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1. Introduction

In recent years, fractional calculus has been shown to be a terrific way to present the hereditary
properties of various patterns, with a few repercussions. Fractional calculus ideas have dominated
mathematics in recent decades. Numerous physical issues cannot be addressed with integer-order
differential equations, and they should be addressed with fractional-order differential equations. As a
result, numerous academics have recently made significant contributions to the fields of
electromagnetics, fluid flow, signal, religion, porous media, control theory, viscoelasticity, biological,
image processing, engineering difficulties, diffusion, and so forth. This combination has recently
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gained a lot of traction, owing to fractional differential equations’ ability to reveal a few complicated
wonders in a variety of diverse and limitless domains of research. For further details, refer
to [1, 3, 11–13, 18–20, 31–35, 39, 44, 46, 53, 55, 56, 58, 59]. Very recently, in [48], the researchers
presented the conditions for fractal stability, uniform boundedness, and asymptotic behaviors of
second-order fractal differential equation solutions. Further, in [4], the authors discussed the Caputo
fractional derivative for nonlinear Volterra integro-differential systems, multiple constant delays, and
multiple kernels. The main goal of this article is to prove the qualitative properties of this equation’s
solutions, such as asymptotic stability, Mittag-Leffler stability of the zero solution, uniform stability,
and also the boundedness of nonzero solutions. The qualitative aspects of Caputo fractional retarded
Volterra integro-differential systems were investigated in [49].

The basic ideas underlying the design and analysis control systems are addressed with in
mathematical control theory, which is a branch of application-oriented mathematics. Fractional
derivatives with varying meanings can be used to address these types of difficulties. Controllability is
amongst the most significant properties of a nonlinear model in control theory. The controllability
problem’s purpose is to show that a control function exists that directs the system’s solution from its
initial position to a final position, where the initial and final states may differ throughout space.
Integro-differential equations, also known as dynamic systems or combined ordinary and partial
dynamical systems, are used to simulate a wide range of scientific and engineering problems,
including heat transport in memory materials, rheological properties, and a number of different
physical processes. As a result, it’s critical to investigate the controllability findings of such systems
by utilizing existing approaches. Controllability is used in a multitude of industries, physics, power
systems, chemical outgrowth control, electronics, engineering, including economics, biology,
chemistry, space technology, transportation, robotics, and other fields. The researcher’s papers can be
found here [5, 9, 14, 15, 17, 22, 24, 35–38, 40–45, 51–53, 57, 59]. Furthermore, fractional evolution
differential systems of the Sobolev type are frequently encountered in a variety of applications,
thermodynamics, including fluid flow through fissured rocks, and shear in second order fluids, which
can be referred to [6, 9, 18, 21, 50].

The authors [57] recently discussed the controllability problem as well as some unusual results for
mild solutions to fractional differential equations of order r ∈ (1, 2). Further, the authors [16],
investigate the presence of nonlocal conditions for fractional differential inclusions of order
r ∈ (1, 2). [23] uses cosine families, measure of noncompactness, Laplace transform, and Mönch’s
fixed point theorem to prove the existence and controllability of a fractional delay integro-differential
system of order r ∈ (1, 2). In [24], the researchers indicated the fractional derivatives of order
r ∈ (1, 2) with control problems by referring to the fixed point theorem. In [26, 54], the authors
established the existence, uniqueness, and approximate controllability results for fractional evolution
equations of order 1 < r < 2 by utilizing finite delay, nonlocal conditions, and integrodifferential
systems. In [25], the authors signified the Caputo fractional differential evolution inclusions of order
r ∈ (1, 2) by employing multivalued map, cosine and sine functions of operators, infinite delay, and
Dhage’s fixed point theorem. The Sobolev type, nonlocal conditions, fixed point theorems, and
Volterra-Fredholm integro-differential system were applied to obtain the fractional differential
inclusions of order r ∈ (1, 2) with control problems in [50]. In [27, 28, 30], the researchers developed
the optimal control results for fractional differential systems of order r ∈ (1, 2) using different fixed
point approaches, and integrodifferential systems, and hemivariational inequalities. Very recently,
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in [6, 7], the authors discussed approximate controllability results of fractional stochastic evolution
systems of order 1 < r < 2 with delay by referring to the integro-differential systems, Sobolev type,
Wiener process, and fixed point theorems. Using the measure of noncompactness, integrodifferential
systems, and Mönch fixed point theorem, the authors recently explored nonlocal controllability results
for fractional evolution equations of order r ∈ (1, 2) in [29]. The exact controllability for Caputo
fractional evolution equations of order r ∈ (1, 2) with finite delay utilizing the Sobolev type, mild
solution, Schauder’s fixed point theorem, cosine operators, and Mainardi’s Wright-type function is the
motivation for the current study.

