like metric space. υ is said to satisfy the △M-condition if
lim

n,m→∞
υp(xn, xm) = 0, where p ∈ N implies lim

n,m→∞
υl(xn, xm) = 0, for some l > 0.

Definition 1.9. [28] Let C , Φ, Y : C → P(C) be a multivalued mapping, E ⊆ C and α : C × C →
[0,+∞) be a function. Then Y is said to be α∗-admissible on E if α∗(Ye,Yz) = inf{α(l,m) : l ∈ Ye,m ∈
Yz} ≥ 1, whenever α(e, z) ≥ 1 for all e, z ∈ E.

Definition 1.10. [29] Let B , Φ, Y : B → P(B) be a multi-valued mapping, R ⊆ B and α : B × B →
[0,∞) be a function. Then Y is said to be α∗-dominated on R if for all v ∈ R, α∗(v,Yv) = inf{α(v, j) :
j ∈ Yv} ≥ 1.

Definition 1.11. [30] Let (C, d) be a metric space. A self mapping H : C → C is said to be a
Q-contraction if for each g, k ∈ C, there is τ > 0 such that d(Ca,Cg) > 0 implies

τ + Q (d(Ca,Cg)) ≤ Q (d(a, g)) ,

where Q : (0,∞)→ R satisfies the following:
(F1) For any k ∈ (0, 1), lim

σ→0+
σkQ(σ) = 0;

(F2) For each u, v > 0 such that u < v, Q(u) < Q(v);
(F3) lim

n→+∞
σn = 0 if and only if lim

n→+∞
Q(σn) = −∞ for every positive sequence {σn}

∞
n=1.

Let 𭟋 denote the set of mappings such that (F1)–(F3) hold.

Lemma 1.12. [26] Let (£, υ) be a modular-like metric space. Let (P(£),Hυl) be a Hausdorff υl−metric-
like space. Then, for all b ∈ U and for each U,Y ∈ P(£), there is ba ∈ Y such that Hυl(U,Y) ≥ υl(a, ba).
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Example 1.13. [24] Let W = R. Consider α : W ×W → [0,∞) as

α(s, r) =
{

1 if s > r
1
4 if s ≯ r

.

Define L,N : W → P(W) by

Ls = [−4 + s,−3 + s] and Nr = [−2 + r,−1 + r].

The α∗-dominated property for L and N holds. Note that L and N are not α∗-admissible.

2. Main results

Let (£, υ) be a modular-like metric space, δ0 ∈ £, and R,C : £ → P(£) be two multifunctions on
£. For δ1 ∈ Rδ0 with υ1(δ0,Rδ0) = υ1(δ0, δ1), take δ2 ∈ Cδ1 such that υ1(δ1,Cδ1) = υ1(δ1, δ2). Choose
δ3 ∈ Rδ2 such that υ1(δ2,Rδ2) = υ1(δ2, δ3). In this way, we get a sequence {CR(δn)} in £, where

δ2n+1 ∈ Rδ2n, δ2n+2 ∈ Cδ2n+1,

for all n ∈ N ∪ {0}. Note that υ1(δ2n,Rδ2n) = υ1(δ2n, δ2n+1) and υ1(δ2n+1,Cδ2n+1) = υ1(δ2n+1, δ2n+2).
{CR(δn)} is said to be a sequence in £ generated by δ0. If R = C, then we denote {£R(δn)} instead of
{CR(δn)}.

Theorem 2.1. Let (£, υ) be a complete modular-like metric space. Suppose that υ is regular and verifies
the △M-condition. Let δ0 ∈ £, α : £ × £ → [0,∞) and R,C : £ → P(£) be α∗-dominated multifunctions
on £. Assume there are τ > 0 and Q ∈ 𭟋 such that

τ + Q(Hυ1(Rt,Cδ)) ≤ Q
(
max

{
υ1(t, δ), υ1(t,Rt),

υ2(t,Cδ)
2

,
υ1(t,Rt).υ1(δ,Cδ)

1 + υ1(t, δ)

})
(2.1)

where t, δ ∈ {CR(δn)}, α(t, δ) ≥ 1 or α(δ, t) ≥ 1, and Hυ1(Rt,Cδ) > 0. Then the sequence {CR(δn)}
generated by δ0 converges to e ∈ £ and for each n ∈ N, α(δn, δn+1) ≥ 1. Furthermore, if e satisfies (2.1),
α(δn, e) ≥ 1 and α(e, δn) ≥ 1 for all integers n ≥ 0, then R and C have a common fixed point e in £.

