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Abstract: We deal with sign-changing solutions for the Kirchhoff equation−(a + b
∫

Ω
|∇u|2dx)∆u = λu + µ|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where a, b > 0 and λ, µ ∈ R being parameters, Ω ⊂ R3 is a bounded domain with smooth boundary
∂Ω. Combining Nehari manifold method with the quantitative deformation lemma, we prove that there
exists µ∗ > 0 such that above problem has at least a least energy sign-changing (or nodal) solution
if λ < aλ1 and µ > µ∗, where λ1 > 0 is the first eigenvalue of (−∆u,H1

0(Ω)). It is noticed that
the nonlinearity λu + µ|u|2u fails to satisfy super-linear near zero and super-three-linear near infinity,
respectively.
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1. Introduction and main results

In this article, we are concerned with sign-changing solutions for the Kirchhoff equation −(a + b
∫

Ω
|∇u|2dx)∆u = λu + µ|u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where a, b > 0 and λ, µ ∈ R being parameters, Ω ⊂ R3 is a bounded domain with smooth boundary
∂Ω. Problem (1.1) comes from the following general Kirchhoff equation

− (a + b
∫

Ω

|∇u|2dx)∆u = f (x, u), (1.2)
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which is related to the following stationary analogue of the equation of Kirchhoff type

utt − (a + b
∫

Ω

|∇u|2dx)∆u = f (x, u). (1.3)

It is noticed that, as a generalization of the well-known D’Alembert wave equation for free vibration of
elastic strings, Kirchhoff firstly introduced Eq (1.3) in paper [13]. More backgrounds about Kirchhoff

type problems, we refer the readers to [24]. Since the pioneer work of Lions [19], there are many
results for Kirchhoff type problems. On the one hand, we shall recall some results about the perturbed
problem. For example, He and Zou [10] considered the Kirchhoff-type problem

− (ε2a + εb
∫
R3
|∇u|2dx)∆u + V(x)u = f (u) in R3, (1.4)

where ε > 0 is a parameter, V > 0 is a continuous function and f (u) ∼ |u|p−2u (4 < p < 6).
Combining Ljusternik-Schnirelmann theory and minimax methods, they proved the multiplicity of
positive solutions, which concentrate on the minima of V(x) as ε→ 0 while vanishing elsewhere. Later,
Wang et al. [32] extended the results obtained in [10] to the critical case, i.e., f (u) ∼ λ|u|p−2u + |u|4u
(4 < p < 6). In [6], Figueiredo et al. considered the following Kirchhoff-type equation

− ε2M(ε2−N
∫
RN
|∇u|2dx)∆u + V(x)u = f (u) in RN , (1.5)

where N ≥ 1, M and V are continuous functions, the authors studied the existence and concentration
behaviors of positive solutions to Kirchhoff type Eq (1.5). In [15], Luo et al. considered the Kirchhoff

problem

− (ε2a + εb
∫
R3
|∇u|2dx)∆u + V(x)u = up, u > 0 in R3, (1.6)

where 1 < p < 5. By Lyapunov-Schmidt reduction method, under some mild assumptions on the
function V , the authors obtained multi-peak solutions for ε > 0 sufficiently small. On the other hand,
we cit some results about the non perturbed problem. For example, Li et al. [18] considered the
following Kirchhoff type equation

[a + λ

∫
RN
|∇u|2dx + λb

∫
RN

u2dx][−∆u + bu] = f (u), in RN , (1.7)

where N ≥ 3, and a, b are positive constants, λ ≥ 0 is a parameter. Without usual compactness
conditions, they proved the existence of a positive solution to Kirchhoff type Eq (1.7). In [16], by using
a monotonicity trick and a new version of global compactness lemma, Li and Ye had proved that (1.4)
had a ground state solution in the case ε = 1 and f (x, u) = |u|p−1u with 2 < p < 5. By using variational
methods and Schwartz symmetric arrangement, Guo [9] generalized the result obtained in [16] to
the Kirchhoff-type problem with general nonlinearity. Later, by introducing some new tricks, Tang and
Chen [29] proved that the problem (1.4) with ε = 1 had a ground state solution of Nehari-Pohozaev type
and a least energy solution under some mild assumptions on V and f . In [35], Xie et al. investigated
bound state solutions for small linear perturbations of Kirchhoff type problems with critical exponent.
In [11], Huang et al. studied the Brezis-Nirenberg problem to a class of Kirchhoff type problem with
critical Sobolev exponent on bounded domain in R4. In [21], using variational methods, Maia proved
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the existence of a weak solution for a class of p(x)-Choquard equations with upper critical growth.
Furthermore, in [21], the author also obtained a multiplicity of solutions for a class of p(x)-Choquard
equations with a nonlocal and non-degenerate Kirchhoff term by using truncation arguments and
Krasno-selskii’s genus. Very recently, Vetro [30] considered the following nonlinear p(x)-Kirchhoff