The existing manuscript has inspired the laws mentioned above. Assume the following form for the
Sobolev fractional evolution system of order 1 < r < 2 with delay:CDr

ϑ(Mz(ϑ)) + Az(ϑ) = g(ϑ, zϑ) + Bx(ϑ), ϑ ∈ V = [0, c],
z(ϑ) = ~(ϑ), ϑ ∈ [−v, 0], z′(0) = z1 ∈ Z,

(1.1)

where CDr
ϑ represents Caputo fractional derivative of order r ∈ (1, 2); A : D(A)→ Y and M : D(M)→

Y, where D(A) and D(M) are subsets of Z; the control function x ∈ H , where either H = L2(V,X)
for 3

2 < r < 2 or H = L∞(V,X) for 1 < r < 2, X is also a Banach space; Moreover, the bounded
linear operator B maps from X into Z; g : [0, c] × C → Z with C = C([−v, 0],Z) will be given later;
z : V∗ = [−v, c] → Z is continuous, the element zϑ in C defined by zϑ($) = z(ϑ + $), −v ≤ $ ≤ 0;
The domain D(M) of M becomes a Banach space with ‖z‖D(M) = ‖Mz‖Y, z ∈ D(M) and ~ ∈ C(M) =

C([−v, 0],D(M)).
The following sections are included in this paper: Preliminaries, assumptions, and the primary

finding on Sobolev type, remarks, mild solutions, and lemmas are presented in Section 2. Exact
controllability results for system (1.1) by referring to the Schauder’s point theorem in Section 3. In
Section 4, an example is provided to illustrate the obtained theoretical findings.

2. Preliminaries

This part will go well significant information, basic definitions, lemmas, and outcomes. Denote
D(A) and R(A) are the domain and range of the A. We assume the resolvent set A by ρ(A) and the
resolvent of A by R(Λ, A) = 1

(ΛI−A) ∈ Lc(Z).

Definition 2.1. [19] The Riemann-Liouville fractional integral of order β with the lower limit zero for
g : [0,∞)→ R is given by

Iβg(ϑ) =
1

Γ(β)

∫ ϑ

0

g($)
(ϑ −$)1−βd$, ϑ > 0, β ∈ R+,

if the right side is point-wise defined on [0,∞).

Definition 2.2. [19] The Riemann-Liouville derivative of order β with the lower limit zero for g :
[0,∞)→ R is defined by

LDβg(ϑ) =
1

Γ(l − β)
dl

dϑl

∫ ϑ

0
g($)(ϑ −$)l−β−1d$, ϑ > 0, l − 1 < β < l.
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Definition 2.3. [19] The Caputo derivative of order β with the lower limit 0 for g is given by

CDβg(ϑ) = LDβ

g(ϑ) −
l−1∑
i=0

g(i)(0)
i!

ϑi

 , ϑ > 0, l − 1 < β < l, β ∈ R+.

Remark 2.4. [19]

(1) Caputo derivative of a constant function is equal to zero.
(2) If g ∈ Cl[0,∞), then

CDβg(ϑ) =
1

Γ(l − β)

∫ ϑ

0
(ϑ −$)l−β−1g(l)($)d$ = Il−βg(l)(ϑ), ϑ > 0, l − 1 < β < l.

(3) If g is an abstract function with values inZ, then the integrals appear in the Definitions (2.2) and
(2.3) are taken in Bochner’s sense.

Definition 2.5. [47] A one parameter family {P(ϑ)}ϑ∈R of bounded linear operators mapping Z into
itself is said to be a strongly continuous cosine family if and only if

(a) P(0) = I;
(b) P(ϑ)z is strongly continuous in ϑ on R for all fixed point z ∈ Z;
(c) P($ + ϑ) + P($ − ϑ) = 2P($)P(ϑ) for all $,ϑ ∈ R.

Consider the sine family {S(ϑ)}ϑ∈R associated with the strongly continuous cosine family {P(ϑ)}ϑ∈R,
then

S(ϑ)z =

∫ ϑ

0
P($)zd$, z ∈ Z, ϑ ∈ R. (2.1)

Moreover, if

Az =
d2

dϑ2P(ϑ)z
∣∣∣∣
ϑ=0
, for all z ∈ D(A).

In the above D(A) determined by D(A) = {z ∈ Z : P(ϑ)z ∈ C2(R,Z)}, where, A denotes a closed,
densely-determined operator inZ.

We now present the following assumptions on operators A and M. More details refer in [21]:

(Q1) D(M) ⊂ D(A) and M is bijective.
(Q2) The operators A and M are linear operators, and A is closed.
(Q3) The linear operator M−1 : Y → D(M) ⊂ Z is compact (⇒ M−1 is bounded).

In the above assumption (Q3) ⇒ M is closed in view of the fact: M−1 is closed and injective,
then its inverse is also closed. By referring to (Q1)–(Q3) and the closed graph theorem, we have the
boundedness of the linear operator −AM−1 mapping from Y into itself. Denote ‖M−1‖ = M̃1 and
‖M‖ = M̃2. We will assume P = supϑ≥0 ‖P(ϑ)‖ < ∞.

Let us assume the following fractional evolution system:CDr
ϑ(Mz(ϑ)) + Az(ϑ) = g(ϑ, zϑ), ϑ ∈ V = [0, c],

z(ϑ) = ~(ϑ), ϑ ∈ [−v, 0], z′(0) = z1 ∈ Z.
(2.2)
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With reference to Definitions 2.1–2.3, it is easier to rewrite system (2.2) in the similar fractional integral
equation:Mz(ϑ) = M~(0) + Mz1ϑ + 1

Γ(r)

∫ ϑ

0
(ϑ −$)r−1[−Az($) + g(ϑ, zϑ)]d$, ϑ ∈ V = [0, c],

z(ϑ) = ~(ϑ), ϑ ∈ [−v, 0], z′(0) = z1 ∈ Z.
(2.3)

If the integral in (2.3) exists. Let η = r
2 for r ∈ (1, 2), which is discussed in [16, 55].

