

AIMS Mathematics, 7(5): 8879–8890. DOI: 10.3934/math.2022495 Received: 05 December 2021 Revised: 18 February 2022 Accepted: 23 February 2022 Published: 04 March 2022

http://www.aimspress.com/journal/Math

Research article

Least energy sign-changing solutions of Kirchhoff equation on bounded domains

Xia Li, Wen Guan and Da-Bin Wang*

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China

* Correspondence: Email: wangdb96@163.com; Tel: +8613919957403.

Abstract: We deal with sign-changing solutions for the Kirchhoff equation

$$\begin{cases} -(a+b\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u + \mu|u|^{2}u, \ x \in \Omega, \\ u = 0, \ x \in \partial\Omega, \end{cases}$$

where a, b > 0 and $\lambda, \mu \in \mathbb{R}$ being parameters, $\Omega \subset \mathbb{R}^3$ is a bounded domain with smooth boundary $\partial \Omega$. Combining Nehari manifold method with the quantitative deformation lemma, we prove that there exists $\mu^* > 0$ such that above problem has at least a least energy sign-changing (or nodal) solution if $\lambda < a\lambda_1$ and $\mu > \mu^*$, where $\lambda_1 > 0$ is the first eigenvalue of $(-\Delta u, H_0^1(\Omega))$. It is noticed that the nonlinearity $\lambda u + \mu |u|^2 u$ fails to satisfy super-linear near zero and super-three-linear near infinity, respectively.

Keywords: Kirchhoff equation; nonlocal term; variation methods; sign-changing solutions **Mathematics Subject Classification:** 35J60, 35J20

1. Introduction and main results

In this article, we are concerned with sign-changing solutions for the Kirchhoff equation

$$\begin{cases} -(a+b\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u + \mu|u|^{2}u, \ x \in \Omega,\\ u = 0, \ x \in \partial\Omega, \end{cases}$$
(1.1)

where a, b > 0 and $\lambda, \mu \in \mathbb{R}$ being parameters, $\Omega \subset \mathbb{R}^3$ is a bounded domain with smooth boundary $\partial \Omega$. Problem (1.1) comes from the following general Kirchhoff equation

$$-(a+b\int_{\Omega}|\nabla u|^{2}dx)\Delta u = f(x,u), \qquad (1.2)$$

which is related to the following stationary analogue of the equation of Kirchhoff type

$$u_{tt} - (a+b\int_{\Omega} |\nabla u|^2 dx) \Delta u = f(x,u).$$
(1.3)

It is noticed that, as a generalization of the well-known D'Alembert wave equation for free vibration of elastic strings, Kirchhoff firstly introduced Eq (1.3) in paper [13]. More backgrounds about Kirchhoff type problems, we refer the readers to [24]. Since the pioneer work of Lions [19], there are many results for Kirchhoff type problems. On the one hand, we shall recall some results about the perturbed problem. For example, He and Zou [10] considered the Kirchhoff-type problem

$$-\left(\varepsilon^{2}a + \varepsilon b \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx\right) \Delta u + V(x)u = f(u) \text{ in } \mathbb{R}^{3}, \tag{1.4}$$

where $\varepsilon > 0$ is a parameter, V > 0 is a continuous function and $f(u) \sim |u|^{p-2}u$ (4 Combining Ljusternik-Schnirelmann theory and minimax methods, they proved the multiplicity of positive solutions, which concentrate on the minima of V(x) as $\varepsilon \to 0$ while vanishing elsewhere. Later, Wang et al. [32] extended the results obtained in [10] to the critical case, i.e., $f(u) \sim \lambda |u|^{p-2}u + |u|^4 u$ (4 < p < 6). In [6], Figueiredo et al. considered the following Kirchhoff-type equation

$$-\varepsilon^2 M(\varepsilon^{2-N} \int_{\mathbb{R}^N} |\nabla u|^2 dx) \Delta u + V(x)u = f(u) \text{ in } \mathbb{R}^N,$$
(1.5)