type problem
− 4K

p(x)u(x) = f (x, u(x),∇u(x)) in Ω, u|∂Ω = 0, (1.8)

where 4K
p(x)u(x) = (ap − bp

∫
Ω

1
p(x) |∇u|p(x)dx)div(|∇u|p(x)−2∇u). The existence of two different notions of

solutions is discussed in [30] with respect to a Galerkin approximation method, jointly with the theory
of pseudomonotone operators.

In recent years, many authors also pay their attention to find sign-changing solutions to Kirchhoff

type equations. For example, in [23, 38], Zhang, Perera and Mao obtained the existence of sign-
changing solution of problem (1.2) by using the method of invariant sets of descent flow. Via variational
methods and invariant sets of descent flow, Mao and Luan [22] obtained existence of signed and
sign-changing solutions for problem (1.2) with asymptotically 3-linear bounded nonlinearity. In [7],
Figueiredo and Nascimento considered the following Kirchhoff equation −M(

∫
Ω
|∇u|2dx)∆u = f (u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.9)

where Ω is a bounded domain in R3 and M ∈ C1. Using minimization argument together with
quantitative deformation lemma, authors studied the existence of sign-changing solution for Eq (1.9).
Later, Figueiredo and Santos Júnior [8] extended the results obtained in [7] to the unbounded domains.
In [26], together with constraint variational methods and quantitative deformation lemma, Shuai
studied the existence and asymptotic behavior of least energy sign-changing solution to problem (1.2).
It is noticed that Ye [36] also obtained some results similar to paper [26]. Based on variational methods,
Lu [20] obtained the ground states and least energy sign-changing solutions for problem (1.2). In [28],
without the usual Nehari-type monotonicity condition on f , Tang and Cheng improved and generalized
results obtained in [26].

In [4], Deng, Peng and Shuai considered the following Kirchhoff problem

− (a + b
∫
R3
|∇u|2dx)∆u + V(x)u = f (x, u), in R3. (1.10)

When V(x) = V(|x|) and f (x, u) = f (|x|, u), by using a Nehari manifold and gluing solution pieces
together, they obtained the existence of a sign-changing solution which changes signs exactly k times
for any k ∈ N. In [14], Li et al. investigated the existence and the concentration of sign-changing
solutions to a class of Kirchhoff-type systems with Hartree-type nonlinearity in R3. When f (x, u) =

f (u), with the help of variational methods in association with the deformation lemma and Miranda’s
theorem, Wang et al. [33] investigated sign-changing solution to problem (1.10) where the potential V
is not necessarily radially symmetric. When the potential V(x) is a nonnegative continuous function
with a potential well which possesses k disjoint bounded components, Deng and Shuai [5] obtained
multiple sign-changing multi-bump solutions for problem (1.10). When the nonlinearity involved a
combination of concave and convex terms, Shao and Mao [25] got the existence of infinitely many
high-energy solutions for a class of Kirchhoff problem by using Fountain theorem. In [17], Li et al.
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also considered the existence of sign-changing solution to problem (1.10) when f (x, u) = f (u). When
f (x, u) = f (u) and f is odd, combining with Ljusternik-Schnirelmann theory and minimax methods,
Sun et al. [27] obtained infinitely many sign-changing solutions for Kirchhoff problem (1.10). In [2],
Cassani et al. considered the following Kirchhoff type equation

[1 + λ

∫
R3
|∇u|2 + V(x)u2dx][−∆u + V(x)u] = f (u) in R3. (1.11)

The authors obtained that, for any n ∈ N there exists λn > 0 such that for any λ ∈ (0, λn), problem (1.11)
has at least n pairs of radially symmetric sign-changing solutions with positive energy. In [31], the last
author of this paper investigated the existence and the energy property of least energy sign-changing
solution to the following Kirchhoff problem with critical growth −(a + b

∫
Ω
|∇u|2dx)∆u = |u|4u + λ f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.12)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω. Subsequently, Zhang [37] generalized
results obtained in [31] to a class of general Kirchhoff problem.