Definition 2.6. [16] For every x ∈ H and C(M) is said to be a mild solution of system (1.1), we mean
a function z ∈ C(V∗,Z) which satisfies

z(ϑ) =M−1Pη(ϑ)M~(0) + M−1Qη(ϑ)Mz1 +

∫ ϑ

0
(ϑ −$)η−1M−1Gη(ϑ −$)g($, z$)d$∫ ϑ

0
(ϑ −$)η−1M−1Gη(ϑ −$)Bx($)d$, ϑ ∈ V, (2.4)

where Pη(·),Qη(·) and Gη(·) are called the characteristic solution operator and presented as

Pη(ϑ) =

∫ ∞

0
S η(ξ)P(ϑηξ)dξ, Qη(ϑ) =

∫ ϑ

0
Pη($)d$, Gη(ϑ) =

∫ ∞

0
ηξS η(ξ)S(ϑηξ)dξ,

S η(ξ) =
1
η
ξ−1− 1

η ζη(ξ−
1
η ) ≥ 0, ζη(ξ) =

1
π

∞∑
k=1

(−1)k−1ξ−kη−1 Γ(kη + 1)
k!

sin(kπη), ξ ∈ (0,∞),

and S η(·) is the Mainardi’s Wright-type function of defined on (0,∞) such that

S η(ξ) ≥ 0 for ξ ∈ (0,∞) and
∫ ∞

0
S η(ξ)dξ = 1.

Lemma 2.7. [16] The operators Pη(ϑ), Qη(ϑ) and Gη(ϑ) have the following characteristics:

(a) For ϑ ≥ 0, the operators Pη(ϑ), Qη(ϑ) and Gη(ϑ) are compact;
(b) For any fixed ϑ ≥ 0, the operators Pη(ϑ), Qη(ϑ) and Gη(ϑ) are linear and bounded, i.e., for all

z ∈ Z, the subsequent

‖Pη(ϑ)z‖ ≤ P‖z‖, ‖Qη(ϑ)z‖ ≤ P‖z‖ϑ, ‖Gη(ϑ)z‖ ≤
P

Γ(2η)
‖z‖ϑη;

(c) {Pη(ϑ), ϑ ≥ 0}, {Qη(ϑ), ϑ ≥ 0} and {ϑη−1Gη(ϑ), ϑ ≥ 0} are strongly continuous.

3. Main results

Before beginning and analyzing the main results, we make the following assumptions to arrive at
the principal result:

Definition 3.1. (Controllability) The system (1.1) is called controllable on V if and only if for all
continuous initial function ~ ∈ C(M) and for every z1, y ∈ D(M), there exists x ∈ L2(V,X) such that a
mild solution z of system (1.1) satisfies z(c) = y.
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(H1) The linear operator B : X → Y is bounded, and the operator W : H → D(M) determined by

Wx =

∫ c

0
(c −$)η−1M−1Gη(c −$)Bx($)d$,

has an inverse operator W−1 : D(M) → H , that is, WW−1 = ID(M), and there exists P1, P2 > 0
such that

‖B‖ ≤ P1, ‖W−1‖ ≤ P2,

where we consider the norm ‖ · ‖D(M) on D(M) for determining P2.

So suffices to say that Wx in D(M) and W is clearly determined. In fact, it holds

‖MWx‖ =

∥∥∥∥∥ ∫ c

0
(c −$)η−1Gη(c −$)Bx($)d$

∥∥∥∥∥
≤

∫ c

0
(c −$)η−1‖Gη(c −$)‖‖Bx($)‖d$

≤
P‖B‖
Γ(2η)

∫ c

0
(c −$)2η−1‖x($)‖d$

=
P‖B‖
Γ(2η)

√
c4η−1

4η − 1
‖x‖H ,

in order to get η ∈ (3
2 , 2) and x ∈ L2(V,X), meanwhile

‖MWx‖ ≤
P‖B‖c2η

Γ(2η + 1)
‖x‖L∞(V,X)

=
P‖B‖c2η

Γ(2η + 1)
‖x‖H ,

in order to get η ∈ (1, 2) and x ∈ L∞(V,X).
We also see that ∫ ϑ

0
(ϑ −$)2η−1‖x($)‖d$ ≤ Nη‖x‖H , for all ϑ ∈ V, (3.1)

where Nη =

√
c4η−1

4η−1 , for η ∈ ( 3
2 , 2) and x ∈ L2(V,X), meanwhile, Nη = c2η

2η for η = (1, 2) and x ∈
L∞(V,X).

Now we introduce the assumption:

(H2) g satisfies the accompanying two conditions:

(i) For any z ∈ C, g(·, z) : V → Y is strongly measurable and for all ϑ ∈ V , the continuous
function g(ϑ, ·) maps from C into Y.

(ii) For any ℘ > 0, there is a measurable function h℘ such that

sup
‖z‖≤℘
‖g(ϑ, z)‖ ≤ h℘(ϑ), with ‖h℘‖∞ = sup

$∈V
h℘($) < ∞,

sup
ϑ∈V

∫ ϑ

0
(ϑ −$)2η−1h℘($)d$ ≤ δ℘,

for all ℘ > 0 sufficiently large and some δ > 0.
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It’s important to note that the following:

δ > lim sup
℘→∞

c2η‖h℘‖∞
2η℘

.