where $N \ge 1$, M and V are continuous functions, the authors studied the existence and concentration behaviors of positive solutions to Kirchhoff type Eq (1.5). In [15], Luo et al. considered the Kirchhoff problem

$$-\left(\varepsilon^{2}a + \varepsilon b \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx\right) \Delta u + V(x)u = u^{p}, \quad u > 0 \text{ in } \mathbb{R}^{3}, \tag{1.6}$$

where 1 . By Lyapunov-Schmidt reduction method, under some mild assumptions on the function*V* $, the authors obtained multi-peak solutions for <math>\varepsilon > 0$ sufficiently small. On the other hand, we cit some results about the non perturbed problem. For example, Li et al. [18] considered the following Kirchhoff type equation

$$[a + \lambda \int_{\mathbb{R}^N} |\nabla u|^2 dx + \lambda b \int_{\mathbb{R}^N} u^2 dx][-\Delta u + bu] = f(u), \text{ in } \mathbb{R}^N,$$
(1.7)

where $N \ge 3$, and *a*, *b* are positive constants, $\lambda \ge 0$ is a parameter. Without usual compactness conditions, they proved the existence of a positive solution to Kirchhoff type Eq (1.7). In [16], by using a monotonicity trick and a new version of global compactness lemma, Li and Ye had proved that (1.4) had a ground state solution in the case $\varepsilon = 1$ and $f(x, u) = |u|^{p-1}u$ with 2 . By using variationalmethods and Schwartz symmetric arrangement, Guo [9] generalized the result obtained in [16] tothe Kirchhoff-type problem with general nonlinearity. Later, by introducing some new tricks, Tang and $Chen [29] proved that the problem (1.4) with <math>\varepsilon = 1$ had a ground state solution of Nehari-Pohozaev type and a least energy solution under some mild assumptions on V and f. In [35], Xie et al. investigated bound state solutions for small linear perturbations of Kirchhoff type problems with critical exponent. In [11], Huang et al. studied the Brezis-Nirenberg problem to a class of Kirchhoff type problem with critical Sobolev exponent on bounded domain in \mathbb{R}^4 . In [21], using variational methods, Maia proved

the existence of a weak solution for a class of p(x)-Choquard equations with upper critical growth. Furthermore, in [21], the author also obtained a multiplicity of solutions for a class of p(x)-Choquard equations with a nonlocal and non-degenerate Kirchhoff term by using truncation arguments and Krasno-selskii's genus. Very recently, Vetro [30] considered the following nonlinear p(x)-Kirchhoff type problem

$$- \Delta_{p(x)}^{K} u(x) = f(x, u(x), \nabla u(x)) \text{ in } \Omega, \ u|_{\partial\Omega} = 0,$$
(1.8)

where $\triangle_{p(x)}^{K} u(x) = (a_p - b_p \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx) \operatorname{div}(|\nabla u|^{p(x)-2} \nabla u)$. The existence of two different notions of solutions is discussed in [30] with respect to a Galerkin approximation method, jointly with the theory of pseudomonotone operators.

In recent years, many authors also pay their attention to find sign-changing solutions to Kirchhoff type equations. For example, in [23, 38], Zhang, Perera and Mao obtained the existence of sign-changing solution of problem (1.2) by using the method of invariant sets of descent flow. Via variational methods and invariant sets of descent flow, Mao and Luan [22] obtained existence of signed and sign-changing solutions for problem (1.2) with asymptotically 3-linear bounded nonlinearity. In [7], Figueiredo and Nascimento considered the following Kirchhoff equation

$$\begin{cases} -M(\int_{\Omega} |\nabla u|^2 dx) \Delta u = f(u), \quad x \in \Omega, \\ u = 0, \quad x \in \partial \Omega, \end{cases}$$
(1.9)

where Ω is a bounded domain in \mathbb{R}^3 and $M \in C^1$. Using minimization argument together with quantitative deformation lemma, authors studied the existence of sign-changing solution for Eq (1.9). Later, Figueiredo and Santos Júnior [8] extended the results obtained in [7] to the unbounded domains. In [26], together with constraint variational methods and quantitative deformation lemma, Shuai studied the existence and asymptotic behavior of least energy sign-changing solution to problem (1.2). It is noticed that Ye [36] also obtained some results similar to paper [26]. Based on variational methods, Lu [20] obtained the ground states and least energy sign-changing solutions for problem (1.2). In [28], without the usual Nehari-type monotonicity condition on f, Tang and Cheng improved and generalized results obtained in [26].