However, as far as we know, when studying least energy sign-changing solution to Kirchhoff

equation, the nonlinearity always satisfies the growth conditions of super-linear near zero or super-
three-linear near infinity except [3,39]. In [3], when f satisfies asymptotically linear growth at infinity
about u, Cheng and Tang obtained the existence and asymptotic behavior of least energy sign-changing
solution for Eq (1.2) with bounded domain. It is notice that the results obtained in [3] still depends
on the fact that f is super-linear near zero about u. Recently, Zhong and Tang [39] considered the
Kirchhoff-type problem  −(a + b

∫
Ω
|∇u|2dx)∆u = λu + |u|2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.13)

where a, b > 0, λ < aλ1, λ1 is the principal eigenvalue of (−∆,H1
0(Ω)), and Ω is a smooth bounded

domain in R3,N = 1, 2, 3. By Nehari manifold argument, the authors proved that there exists ∧ > 0
such that the Eq (1.13) has at least one least energy sign-changing solution ub for all 0 < b < ∧

and λ < aλ1 and obtained that its energy is strictly larger than twice that of ground state solutions.
Furthermore, they also studied the asymptotic behavior of ub as b → 0 and the nonexistence of sign-
changing solution for Eq (1.13). Obviously, the nonlinearity λu + |u|2u fails to satisfy super-linear near
zero and super-three-linear near infinity, respectively. However, since their results strongly depends on
the condition 0 < b < ∧, the methods used in [39] seem not valid for all b > 0.

In this paper, inspired by above works, we consider the existence of least energy sign-changing
solution to Kirchhoff Eq (1.1) for all b > 0. Our method is closely related to the works in [1,12], where
authors dealt with p-Laplacian equation and Schrödinger-Poisson system respectively.

Let Lp(Ω) be a Lebesgue space with the norm |u|p := (
∫

Ω
|u|pdx)

1
p , 1 ≤ p < ∞ and H1

0(Ω) be Sobolev
space equipped with the inner product and norm

(u, v) =

∫
Ω

∇u · ∇vdx, ‖u‖ = (u, u)
1
2 .
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Associated with Eq (1.1), the energy functional is defined by

Φ(u) =
a
2
‖u‖2 −

λ

2

∫
Ω

|u|2dx +
b
4
‖u‖4 −

µ

4

∫
Ω

|u|4dx =
1
2

Φλ(u) +
1
4

Φµ(u), u ∈ H1
0(Ω),

where Φλ(u) = a‖u‖2 − λ
∫

Ω
|u|2dx,Φµ(u) = b‖u‖4 − µ

∫
Ω
|u|4dx. Moreover, Φ(u) belongs to C1, and

〈Φ′(u), v〉 = a
∫

Ω

∇u · ∇vdx − λ
∫

Ω

uvdx + b‖u‖2
∫

Ω

∇u · ∇vdx − µ
∫

Ω

|u|2uvdx

for any u, v ∈ H1
0(Ω).

Let u+ = max{u(x), 0}, u− = min{u(x), 0}, if u ∈ H1
0(Ω) with u± , 0 is a solution of problem (1.1),

then we said that u is a sign-changing solution of Eq (1.1).
LetM = {u ∈ H1

0(Ω), u± , 0 and 〈Φ′(u), u±〉 = 0},m = infu∈MΦ(u) and λ1 be the first eigenvalue of −∆u = λu, in Ω,

u = 0, on ∂Ω.

In fact, λ1 = infu∈H1
0 (Ω)\{0}

‖u‖2

|u|22
. We remark that if u ∈ H1

0(Ω) is a sign-changing solution of Eq (1.1), then

〈Φ′(u), u±〉 = Φλ(u±) + b‖u‖2‖u±‖2 − µ
∫

Ω

|u±|4dx = 0.