Proof. Consider a sequence {CR(δn)}. Obviously, δn ∈ £ for each integer n ≥ 0. If j is odd, then
j = 2ı̀ + 1 for some ı̀ ∈ N. By definition of α∗-dominated mappings, one has α∗(δ2ı̀,Rδ2ı̀) ≥ 1 and
α∗(δ2ı̀+1,Cδ2ı̀+1) ≥ 1. Since α∗(δ2ı̀,Rδ2ı̀) ≥ 1, one gets inf{α(δ2ı̀, b) : b ∈ Rδ2ı̀} ≥ 1. Also, δ2ı̀+1 ∈ Rδ2ı̀

and so α(δ2ı̀, δ2ı̀+1) ≥ 1. Moreover, δ2ı̀+2 ∈ Cδ2ı̀+1 and so α(δ2ı̀+1, δ2ı̀+2) ≥ 1. In view of Lemma 1.12, we
have

τ + Q(υ1(δ2ı̀+1, δ2ı̀+2)) ≤ τ + Q(Hυ1(Rδ2ı̀,Cδ2ı̀+1))

≤ Q
(
max

{
υ1 (δ2ı̀, δ2ı̀+1) , υ1 (δ2ı̀,Rδ2ı̀) ,

υ2(δ2ı̀,Cδ2ı̀+1)
2 ,

υ1(δ2ı̀,Rδ2ı̀).υ1(δ2ı̀+1,Cδ2ı̀+1)
1+υ1(δ2ı̀,δ2ı̀+1)

})
≤ Q

(
max

{
υ1 (δ2ı̀, δ2ı̀+1) , υ1 (δ2ı̀, δ2ı̀+1) , υ1(δ2ı̀,δ2ı̀+1)+υ1(δ2ı̀+1,δ2ı̀+2)

2 ,
υ1(δ2ı̀,δ2ı̀+1).υ1(δ2ı̀+1,δ2ı̀+2)

1+υ1(δ2ı̀,δ2ı̀+1)

})
≤ Q(max{υ1 (δ2ı̀, δ2ı̀+1) , υ1 (δ2ı̀+1, δ2ı̀+2)}).
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This implies
τ + Q(υ1(δ2ı̀+1, δ2ı̀+2)) ≤ Q(max{υ1 (δ2ı̀, δ2ı̀+1) , υ1(δ2ı̀+1, δ2ı̀+2)}). (2.2)

Now, if
max{υ1 (δ2ı̀, δ2ı̀+1) , υ1(δ2ı̀+1, δ2ı̀+2)} = υ1(δ2ı̀+1, δ2ı̀+2),

then from (2.2), we have
Q(υ1(δ2ı̀+1, δ2ı̀+2)) ≤ Q(υ1(δ2ı̀+1, δ2ı̀+2)) − τ,

which is a contradiction. Therefore,

max{υ1 (δ2ı̀, δ2ı̀+1) , υ1(δ2ı̀+1, δ2ı̀+2)} = υ1(δ2ı̀, δ2ı̀+1)

for all ı̀ ≥ 0. Hence, from (2.2), we have

Q(υ1(δ2ı̀+1, δ2ı̀+2)) ≤ Q(υ1(δ2ı̀, δ2ı̀+1)) − τ. (2.3)

Similarly, we have
Q(υ1(δ2ı̀, δ2ı̀+1)) ≤ Q(υ1(δ2ı̀−1, δ2ı̀)) − τ (2.4)

for all ı̀ ≥ 0. By (2.3) and (2.4), we have

Q(υ1(δ2ı̀+1, δ2ı̀+2)) ≤ Q(υ1(δ2ı̀−1, δ2ı̀)) − 2τ.

Repeating these steps, we get

Q(υ1(δ2ı̀+1, δ2ı̀+2)) ≤ Q(υ1(δ0, δ1)) − (2ı̀ + 1)τ. (2.5)

Similarly, we have
Q(υ1(δ2ı̀, δ2ı̀+1)) ≤ Q(υ1(δ0, δ1)) − 2ı̀τ. (2.6)

By (2.5) and (2.6), we obtain

Q(υ1(δn, δn+1)) ≤ Q(υ1(δ0, δ1)) − nτ. (2.7)

Letting n→ ∞ in (2.7), one obtains

lim
n→∞

Q(υ1(δn, δn+1)) = −∞.