We shall state the conventional method for dealing with controllability problems as follows for the
purpose of simplicity. According to our assumptions, the following control formula for x(·) is suitable:

x(ϑ) = W−1
[
y − M−1Pη(c)M~(0) − M−1Qη(c)Mz1 −

∫ c

0
(c −$)η−1M−1Gη(c −$)g($, z$)d$

]
. (3.2)

Now we introduce the operator Φ such that

(Φz)(ϑ) = M−1Pη(ϑ)M~(0) + M−1Qη(ϑ)Mz1 +

∫ ϑ

0
(ϑ −$)η−1M−1Gη(ϑ −$)g($, z$)d$

+

∫ ϑ

0
(ϑ −$)η−1M−1Gη(ϑ −$)Bx($)d$, for all ϑ ∈ V,

(Φz)(ϑ) = ~(ϑ), −v ≤ ϑ ≤ 0,

Φ : C(V∗,Z) → C(V∗,Z), has a fixed point. Obviously, this fixed point is just a solution of
system (1.1). Moreover, we have

(Φz)(c) = M−1Pη(c)M~(0) + M−1Qη(c)Mz1 +

∫ c

0
(c −$)η−1M−1Gη(c −$)g($, z$)d$

+

∫ c

0
(c −$)η−1M−1Gη(c −$)Bx($)d$

= M−1Pη(c)M~(0) + M−1Qη(c)Mz1 +

∫ c

0
(c −$)η−1M−1Gη(c −$)g($, z$)d$

+

∫ c

0
(c −$)η−1M−1Gη(c −$)BW−1

[
y − M−1Pη(c)M~(0) − M−1Qη(c)Mz1

−

∫ c

0
(c − u)η−1M−1Gη(c − u)g(u, zu)du

]
d$ = y,

which implies x moves the system (1.1) from ~(0) to y in finite time c. Hence, we claim (1.1) is
controllable on [0, c].

For all ℘ > 0, determine B℘ is bounded, closed and convex subset in C(V∗,Z), then B℘ = {z ∈
C(V∗,Z) : ‖z(ϑ)‖ ≤ ℘, ϑ ∈ V∗}.

By referring the hypotheses (H1)–(H2), we provide following results for proving the primary results.

Lemma 3.2. There exists µ ≥ max
{

maxϑ∈[−v,0] ‖~(ϑ)‖, P∗
1−κ

}
, where

κ =


PM̃1δ
Γ(2η)

(
1 +

√
cP‖B‖‖W−1‖Nη

Γ(2η)

)
< 1, H = L2(V,X),

PM̃1δ
Γ(2η)

(
1 +

P‖B‖‖W−1‖Nη

Γ(2η)

)
< 1, H = L∞(V,X),

(3.3)

AIMS Mathematics Volume 7, Issue 6, 10215–10233.



10222

P∗ =


M̃1P‖M~(0)‖ + M̃1Pc‖Mz1‖

+
√

cP‖B‖‖W−1‖M̃1
Γ(2η) Nη(‖My‖ + P‖M~(0)‖ + Pc‖Mz1‖), H = L2(V,X),

M̃1P‖M~(0)‖ + M̃1Pc‖Mz1‖

+ P‖B‖‖W−1‖M̃1
Γ(2η) Nη(‖My‖ + P‖M~(0)‖ + Pc‖Mz1‖), H = L∞(V,X),

such that ΦBµ ⊂ Bµ.

Proof. Let the control function x determined in (3.2) satisfies

‖x(ϑ)‖ ≤ ‖W−1‖

∥∥∥∥∥y − M−1Pη(c)M~(0) − M−1Qη(c)Mz1

−

∫ c

0
(c −$)η−1M−1Gη(c −$)g($, z$)d$

∥∥∥∥∥
D(M)

≤ ‖W−1‖

∥∥∥∥∥M
(
y − M−1Pη(c)M~(0) − M−1Qη(c)Mz1

−

∫ c

0
(c −$)η−1M−1Gη(c −$)g($, z$)d$

)∥∥∥∥∥
≤ ‖W−1‖

(
‖My‖ + ‖Pη(c)M~(0)‖ + ‖Qη(c)Mz1‖

−

∫ c

0
(c −$)η−1‖Gη(c −$)g($, z$)‖d$

)
≤ ‖W−1‖

(
‖My‖ + P‖M~(0)‖ + Pc‖Mz1‖ +

P
Γ(2η)

∫ c

0
(c −$)2η−1hµ($)d$

)
≤ ‖W−1‖

(
‖My‖ + P‖M~(0)‖ + Pc‖Mz1‖ +

P
Γ(2η)

δµ
)
,

which implies

‖x‖H ≤


√

c‖W−1‖

(
‖My‖ + P‖M~(0)‖ + Pc‖Mz1‖ + P

Γ(2η)δµ
)
, H = L2(V,X),

‖W−1‖

(
‖My‖ + P‖M~(0)‖ + Pc‖Mz1‖ + P

Γ(2η)δµ
)
, H = L∞(V,X).

(3.4)

Assume that z ∈ Bµ. If ϑ ∈ [−v, 0] then

‖(Φz)(ϑ)‖ ≤ max
ϑ∈[−v,0]

‖~(ϑ)‖.