Hence, it follows from λ < aλ1 that b‖u‖2‖u±‖2 − µ
∫

Ω
|u±|4dx = −Φλ(u±) < 0, that is

µ > max

b‖u‖2‖u+‖2∫
Ω
|u+|4dx

,
b‖u‖2‖u−‖2∫

Ω
|u−|4dx

 , for any u ∈ M.

On the other hand, if µ < infu∈H1
0 (Ω)\{0}max

{
b‖u‖2‖u+‖2∫

Ω
|u+ |4dx

, b‖u‖2‖u−‖2∫
Ω
|u− |4dx

}
, then, for any u ∈ H1

0(Ω) with u± , 0,
we get

b‖u‖2‖u+‖2 − µ

∫
Ω

|u+|4dx ≥ 0 or b‖u‖2‖u−‖2 − µ
∫

Ω

|u−|4dx ≥ 0.

So, it follows from Φλ(u±) > 0 that 〈Φ′(u), u+〉 , 0 or 〈Φ′(u), u+〉 , 0, that is M = ∅. Hence, the
Eq (1.1) has no sign-changing solution.

Let

µ∗ = inf
u∈H1

0 (Ω)\{0}

max

b‖u‖2‖u+‖2∫
Ω
|u+|4dx

,
b‖u‖2‖u−‖2∫

Ω
|u−|4dx


 .

Our result is the following theorem.

Theorem 1.1. If λ < aλ1 and µ > µ∗, then the Eq (1.1) has a least energy sign-changing solution.

Remark 1.1. Although we obtain the existence of least energy sign-changing solution to Eq (1.1) for
all b > 0, the parameter µ needs to be larger than one positive constant to achieve our goal. So, for all
b > 0 and µ > 0, we do not know whether Eq (1.1) has a least energy sign-changing solution or not.
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2. Technical lemmas

For any u ∈ H1
0(Ω) with u± , 0, it is easy to see that

Φλ(u) = Φλ(u+) + Φλ(u−), (2.1)
Φµ(u) = Φµ(u+) + Φµ(u−) + 2b‖u+‖2‖u−‖2, (2.2)

Φ(u) = Φ(u+) + Φ(u−) +
b
2
‖u+‖2‖u−‖2, (2.3)

〈Φ′(u), u±〉 = 〈Φ′(u±), u±〉 + b‖u+‖2‖u−‖2. (2.4)

Denote

N =
{
u ∈ H1

0(Ω), u± , 0 : Φµ(u±) + b‖u+‖2‖u−‖2 < 0
}

=

{
u ∈ H1

0(Ω), u± , 0 : b‖u‖2‖u±‖2 − µ
∫

Ω

|u±|4dx < 0
}
. (2.5)

Lemma 2.1. If λ < aλ1 and µ > µ∗, then N , ∅ andM ⊂ N .

Proof. Suppose that µ > µ∗, it follows from the definition of µ∗ that there exists v ∈ H1
0(Ω) with v± , 0

such that

µ > max

b‖v‖2‖v+‖2∫
Ω
|v+|4dx

,
b‖v‖2‖v−‖2∫

Ω
|v−|4dx

 ≥ µ∗.
So, b‖v‖2‖v±‖2 − µ

∫
Ω
|v±|4dx < 0, that is, v ∈ N . Hence we obtain N , ∅.

In the following, we proveM ⊂ N . For any u ∈ M, then we have that

b‖u‖2‖u±‖2 − µ
∫

Ω

|u±|4dx = −Φλ(u±). (2.6)

Thanks to λ < aλ1, we get Φλ(u±) > 0. Then, from (2.6), we conclude that u ∈ N , that isM ⊂ N . �

Lemma 2.2. If λ < aλ1 and µ > µ∗ hold, then for any u ∈ N , there is a unique pair (su, tu) with
su, tu > 0 such that suu+ + tuu− ∈ M and Φ(suu+ + tuu−) = maxs,t>0 Φ(su+ + tu−). Furthermore, if
〈Φ′(u), u±〉 ≤ 0, then we have 0 < su, tu ≤ 1.

Proof. For any u ∈ N , it follows from (2.4) that su+ + tu− ∈ M if and only if the positive pair (s, t)
satisfies  〈Φ′(su+ + tu−), su+〉 = s2Φλ(u+) + s4Φµ(u+) + bs2t2‖u+‖2‖u−‖2 = 0,

〈Φ′(tu+ + tu−), tu−〉 = t2Φλ(u−) + t4Φµ(u−) + bs2t2‖u+‖2‖u−‖2 = 0.