Since Q ∈ 𭟋,
lim
n→∞

υ1(δn, δn+1) = 0. (2.8)

Due to (F1) of 𭟋, there is k ∈ (0, 1) such that

lim
n→∞

(υ1(δn, δn+1))k(Q(υ1(δn, δn+1)) = 0. (2.9)

By (2.7), for all n ∈ N, we obtain

(υ1(δn, δn+1))k(Q(υ1(δn, δn+1)) − Q(υ1(δ0, δ1)) ≤ −(υ1(δn, δn+1))knτ ≤ 0. (2.10)
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Using (2.8), (2.9) and taking n→ ∞ in (2.10), we have

lim
n→∞

n(υ1(δn, δn+1))k = 0. (2.11)

By (2.11), there is n1 ∈ N such that n(υ1(δn, δn+1))k ≤ 1 for all n ≥ n1, or

υ1(δn, δn+1) ≤
1

n
1
k

for all n ≥ n1.

Letting p > 0 and m = n + p > n > n1, we get

υp(δn, δm) ≤ υ1(δn, δn+1) + υ1(δn+1, δn+2) + · · · + υ1(δm, δm+1) ≤
∞∑
j=n

1

j
1
k

.

Since k ∈ (0, 1) , 1
k > 1 and so the series

∑∞
j=1

1

j
1
k

converges. Thus,

lim
n,m→∞

υp(δn, δm) = 0.

Since υ satisfies the △M-condition, we have

lim
n,m→∞

υ1(δn, δm) = 0. (2.12)

Hence {CR(δn)} is Cauchy in the regular complete modular-like metric space (£, υ) and so there is e ∈ £
such that {CR(δn)} → e as n→ ∞ and thus

lim
n→∞

υ1(δn, e) = 0. (2.13)

Now, by Lemma 1.12, one obtains

τ + Q(υ1(δ2n+1,Ce) ≤ τ + Q(Hυ1(Rδ2n,Ce)). (2.14)

Now, there exists δ2n+1 ∈ Rδ2n such that υ1(δ2n,Rδ2n) = υ1(δ2n, δ2n+1). From assumption, α(δn, e) ≥ 1.
Assume that υ1(e,Ce) > 0. Then there is an integer p > 0 such that υ1(δ2n+1,Ce) > 0 for n ≥ p. Now,
if Hυ1(Rδ2n,Ce) > 0, then by (2.1), we have

τ + Q(υ1(δ2n+1,Ce)) ≤ Q

max


υ1(δ2n, e), υ1(δ2n, e),
υ1(δ2n,δ2n+1)+υ1(δ2n+1,Ce)

2 ,
υ1(δ2n,Rδ2n).υ1(Q,Ce)

1+υ1(δ2n,e)


 .

Letting n→ ∞ and using (2.13), we get

τ + Q(υ1(e,Ce)) ≤ Q(υ1(e,Ce)).

Since Q is strictly increasing, (2.14) implies

υ1(e,Ce) < υ1(e,Ce).

This is a contradiction. Hence υ1(e,Ce) = 0 and so e ∈ Ce.
Similarly, we can show that υ1(e,Re) = 0, that is, e ∈ Re. Hence e is a common fixed point of both

mappings R and C in £. □
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Corollary 2.2. Let (£, υ) be a complete modular-like metric space. Suppose that υ is regular and
verifies the △M-condition. Let α : £ × £→ [0,∞) and R,C : £→ P(£) be α∗-dominated multifunctions
on £. Assume there are τ > 0 and Q ∈ 𭟋 such that

τ + Q(Hυ1(Rt,Cδ)) ≤ Q
(
max

{
υ1(t, δ), υ1(t,Rt),

υ2(t,Cδ)
2

,
υ1(t,Rt).υ1(δ,Cδ)

1 + υ1(t, δ)

})
,

where t, δ ∈ £, α(t, δ) ≥ 1 or α(δ, t) ≥ 1, and Hυ1(Rt,Cδ) > 0. Then there exists a sequence {δn} in £
converging to e ∈ £ and for each n ∈ N, α(δn, δn+1) ≥ 1. Also, if α(δn, e) ≥ 1 and α(e, δn) ≥ 1 for all
integers n ≥ 0, then R and C have a common fixed point e in £.