If ϑ ∈ [0, c] then

‖(Φz)(ϑ)‖ ≤ ‖M−1Pη(ϑ)M~(0)‖ + ‖M−1Qη(ϑ)Mz1‖

+

∫ ϑ

0
(ϑ −$)η−1‖M−1Gη(ϑ −$)g($, z$)‖d$

+

∫ ϑ

0
(ϑ −$)η−1‖M−1Gη(ϑ −$)Bx($)‖d$

≤ M̃1P‖M~(0)‖ + M̃1Pc‖Mz1‖ +
P

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1‖M−1‖‖g($, z$)‖d$
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+
P

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1‖M−1‖‖Bx($)‖d$

≤ M̃1P‖M~(0)‖ + M̃1Pc‖Mz1‖ +
PM̃1

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1hµ($)d$

+
PM̃1

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1‖B‖‖x($)‖d$

≤ M̃1P‖M~(0)‖ + M̃1Pc‖Mz1‖ +
PM̃1

Γ(2η)
δµ +

PM̃1Nη

Γ(2η)
‖B‖‖x‖H

= κµ + P∗ ≤ µ.

Hence, ΦBµ ⊂ Bµ, for every µ ≥ max
{

maxϑ∈[−v,0] ‖~(ϑ)‖, P∗
1−κ

}
sufficiently large. The proof has been

addressed. �

Lemma 3.3. For any fixed ϑ ∈ V then Jµ(ϑ) = {(Φz)(ϑ) : z ∈ Bµ} is precompact inZ.

Proof. This is trivial for all ϑ ∈ [−v, 0], hence Jµ = {~(ϑ)}. So let ϑ ∈ (0, c) be fixed.

(Φz)(ϑ) = M−1(Φ0z)(ϑ),

where

(Φ0z)(ϑ) = Pη(ϑ)M~(0) + Qη(ϑ)Mz1 +

∫ ϑ

0
(ϑ −$)η−1Gη(ϑ −$)g($, z$)d$

+

∫ ϑ

0
(ϑ −$)η−1Gη(ϑ −$)Bx($)d$.

Furthermore, for any z ∈ Bµ, we find

‖(Φ0z)(ϑ)‖ = ‖Pη(ϑ)M~(0)‖ + ‖Qη(ϑ)Mz1‖ +

∫ ϑ

0
(ϑ −$)η−1‖Gη(ϑ −$)g($, z$)‖d$

+

∫ ϑ

0
(ϑ −$)η−1‖Gη(ϑ −$)Bx($)‖d$

≤ P‖M~(0)‖ + Pc‖Mz1‖ +
P

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1‖g($, z$)‖d$

+
P

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1‖Bx($)‖d$

≤ P‖M~(0)‖ + Pc‖Mz1‖ +
P

Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1hµ($)d$

+
P‖B‖
Γ(2η)

∫ ϑ

0
(ϑ −$)2η−1‖x($)‖d$

≤ P‖M~(0)‖ + Pc‖Mz1‖ +
P

Γ(2η)

[c2η

2η
‖hµ‖∞ + Nη‖B‖‖x‖H

]
.

Then {(Φ0z)(ϑ) : z ∈ Bµ} is bounded in Y referring (3.4). Hence, M−1 mapping from Y into Z is
compact, then (Φz)(ϑ) = M−1({(Φ0z)(ϑ) : z ∈ Bµ}) is precompact inZ. �
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Lemma 3.4. ΦBµ = {Φz : z ∈ Bµ} is equicontinuous.

Proof. Assume that z ∈ Bµ and 0 < ϑ1 < ϑ2 ≤ c, such that

‖(Φz)(ϑ2) − (Φz)(ϑ1)‖ ≤ ‖M−1Pη(ϑ2)M~(0) − M−1Pη(ϑ1)M~(0)‖
+ ‖M−1Qη(ϑ2)Mz1 − M−1Qη(ϑ1)Mz1‖

+

∥∥∥∥∥ ∫ ϑ2

0
(ϑ2 −$)η−1M−1Gη(ϑ2 −$)g($, z$)d$

−

∫ ϑ1

0
(ϑ1 −$)η−1M−1Gη(ϑ1 −$)g($, z$)d$

∥∥∥∥∥
+

∥∥∥∥∥ ∫ ϑ2

0
(ϑ2 −$)η−1M−1Gη(ϑ2 −$)Bx($)d$

−

∫ ϑ1

0
(ϑ1 −$)η−1M−1Gη(ϑ1 −$)Bx($)d$

∥∥∥∥∥
≤ ‖M−1[Pη(ϑ2) − Pη(ϑ1)]M~(0)‖ + ‖M−1[Qη(ϑ2) − Qη(ϑ1)]Mz1‖

+

∫ ϑ1

0
‖M−1[(ϑ2 −$)η−1Gη(ϑ2 −$)

− (ϑ1 −$)η−1Gη(ϑ1 −$)]g($, z$)‖d$

+

∫ ϑ1

0
‖M−1[(ϑ2 −$)η−1Gη(ϑ2 −$)

− (ϑ1 −$)η−1Gη(ϑ1 −$)]Bx($)‖d$

+

∫ ϑ2

ϑ1

(ϑ2 −$)η−1‖M−1Gη(ϑ2 −$)g($, z$)‖d$

+

∫ ϑ2

ϑ1

(ϑ2 −$)η−1‖M−1Gη(ϑ2 −$)Bx($)‖d$

≤

6∑
i=1

Oi.