That is  s2Φµ(u+) + bt2‖u+‖2‖u−‖2 = −Φλ(u+),

t2Φµ(u−) + bs2‖u+‖2‖u−‖2 = −Φλ(u−),
(2.7)
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which is equivalent to [
Φµ(u+) b‖u+‖2‖u−‖2

b‖u+‖2‖u−‖2 Φµ(u−)

] [
s2

t2

]
=

[
−Φλ(u+)
−Φλ(u−)

]
.

Then, since u ∈ N , one has∣∣∣∣∣∣ Φµ(u+) b‖u+‖2‖u−‖2

b‖u+‖2‖u−‖2 Φµ(u−)

∣∣∣∣∣∣ = Φµ(u+)Φµ(u−) − b2‖u+‖4‖u−‖4 > 0.

Hence, thanks to Φλ(u±) > 0, Eq (2.7) has a unique solution (su, tu) such that su, tu > 0.
Fixed u ∈ N , define φu : (0,∞) × (0,∞)→ R by φu(s, t) = Φ(su+ + tu−). Now we prove φu(su, tu) =

Φ(suu+ + tuu−) = maxs,t>0 φu(s, t), where (su, tu) is the unique solution of Eq (2.7). It follows that

∇φu(s, t) =

(
∂φu

∂s
(s, t),

∂φu

∂t
(s, t)

)
=

(
〈Φ′(su+ + tu−), u+〉, 〈Φ′(su+ + tu−), u−〉

)
=

(
1
s
〈Φ′(su+ + tu−), su+〉,

1
t
〈Φ′(su+ + tu−), tu−〉

)
,

which shows that a positive pair (s, t) is a critical point of φu if and only if su+ + tu− ∈ M. So,
since (su, tu) is the unique solution of Eq (2.7), we deduce that (su, tu) is a unique critical point of the
function φu.

Since u ∈ N , we have
∂2φu
∂s2 (su, tu) = Φλ(u+) + 3s2

uΦµ(u+) + bt2
u‖u

+‖2‖u−‖2 = 2s2
uΦµ(u+) < 0,

∂2φu
∂t2 (su, tu) = Φλ(u−) + 3t2

uΦµ(u−) + bs2
u‖u

+‖2‖u−‖2 = 2t2
uΦµ(u−) < 0,

∂2φu
∂s∂t (su, tu) =

∂2φu
∂t∂s (su, tu) = 2bsutu‖u+‖2‖u−‖2.

(2.8)

Then we get ∣∣∣∣∣∣∣
∂2φu
∂s2 (su, tu) ∂2φu

∂s∂t (su, tu)
∂2φu
∂t∂s (su, tu) ∂2φu

∂t2 (su, tu)

∣∣∣∣∣∣∣ = 4s2
ut2

u[Φµ(u+)Φµ(u−) − b2‖u+‖4‖u−‖4] > 0.

That is, the Hessian matrix of φu is negative definite at (su, tu). So, we get φu(su, tu) = maxs,t>0 φu(s, t).
Suppose su ≥ tu > 0. By suu+ + tuu− ∈ M, one has s2

uΦµ(u+) + bt2
u‖u

+‖2‖u−‖2 = −Φλ(u+),

t2
uΦµ(u−) + bs2

u‖u
+‖2‖u−‖2 = −Φλ(u−).

(2.9)

On the other hand, by 〈Φ′(u), u±〉 ≤ 0, one has

b‖u‖2‖u±‖2 − µ
∫

Ω

|u±|4dx ≤ −Φλ(u±) < 0. (2.10)

According to (2.9) and (2.10), we have that

−s2
uΦλ(u+) ≥ s2

u[b‖u‖2‖u+‖2 − µ

∫
Ω

|u+|4dx] = s2
u[Φµ(u+) + b‖u+‖2‖u−‖2]

≥ s2
uΦµ(u+) + bt2

u‖u
+‖2‖u−‖2 = −Φλ(u+).

Thanks to Φλ(u+) > 0, we conclude that su ≤ 1. Thus, we have that 0 < su, tu ≤ 1. �
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Lemma 2.3. If λ < aλ1 and µ > µ∗, then there is τ > 0 satisfying ‖u±‖ ≥ τ for all u ∈ M.