Example 2.3. Let £ = R+ ∪ {0}. Take υ2(r,m) = r + m and υ1(e, t) = 1
2 (e + t) for all e, t ∈ £. Define

R,C : £→ P(£) by

Rv =


[
v
3
,

2v
3

]
if v ∈ {1, 1

3 ,
1

12 ,
1
36 ,

1
144 , · · · }

[7v, 10v] if v < {1, 1
3 ,

1
12 ,

1
36 ,

1
144 , · · · }

and

Cv =


[
v
4
,

3v
4

]
if v ∈ {1, 1

3 ,
1
12 ,

1
36 ,

1
144 , · · · }

[5v, 13v] if v < {1, 1
3 ,

1
12 ,

1
36 ,

1
144 , · · · }

.

Suppose that v0 = 1. Then υ1(v0,Rv0) = υ1(1,R1) = υ1(1, 1
3 ) and so v1 =

1
3 . Now, υ1(v1,Cv1) =

υ1(1
3 ,C

1
3 ) = υ1( 1

3 ,
1

12 ) and thus v2 =
1
12 . Now, υ1(v2,Rv2) = υ1( 1

12 ,R
1

12 ) = υ1( 1
12 ,

1
36 ) and so v3 =

1
36 .

Continuing in this way, we have {CR(vn)} = {1, 1
3 ,

1
12 ,

1
36 ,

1
144 , · · · }. Define α : £ × £→ [0,∞) as

α(r, t) =
{

1 if r > t
1
2 otherwise

.

Let v, y ∈ {CR(vn)} with α(v, y) ≥ 1. Then

Hυ1(Rv,Cy) = max{sup
a∈Rv

υ1(a,Cy), sup
b∈Cy

υ1(Rv, b)}

= max

 υ1

(
2v
3 ,

[
y
4 ,

3y
4

])
,

υ1

([
v
3 ,

2v
3

]
, 3y

4

) 
= max

{
υ1

(
2v
3
,

y
4

)
, υ1

(
v
3
,

3y
4

)}
= max

{
2v
3
+

y
4
,

v
3
+

3y
4

}
.

Also,

max
{
υ1(v, y), υ1(v,Rv),

υ2(v,Cy)
2

,
υ1(v,Rv).υ1(y,Cy)

1 + υ1(v, y)

}
= max

 v + y, v + v
3 ,

1
4

(
v + y

4

)
,

(v+ v
3 ).(y+ y

4 )
1+v+y

 .
If Q(t) = ln t and τ = ln(1.2), then we have

τ + Q(Hυ1(Rv,Cy)) ≤ Q
(
max

{
υ1(v, y), υ1(v,Rv),

υ2(v,Cy)
2

,
υ1(v,Rv).υ1(y,Cy)

1 + υ1(v, y)

})
.
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Hence all the conditions in Theorem 2.1 hold and so R and C possess a common fixed point.
Note that

Rv =


[
v
3
,

2v
3

]
if v ∈ {1, 1

3 ,
1

12 ,
1
36 ,

1
144 , · · · }

[7v, 10v] if v < {1, 1
3 ,

1
12 ,

1
36 ,

1
144 , · · · }

and

Cv =


[
v
4
,

3v
4

]
if v ∈ {1, 1

3 ,
1
12 ,

1
36 ,

1
144 , · · · }

[5v, 13v] if v < {1, 1
3 ,

1
12 ,

1
36 ,

1
144 , · · · }

.

If v = 2 and y = 3, then we have

Hυ1(R2,C3) = max
{

sup
a∈R2

υ1(a,C3), sup
b∈C3

υ1(R2, b)
}

= max
[{

sup
a∈[14,20]

υ1 (a, [15, 39]) , sup
b∈[15,39]

υ1 ([14, 20] , b)
}]

= max
[{

sup
a∈[14,20]

υ1 (a, 15) , sup
b∈[15,39]

υ1 (14, b)
}]

= max {υ1 (20, 15) , υ1 (14, 39)}
= max {20 + 15, 14 + 39} = 53.