Let Kη(ϑ) = ϑη−1Gη(ϑ) for all ϑ ∈ V , from Lemma 2.7(c) that Kη(ϑ) denotes the strongly continuous
operator. Since choices ε > 0, we get

O3 ≤

∫ ϑ1−ε

0
‖Kη(ϑ2 −$) − Kη(ϑ1 −$)‖‖g($, z$)‖d$

+

∫ ϑ1

ϑ1−ε

‖Kη(ϑ2 −$) − Kη(ϑ1 −$)‖‖g($, z$)‖d$

≤ sup
$∈[0,ϑ1−ε]

‖Kη(ϑ2 −$) − Kη(ϑ1 −$)‖
∫ ϑ1

0
hµ($)d$

+
2P

Γ(2η)

∫ ϑ1

ϑ1−ε

hµ($)d$(ϑ2 − ϑ1 − ε)2η−1,
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O4 ≤

∫ ϑ1−ε

0
‖Kη(ϑ2 −$) − Kη(ϑ1 −$)‖‖Bx($)‖d$

+

∫ ϑ1

ϑ1−ε

‖Kη(ϑ2 −$) − Kη(ϑ1 −$)‖‖Bx($)‖d$

≤ ‖B‖ sup
$∈[0,ϑ1−ε]

‖Kη(ϑ2 −$) − Kη(ϑ1 −$)‖
∫ ϑ1

0
‖x($)‖d$

+
2P‖B‖
Γ(2η)

∫ ϑ1

ϑ1−ε

‖x($)‖d$(ϑ2 − ϑ1 − ε)2η−1,

O5 ≤
P‖M−1‖

Γ(2η)

∫ ϑ2

ϑ1

(ϑ1 −$)2η−1‖g($, z$)‖d$ ≤
P‖M−1‖

Γ(2η)

∫ ϑ2

ϑ1

(ϑ1 −$)2η−1hµ($)d$,

O6 ≤
P‖M−1‖

Γ(2η)

∫ ϑ2

ϑ1

(ϑ1 −$)2η−1‖Bx($)‖d$ ≤
P‖M−1‖‖B‖

Γ(2η)

∫ ϑ2

ϑ1

(ϑ1 −$)2η−1‖x($)‖d$.

As a result, O3, and O4 tend to zero independently of x ∈ Bµ as ϑ2 → ϑ1, ε → 0.
Lemma 2.7(c), Pη(ϑ), Qη(ϑ), and Gη(ϑ) are continuous in the uniform operator topology for ϑ ≥ 0,

and sup$∈V |hµ($)| < ∞ and x(·) is bounded from (3.4). We easily seen that the terms O1,O2,O5,O6 →

0 as ϑ2 → ϑ1. Hence, ΦBµ is equicontinuous and also bounded. �

Now we prove the main results of this paper.

Theorem 3.5. If (H1)–(H2) are satisfied. Then, (1.1) is controllable on [0, c] if the condition (3.3) hold.

Proof. By referring the Lemmas 3.2–3.4 and the Ascoli-Arzela theorem that ΦBµ is precompact in
C(V∗,Z). As a result, Φ is a completely continuous operator on C(V∗,Z). Referring the Schauder’s
fixed point theorem, Φ has a fixed point in Bµ. Any fixed point of Φ is a mild solution of (1.1) on V
fulfilling (Φz)(ϑ) = z(ϑ) inZ. Therefore, the fractional evolution system (1.1) is controllable on V . �

Remark 3.6. The primary discussion of this article, that is, Theorem 3.5 provides only the sufficient
conditions for the controllability of the proposed system (1.1). If the non-linearity of the function g(ϑ, z)
does not satisfy the hypothesis (H2), then the proposed system (1.1) may or may not be controllable,
one can check [38] with suitable modifications for fractional settings.

4. Application

In this section, an example is given to illustrate our theory, we consider the following problem:
CD

3
2
ϑ (z(ϑ, ) − ∆z(ϑ, )) = ∆z(ϑ, ) + g(ϑ, z(ϑ − τ, )) + Bx(ϑ), ϑ ∈ V1 = [0, 1],  ∈ N ,

z(ϑ, ) = 0, ϑ ∈ [0, 1],  ∈ ∂N ,
z(0, ) = ~(0), z′(0, ) = z1( ),  ∈ N ,

(4.1)
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where CD
3
2
ϑ stands for Caputo fractional partial derivative. Assume that N ⊂ RN is a bounded domain

and X = Z = L2([0, π]) = L2(N). Let A be Laplace operator with Dirichlet boundary conditions
presented as Az = ∆, and A : D(A)→ Y by Az = −∆ and M : D(M)→ Y by Mz = z − ∆, where D(A)
and D(M) are subsets ofZ and the domain of D(A) and D(M) is given by

D(A) = D(M) = {g ∈ H1
0(N), Ag ∈ L2(N)}.

Obviously, we obtain D(A) = H1
0(N) ∩ H2(N). A produces the uniformly bounded strongly

continuous cosine family P(ϑ) for ϑ ≥ 0, see [2]. Consider V` = `2π2 and ℘`( ) =
√

(2/π) sin(`π ),
for every ` ∈ N.

Assume that {−V`, ℘`}
∞
`=1 is the eigensystem of the operator A, since 0 < V1 ≤ V2 ≤ · · · ,V` → ∞

as ` → ∞, and {℘`}∞`=1 form an orthonormal basis ofZ.