Proof. For any u ∈ M, by Sobolev inequalities we have

(a −
λ

λ1
)‖u±‖2 ≤ a‖u±‖2 − λ

∫
Ω

|u±|2dx ≤ Φλ(u±) + b‖u‖2‖u+‖2

= µ

∫
Ω

|u±|4dx ≤ µα4
4‖u
±‖4,

where α4 is positive constant such that |u|4 ≤ α4‖u‖, ∀u ∈ H1
0(Ω). So, ‖u±‖ ≥

√
(a− λ

λ1
)

µα4
4

:= τ > 0. �

Lemma 2.4. If λ < aλ1 and µ > µ∗, then m = infu∈MΦ(u) > 0 is achieved.

Proof. Firstly, we assert that m > 0. In fact, for any u ∈ M, by Lemma 2.3 we have

Φ(u) −
1
4
〈Φ′(u), u〉 =

1
4

Φλ(u) ≥
1
4

(a −
λ

λ1
)‖u‖2 ≥

1
4

(a −
λ

λ1
)τ2 > 0,

which implies m > 0.
In the following, we prove that m is achieved. Let {un} ⊂ M such that limn→∞Φ(un) = m. It is easy to
see that {un} is bounded in H1

0(Ω). Then, there is u ∈ H1
0(Ω) such that un ⇀ u.

Furthermore, for all p ∈ [1, 6), one has

un → u in Lp(Ω), un(x)→ u(x) a.e. x ∈ Ω.

u±n ⇀ u± in H1
0(Ω), u±n → u± in Lp(Ω), u±n (x)→ u±(x) a.e. x ∈ Ω. (2.11)

By {un} ⊂ M, we have

a‖u±n ‖
2 ≤ a‖u±n ‖

2 + b‖un‖
2‖u+

n ‖
2 = λ

∫
Ω

|u±n |
2dx + µ

∫
Ω

|u±n |
4dx ≤

λ

λ1
‖u±n ‖

2 + µ

∫
Ω

|u±n |
4dx.

So, 0 < (a − λ
λ1

)µ−1‖u±n ‖
2 ≤

∫
Ω
|u±n |

4dx. It follows from (2.11) and Lemma 2.3 that
∫

Ω
|u±|4dx ≥

(a − λ
λ1

)µ−1τ2 > 0. Hence, we conclude that u± , 0.
On the other hand, since {un} ⊂ M, it follows from weakly lower semicontinuity of norm that

a‖u±‖2 + b‖u‖2‖u+‖2 ≤ lim inf
n→∞

[a‖u±n ‖
2 + b‖un‖

2‖u+
n ‖

2] = λ

∫
Ω

|u±|2dx + µ

∫
Ω

|u±|4dx,

that is, 〈Φ′(u), u±〉 ≤ 0. So, it follows from (2.10) that u ∈ N .
According to Lemma 2.2, there exists 0 < su, tu ≤ 1 such that u := suu+ + tuu− ∈ M. Thanks

to (2.11) and the norm in H1
0(Ω) is lower semicontinuous, we have that

m ≤ Φ(suu+ + tuu−) = Φ(suu+ + tuu−) −
1
4
〈Φ(suu+ + tuu−), suu+ + tuu−〉

=
s2

u

4
Φλ(u+) +

t2
u

4
Φλ(u−) ≤

1
4

Φλ(u+) +
1
4

Φλ(u−) =
a
4
‖u‖2 −

λ

4
|u|22 ≤ lim inf

n→∞
[
a
4
‖un‖

2 −
λ

4
|un|

2
2]

= lim inf
n→∞

[Φ(un) −
1
4
〈Φ′(un), un〉] = m.

Therefore, su = tu = 1, and m is achieved by u = u ∈ M. �
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3. The proof of main results

According to Lemma 2.4, we only prove that the minimizer u for m satisfies Φ′(u) = 0.

Proof of Theorem 1.1.

Proof. Thanks to u ∈ M, 〈Φ′(u), u±〉 = 0. It follows from Lemma 2.2 that, for (s, t) ∈ (R+ ×R+)\(1, 1),

Φ(su+ + tu−) < Φ(u+ + u−) = m. (3.1)

Arguing indirectly, we suppose Φ′(u) , 0. Then, it follows from Φ ∈ C1 that there are δ > 0 and θ > 0
such that ‖Φ′(v)‖ ≥ θ, for all ‖v − u‖ ≤ 3δ.