Also

max
{
υ1(v, y), υ1(v,Rv),

υ2(v,Cy)
2

,
υ1(v,Rv).υ1(y,Cy)

1 + υ1(v, y)

}
= max

{
υ1(2, 3), υ1(2, [14, 20]),

υ2(2, [15, 39])
2

,
υ1(2, [14, 20]).υ1(3, [15, 39])

1 + υ1(2, 3)

}
= max

{
5, 16,

17
4
,

(16) (18)
6

}
= 48.

Now,
ln(1.2) + ln(53) > ln(48).

This implies that
τ + F(Hυ1(R2,C3) > F(υ1(2, 3)).

So the condition (2.1) does not hold on the whole space. Hence Corollary 2.2 and the other existing
results in modular metric spaces cannot be applied to ensure the existence of a common fixed point.
However, Theorem 2.1 is valid here.

Taking R = C in Theorem 2.1, we may state the following corollary.

Corollary 2.4. Let (£, υ) be a complete modular-like metric space. Suppose υ is regular and the △M-
condition holds. Let δ0 ∈ £, α : £ × £ → [0,∞) and R : £ → P(£) be a α∗-dominated set-valued
function on £. Assume there are τ > 0 and Q ∈ 𭟋 such that

τ + Q(Hυl(Rt,Rδ)) ≤ Q
(
max

{
υ1(t, δ), υ1(t,Rt), υ2(t,Rδ),

υ1(t,Rt).υ1(δ,Rδ)
1+υ1(t,δ)

})
, (2.15)
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where t, δ ∈ {£R(δn)}, α(t, δ) ≥ 1, and Hυ1(Rt,Rδ) > 0. Then, the sequence {£R(δn)} generated by δ0

converges to e ∈ £ and for each integer n ≥ 0, α(δn, δn+1) ≥ 1. Also, if e satisfies (2.15) and either
α(δn, e) ≥ 1 or α(e, δn) ≥ 1 for all integers n ≥ 0, then R has a fixed point e in £.

3. Applications to graph theory

Jachymski [20] initiated the graph concept in fixed point theory. Hussain et al. [18] gave new
results for graphic contractions. Recently, Younis et al. [32] discussed a significant result on the
graphical structure of extended b-metric spaces and Shoaib et al. [29] established some results on
graph dominated set-valued mappings in the setting of b-metric like spaces. Further results on graph
theory can be seen in [24, 25, 28].

Definition 3.1. [29] Let A be a non-empty set and Υ = (V(Υ),L(Υ)) be a graph with V(Υ) = A.
A mapping P from A into P(A) is said to be multi-graph dominated on A if for each ı ∈ A, we have
(ı, ȷ) ∈ L(Υ), where ȷ ∈ Pa.

Theorem 3.2. Let (U, υ) be a complete modular-like metric space endowed with a graph Υ and δ0 ∈ R
satisfying the following:
(i) R and C are multi-graph dominated functions on {CR(δn)};
(ii) There are τ > 0 and Q ∈ 𭟋 such that

τ + Q(Hυ1(Rw,Ch)) ≤ Q
(
max

{
υ1(w, h), υ1(w,Rw), υ2(w,Ch)

2 ,
υ1(w,Rw).υ1(h,Ch)

1+υ1(w,h)

})
, (3.1)

where w, h ∈ {CR(δn)}, (w,h) ∈ L(Υ) or (h,w) ∈ L(Υ), and Hυ1(Rw,Ch) > 0.Suppose that the
regularity of R and the △M-condition are verified. Then (δn, δn+1) ∈ L(Υ) and {CR(δn)} → δ∗. Also,
if δ∗ satisfies (3.1), (δn, δ

∗) ∈ L(Υ) and (δ∗, δn) ∈ L(Υ) for all integers n ≥ 0, then R and C have a
common fixed point in U.