Az =

∞∑
`=1

V`〈z, ℘`〉℘`, z ∈ D(A),

Mz =

∞∑
`=1

(1 +V`)〈z, ℘`〉℘`, z ∈ D(M).

Further, for every z ∈ Z we obtain

M−1z =

∞∑
`=1

(1 +V`)−1〈z, ℘`〉℘`,

−AM−1z =

∞∑
`=1

−V`(1 +V`)−1〈z, ℘`〉℘`.

Consequently, cosine function P(ϑ) defined by

P(ϑ)z =

∞∑
`=1

cos
( √
V`ϑ

)
〈z, ℘`〉℘`, z ∈ Z,

and the sine function associated with cosine function given by

S(ϑ)z =

∞∑
`=1

1
√
V`

sin
( √
V`ϑ

)
〈z, ℘`〉℘`, z ∈ Z.

Accordingly, ‖M−1‖ is compact, bounded along with ‖M−1‖ ≤ 1 and −AM−1 produces the above
strongly continuous cosine family P(ϑ) onZ along with ‖P(ϑ)‖Lc(Z) ≤ e−ϑ ≤ 1, for any ϑ ≥ 0.

Since r = 3
2 , we know that η = 3

4 . The control operator B : X → Y is determined by

Bx =

∞∑
`=1

aV`〈x, ℘`〉℘`, a > 0.

In the above

x =

x`, ` ∈ N,

0, ` = J + 1, J + 2, · · · ,
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for J ∈ N. Now we denote W : H → D(M) as follows:

Wx =

∫ 1

0
(1 −$)−

1
4 M−1G 3

4
(1 −$)Bx($)d$.

Hence, ‖x‖ =
(∑∞

`=1〈x, ℘`〉
2
) 1

2 , for x ∈ X, we obtain

‖Bx‖ =

 ∞∑
`=1

a2V2
` 〈x, ℘`〉

2


1
2

≤ aJVJ‖x‖.

Assume that x($, ) = z( ) ∈ X and z denotes z` if ` = 1, 2, · · · ,N or 0 if ` = J + 1, · · · . Hence, we
obtain

Wx =

∫ 1

0
(1 −$)−

1
4
3
4

∫ ∞

0
M−1ξS 3

4
(ξ)S

(
(1 −$)

3
4 ξ

)
Bzdξd$

= a
∫ 1

0
(1 −$)−

1
4
3
4

∫ ∞

0
M−1ξS 3

4
(ξ)

J∑
`=1

√
V` sin

( √
V`(1 −$)

3
4 ξ)

)
〈z, ℘`〉℘`dξd$

= a
∫ ∞

0
S 3

4
(ξ)

J∑
`=1

∫ 1

0
(1 −$)−

1
4

3
√
V`

4(1 +V`)
ξ sin

( √
V`(1 −$)

3
4 ξ

)
d$〈z, ℘`〉℘`dξ

= a
∫ ∞

0
S 3

4
(ξ)

J∑
`=1

∫ 1

0

1
(1 +V`)

d
d$

[
cos

( √
V`(1 −$)

3
4 ξ

) ]
d$〈z, ℘`〉℘`dξ

= a
J∑
`=1

∫ ∞

0
S 3

4
(ξ)

1
(1 +V`)

(1 − cos(
√
V`ξ))dξ〈z, ℘`〉℘`

= a
∞∑
`=1

1
(1 +V`)

(
1 − E 3

2 ,1
(−V`)

)
〈z, ℘`〉℘`.

In [8, 10], assume that v = E 3
2 ,1

(− 1
10 ), then for any ` ∈ N, we obtain

−1 < E 3
2 ,1

(−V`) ≤ v < 1,

it denotes
0 < 1 − v ≤ 1 − E 3

2 ,1
(−V`) < 2.

Then, we classify W is surjective. We illustrate the W−1 mapping from D(M) intoH by

(W−1z)(ϑ, ) =
1
a

∞∑
`=1

(1 +V`)〈z, ℘`〉℘`
1 − E 3

2 ,1
(−V`)

,

for any

z =

∞∑
`=1

〈z, ℘`〉℘` ∈ Z.
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Thus

‖z‖D(M) = ‖Mz‖ =

√√
∞∑
`=1

(1 +V`)2〈z, ℘`〉2,

for z ∈ D(M) in such a way

‖(W−1z)(ϑ, ·)‖ ≤
1

a(1 − v)
‖z‖D(M).

Note that W−1z is independent of ϑ ∈ V . Moreover, we have

‖W−1‖ ≤
1

a(1 − v)
.

Therefore assumption (H1) satisfied.

(R1) Determine g : V1 × R → R. For any z ∈ R, g(ϑ, z) is measurable and for every ϑ ∈ V1, g(ϑ, z) is
continuous. Furthermore,

lim sup
ι→∞

1
ι

sup
ϑ∈V1, |z|≤ι

|g(ϑ, z)| = δ ≤ ∞.

Consider G : V1 × C([−1, 0],Z)→ Y by G(ϑ, y)( ) = g(ϑ, y(−v)( )).

The system (4.1) can now be abstracted as follows:CDr
ϑz(ϑ) = −Az(ϑ) + G(ϑ, zϑ) + Bx(ϑ), ϑ ∈ V = [0, c], r ∈ (1, 2),

z(ϑ) = ~(ϑ), ϑ ∈ [−1, 0], z′(0) = z1 ∈ Z.
(4.2)

As a result, all the assumptions of Theorem 3.5 are satisfied, if

2δ
√
π

[
1 +

√
2

√
πa(1 − v)

]
< 1.