Since Φλ(u±) > 0, there exists σ ∈ (0, 1) small enough such that mint∈[1−σ,1+σ] Φλ(tu±) > 0. Denote
Π := (1 − σ, 1 + σ) × (1 − σ, 1 + σ) and ψ(s, t) = su+ + tu−, (s, t) ∈ Π. It follows from (3.1) that

m0 := max
∂Π

Φ ◦ ψ < m. (3.2)

Let ε := min{(m − m0)/3, θδ/8} and S δ := B(u, δ), it follows from Lemma 2.3 in [34] that there is
γ ∈ C([0, 1] × H1

0(Ω),H1
0(Ω)) satisfying

(a) γ(α, v) = v if α = 0 or v < Φ−1([m − 2ε,m + 2ε] ∩ S 2δ);

(b) Φ(γ(α, v)) < m for all v ∈ S δ with Φ(v) ≤ m and α ∈ (0, 1];

(c) Φ(γ(α, v)) ≤ Φ(v) for all v ∈ H1
0(Ω) and α ∈ [0, 1].

We claim that

max
(s,t)∈Π

Φ(γ(α, ψ(s, t))) < m,∀α ∈ (0, 1]. (3.3)

Thanks to (b), we have that max{(s,t)∈Π:ψ(s,t)∈S δ}Φ(γ(α, ψ(s, t))) < m,∀α ∈ (0, 1]. On the other hand, it
follows from (c) that

max
{(s,t)∈Π:ψ(s,t)<S δ}

Φ(γ(α, ψ(s, t))) ≤ max
{(s,t)∈Π:ψ(s,t)<S δ}

Φ(ψ(s, t)) < m,∀α ∈ [0, 1].

So, (3.3) can be concluded.
Since mint∈[1−σ,1+σ] Φλ(tu±) > 0, it follows from the continuity of γ and Φλ that there is α0 ∈ (0, 1)

such that

Φλ(γ±(α0, ψ(s, t))) > 0,∀(s, t) ∈ Π. (3.4)

Next, we prove that γ(α0, ψ(Π)) ∩M , ∅. Let χ(s, t) := γ(α0, ψ(s, t)) and

Ψ0(s, t) := (〈Φ′(ψ(s, t)), su+〉, 〈Φ′(ψ(s, t)), tu−〉) := (ϕ1
u(s, t), ϕ2

u(s, t)),

Ψ1(s, t) := (〈Φ′(χ(s, t)), (χ(s, t))
+

〉, 〈Φ′(χ(s, t)), (χ(s, t))
−

〉).
Let

Q =

 ∂ϕ1
u(s,t)
∂s |(1,1)

∂ϕ2
u(s,t)
∂s |(1,1)

∂ϕ1
u(s,t)
∂t |(1,1)

∂ϕ2
u(s,t)
∂t |(1,1)

 .
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From u ∈ M, we can obtain that det Q > 0. Since Ψ0(s, t) is a C1 function and (1, 1) is the unique
isolated zero point of Ψ0, by using the degree theory, we deduce that deg(Ψ0,Π, 0) = 1. By m0 < m−2ε
and (a), we have that γ(α, ψ(s, t)) = ψ(s, t),∀(s, t) ∈ ∂Π, α ∈ [0, 1]. So, we conclude that Ψ0(s, t) =

Ψ1(s, t) on ∂Π. By degree theory, we have deg(Ψ1,Π, 0) = 1, which shows that Ψ1(s0, t0) = 0 for some
(s0, t0) ∈ Π. According to (3.4), we obtain χ(s0, t0) = γ(α0, ψ(s0, t0)) ∈ M, that is, we obtain that
γ(α0, ψ(Π)) ∩M , ∅. Thanks to (3.3), we conclude a contradiction. So, we obtain desire result. �

4. Conclusions

In this paper, by the minimization argument on the nodal Nehari manifold and the quantitative
deformation lemma, we discussed the existence of least energy sign-changing solution for a class of
Kirchhoff equation on bounded domains. Our result is complementary to the results by Zhong and
Tang obtained in [39].
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