Proof. Define α : U × U → [0,∞) as α(w, h) = 1 if w ∈ U and (w, h) ∈ L(Υ), and α(w, h) = 0,
otherwise. The graph domination on U yields that (w, h) ∈ L(Υ) for all h ∈ Rw and (w, h) ∈ L(Υ) for
each h ∈ Cw. So α(w, h) = 1 for all h ∈ Rw and α(w, h) = 1 for each h ∈ Cw. Thus inf{α(w, h) : h ∈
Rw} = 1 and inf{α(w, h) : h ∈ Cw} = 1. Hence α∗(w,Rw) = 1 and α∗(w,Cw) = 1 for any w ∈ R. So R
and C are α∗-dominated on U. Furthermore,

τ + Q(Hυ1(Rw,Ch)) ≤ Q
(
max

{
υ1(w, h), υ1(w,Rw), υ2(w,Ch)

2 ,
υ1(w,Rw).υ1(h,Ch)

1+υ1(w,h)

})
,

where w, h ∈ U∩{CR(δn)}, α(w, h) ≥ 1 and Hυ1(Rw,Ch) > 0.Also, (ii) is fulfilled. Due to Theorem 2.1,
{CR(δn)} is a sequence in U and {CR(δn)} → δ∗ ∈ U. Here, δn, δ

∗ ∈ U and either (δn, δ
∗) ∈ L(Υ) or

(δ∗, δn) ∈ L(Υ) yields that either α(δn, δ
∗) ≥ 1 or α(δ∗, δn) ≥ 1. So all the hypotheses of Theorem 2.1

hold. Thus δ∗ is a common fixed point of R and C in U and υ1(δ∗, δ∗) = 0. □

4. On single-valued mappings

In this section, some corollaries related to single-valued mappings in modular-like metric space are
derived. Let (£, υ) be a modular-like metric space, δ0 ∈ £ and R,C : £ → £ be a pair of mappings. Let
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δ1 = Rδ0, δ2 = Cδ1, δ3 = Rδ2. Consider a sequence {δn} in £ such that δ2n+1 = Rδ2n and δ2n+2 = Cδ2n+1,

for integers n ≥ 0. We represent this type of iteration by {CR(δn)}. {CR(δn)} is a sequence in £ generated
by δ0. If R = C, then we use {£R(δn)} instead of {CR(δn)}.

Theorem 4.1. Let (£, υ) be a complete modular-like metric space. Suppose that the regularity of υ and
the △M-condition hold. Take r > 0, δ0 ∈ £, α : £ × £ → [0,∞) and let R,C : £ → £ be α∗-dominated
multifunctions on £. Then there are τ > 0 and Q ∈ 𭟋 such that

τ + Q(υ1(Rt,Cδ)) ≤ Q

max

 υ1(t, δ), υ1(t,Rt), υ2(t,Cδ)
2 ,

υ1(t,Rt).υ1(δ,Cδ)
1+υ1(t,δ)


 , (4.1)

where t, δ ∈ {CR(δn)}, α(t, δ) ≥ 1, or α(δ, t) ≥ 1, and υ1(Rt,Cδ) > 0. Then α(δn, δn+1) ≥ 1 for all
integers n ≥ 0 and {CR(δn)} → h ∈ £. Also, if h verifies (4.1), α(δn, h) ≥ 1 and α(h, δn) ≥ 1 for all
integers n ≥ 0, then R and C admit a common fixed point h in £.

Proof. The proof is similar to the proof of Theorem 2.1. □

Letting R = C in Theorem 4.1, we have the following corollary.

Corollary 4.2. Let (£, υ) be a complete modular like metric space. Suppose that the regularity of υ
and the △M-condition hold. Choose δ0 ∈ £, α : £ × £ → [0,∞) and let R : £ → £ be a single-valued
function on £. Then there are τ > 0 and Q ∈ 𭟋 such that

τ + Q(υ1(Rt,Rδ)) ≤ Q
(
max

{
υ1(t, δ), υ1(t,Rt), υ2(t,Rδ)

2 ,
υ1(t,Rt).υ1(δ,Rδ)

1+υ1(t,δ)

})
, (4.2)

where t, δ ∈ {£R(δn)}, α(t, δ) ≥ 1, or α(δ, t) ≥ 1, and υ1(Rt,Rδ) > 0.Then α(δn, δn+1) ≥ 1 for all integers
n ≥ 0 and {δn} → h ∈ £. Also, if (4.2) holds for h, α(δn, h) ≥ 1 and α(h, δn) ≥ 1 for all integers n ≥ 0,
then R has a fixed point h.

5. Integral equations

In this section, we apply our work to solve integral equations.