Therefore, the system (4.1) is controllable on [0, c].

Remark 4.1. The above fractional partial differential system (4.1) provides only the sufficient
conditions for the controllability. If the non-linearity of the function presented in the above fractional
partial differential system (4.1), that is, g(ϑ, z(ϑ − τ, )) does not satisfy the hypothesis (H2), then the
proposed system (4.1) may or may not be controllable, for more details, one can check the Example 1,
Example 2 and Example 3, which are discussed in [38] with suitable modifications for fractional
settings.

5. Conclusions

This research explores the controllability of fractional delay differential equations of r ∈ (1, 2).
The main results of this work are evaluated using fractional computations, cosine and sine function
operators, Sobolev type, and Schauder’s fixed point theorem. At first, we used sufficient conditions to
evaluate controllability results. Furthermore, an application is built to develop the theory of the main
results. In the future, we shall concentrate our research on controllability results for Riemann-Liouville
fractional neutral integrodifferential inclusions with infinite delay of order r ∈ (1, 2).
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49. O. Tunc, Ö. Atan, C. Tunc, J. C. Yao, Qualitative analyses of integro-fractional differential
equations with Caputo derivatives and retardations via the Lyapunov-Razumikhin method, Axioms,
10 (2021), 58. https://doi.org/10.3390/axioms10020058

50. V. Vijayakumar, C. Ravichandran, K. S. Nisar, K. D. Kucche, New discussion on approximate
controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of
order 1 < r < 2, Numer. Methods Partial Differ. Equ., 2021. https://doi.org/10.1002/num.22772

51. V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate
controllability results for second-order Sobolev-type impulsive neutral differential evolution
inclusions with infinite delay, Numer. Methods Partial Differ. Equ., 37 (2021), 1200–1221.
https://doi.org/10.1002/num.22573

52. V. Vijayakumar, R. Udhayakumar, C. Dineshkumar, Approximate controllability of second order
nonlocal neutral differential evolution inclusions, IMA J. Math. Control Inf., 38 (2021), 192–210.
https://doi.org/10.1093/imamci/dnaa001

AIMS Mathematics Volume 7, Issue 6, 10215–10233.

http://dx.doi.org/https://doi.org/10.1007/s12215-015-0191-0
http://dx.doi.org/https://doi.org/10.1007/s10883-016-9350-7
http://dx.doi.org/https://doi.org/10.1142/S1793557118500882
http://dx.doi.org/https://doi.org/10.3182/20140313-3-IN-3024.00107
http://dx.doi.org/https://doi.org/10.3182/20140313-3-IN-3024.00107
http://dx.doi.org/https://doi.org/10.1007/s00034-021-01680-2
http://dx.doi.org/https://doi.org/10.1007/s12190-020-01418-4
http://dx.doi.org/https://doi.org/10.1137/1.9781611974072.25
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111095
http://dx.doi.org/https://doi.org/10.1007/BF01902205
http://dx.doi.org/https://doi.org/10.3934/math.2020141
http://dx.doi.org/https://doi.org/10.3390/axioms10020058
http://dx.doi.org/https://doi.org/10.1002/num.22772
http://dx.doi.org/https://doi.org/10.1002/num.22573
http://dx.doi.org/ https://doi.org/10.1093/imamci/dnaa001
http://dx.doi.org/ https://doi.org/10.1093/imamci/dnaa001


10233

53. J. R. Wang, Z. Fan, Y. Zhou, Nonlocal controllability of semilinear dynamic systems
with fractional derivative in Banach spaces, J. Optim. Theory Appl., 154 (2012), 292–302.
https://doi.org/10.1007/s10957-012-9999-3

54. W. K. Williams, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, A new study on existence and
uniqueness of nonlocal fractional delay differential systems of order 1 < r < 2 in Banach spaces,
Numer. Methods Partial Differ. Equ., 37 (2021), 949–961. https://doi.org/10.1002/num.22560

55. Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014.
https://doi.org/10.1142/9069

56. Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Elsevier, 2016.
https://doi.org/10.1016/C2015-0-00813-9

57. Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order α ∈
(1, 2), Evol. Equ. Control The., 10 (2021), 491–509. https://doi.org/10.3934/eect.2020077

58. Y. Zhou, L. Zhang, X. H. Shen, Existence of mild solutions for fractional evolution equations, J.
Int. Equ. Appl., 25 (2013), 557–585. https://doi.org/10.1216/JIE-2013-25-4-557

59. Z. F. Zhang, B. Liu, Controllability results for fractional functional differential
equations with nondense domain, Numer. Funct. Anal. Optim., 35 (2014), 443–460.
https://doi.org/10.1080/01630563.2013.813536

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 6, 10215–10233.

http://dx.doi.org/https://doi.org/10.1007/s10957-012-9999-3
http://dx.doi.org/https://doi.org/10.1002/num.22560
http://dx.doi.org/https://doi.org/10.1142/9069
http://dx.doi.org/https://doi.org/10.1016/C2015-0-00813-9
http://dx.doi.org/https://doi.org/10.3934/eect.2020077
http://dx.doi.org/https://doi.org/10.1216/JIE-2013-25-4-557
http://dx.doi.org/https://doi.org/10.1080/01630563.2013.813536
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Application
	Conclusions