Theorem 5.1. Let (£, υ) be a complete modular-like metric space. Suppose that the regularity of υ and
the △M-condition hold. Take r > 0, δ0 ∈ £ and let R,C : £ → £ be α∗-dominated multifunctions on £.
Then there are τ > 0 and Q ∈ 𭟋 such that

τ + Q(υ1(Rt,Cδ)) ≤ Q

max

 υ1(t, δ), υ1(t,Rt), υ2(t,Cδ)
2 ,

υ1(t,Rt).υ1(δ,Cδ)
1+υ1(t,δ)


 , (5.1)

where t, δ ∈ {CR(δn)}, and υ1(Rt,Cδ) > 0. Then {CR(δn)} → f ∈ £. Also, if f verifies (5.1), then R and
C admit a unique common fixed point f in £.

Let W = C([0, 1],R+) be the family of continuous functions defined on [0, 1]. The following are
two integral equations:

u(e) =

e∫
0

H(e, f , u( f ))d f , (5.2)
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c(e) =

e∫
0

G(e, f , c( f ))d f (5.3)

for all e ∈ [0, 1], where H,G : [0, 1]× [0, 1]×W → R. For δ ∈ C([0, 1],R+), define supremum norm as
∥δ∥η = sup

s∈[0,1]
{|δ(s)| e−τs}, and take τ > 0 arbitrarily. For all c,w ∈ C([0, 1],R+), define

υ1(δ,w) =
1
2

sup
s∈[0,1]
{|δ(s) + w(s)| e−τs} =

1
2
∥δ + w∥τ.

It is clear that (C([0, 1],R+), dτ) is a complete modular-like metric space. So we have the following
result.

Theorem 5.2. Suppose that
(i) H,G : [0, 1] × [0, 1] ×C([0, 1],R+)→ R;
(ii) Define

(Ru)(e) =

e∫
0

H(e, f , u( f ))d f ,

(Cδ)(e) =

e∫
0

G(e, f , δ( f ))d f .

Assume that there is τ > 0 such that

|H(e, f , u) +G(e, f , δ)| ≤
τM(u, δ)

τM(u, δ) + 1

for all e, f ∈ [0, 1] and u, δ ∈ C([0, 1],R+), where

M(u, δ) = max

1
2


∥u + δ∥τ , ∥u + Ru∥τ ,

∥u+Ru∥τ+∥δ+Cδ∥τ
2 ,

∥u+Ru∥τ.∥δ+Cδ∥τ
1+∥u+δ∥τ


 .

Then (5.2) and (5.3) possess a unique solution.

Proof. By (ii),

|Ru +Cδ| =

e∫
0

|H(e, f , u) +G(e, f , δ)| d f ≤

e∫
0

τM(u, δ)
τM(u, δ) + 1

eτ f d f

≤
τM(u, δ)

τM(u, δ) + 1

e∫
0

eτ f d f ≤
M(u, δ)

τM(u, δ) + 1
eτe.

This implies

|Ru +Cδ| e−τe ≤
M(u, δ)

τM(u, δ) + 1
,
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∥Ru +Cδ∥τ ≤
M(u, δ)

τM(u, δ) + 1
,

τM(u, δ) + 1
M(u, δ)

≤
1

∥Ru +Cδ∥τ
,

τ +
1

M(u, δ)
≤

1
∥Ru +Cδ∥τ

.

Thus
τ −

1
∥Ru(e) +Cδ(e)∥τ

≤
−1

M(u, δ)
.

All the conditions of Theorem 5.1 hold for Q( f ) = −1
f for f > 0 and υ1( f , δ) = 1

2∥ f + δ∥τ. Hence both
the integral Eqs (5.2) and (5.3) admit a unique common solution. □

6. Conclusions

In this article, we have achieved some new results for a pair of set-valued mappings verifying a
generalized rational Wardowski type contraction. Dominated mappings are applied to obtain some
fixed point theorems. Applications on integral equations and graph theory are given. Moreover, we
investigate our results in a more better new framework. New results in ordered spaces, modular metric
space, dislocated metric space, partial metric space, b-metric space and metric space can be obtained as
corollaries of our results. One can further extend our results to fuzzy mappings, bipolar fuzzy mappings
and fuzzy neutrosophic soft mappings.
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