In [4], Deng, Peng and Shuai considered the following Kirchhoff problem

$$-(a+b\int_{\mathbb{R}^3} |\nabla u|^2 dx) \Delta u + V(x)u = f(x,u), \text{ in } \mathbb{R}^3.$$
(1.10)

When V(x) = V(|x|) and f(x, u) = f(|x|, u), by using a Nehari manifold and gluing solution pieces together, they obtained the existence of a sign-changing solution which changes signs exactly k times for any $k \in \mathbb{N}$. In [14], Li et al. investigated the existence and the concentration of sign-changing solutions to a class of Kirchhoff-type systems with Hartree-type nonlinearity in \mathbb{R}^3 . When f(x, u) =f(u), with the help of variational methods in association with the deformation lemma and Miranda's theorem, Wang et al. [33] investigated sign-changing solution to problem (1.10) where the potential V is not necessarily radially symmetric. When the potential V(x) is a nonnegative continuous function with a potential well which possesses k disjoint bounded components, Deng and Shuai [5] obtained multiple sign-changing multi-bump solutions for problem (1.10). When the nonlinearity involved a combination of concave and convex terms, Shao and Mao [25] got the existence of infinitely many high-energy solutions for a class of Kirchhoff problem by using Fountain theorem. In [17], Li et al.

also considered the existence of sign-changing solution to problem (1.10) when f(x, u) = f(u). When f(x, u) = f(u) and f is odd, combining with Ljusternik-Schnirelmann theory and minimax methods, Sun et al. [27] obtained infinitely many sign-changing solutions for Kirchhoff problem (1.10). In [2], Cassani et al. considered the following Kirchhoff type equation

$$[1 + \lambda \int_{\mathbb{R}^3} |\nabla u|^2 + V(x)u^2 dx][-\Delta u + V(x)u] = f(u) \text{ in } \mathbb{R}^3.$$
(1.11)

The authors obtained that, for any $n \in \mathbb{N}$ there exists $\lambda_n > 0$ such that for any $\lambda \in (0, \lambda_n)$, problem (1.11) has at least *n* pairs of radially symmetric sign-changing solutions with positive energy. In [31], the last author of this paper investigated the existence and the energy property of least energy sign-changing solution to the following Kirchhoff problem with critical growth

$$\begin{cases} -(a+b\int_{\Omega}|\nabla u|^{2}dx)\Delta u = |u|^{4}u + \lambda f(x,u), \quad x \in \Omega, \\ u = 0, \quad x \in \partial\Omega, \end{cases}$$
(1.12)

where $\Omega \subset \mathbb{R}^3$ is a bounded domain with smooth boundary $\partial \Omega$. Subsequently, Zhang [37] generalized results obtained in [31] to a class of general Kirchhoff problem.

However, as far as we know, when studying least energy sign-changing solution to Kirchhoff equation, the nonlinearity always satisfies the growth conditions of super-linear near zero or super-three-linear near infinity except [3, 39]. In [3], when f satisfies asymptotically linear growth at infinity about u, Cheng and Tang obtained the existence and asymptotic behavior of least energy sign-changing solution for Eq (1.2) with bounded domain. It is notice that the results obtained in [3] still depends on the fact that f is super-linear near zero about u. Recently, Zhong and Tang [39] considered the Kirchhoff-type problem

$$\begin{cases} -(a+b\int_{\Omega} |\nabla u|^2 dx)\Delta u = \lambda u + |u|^2 u, \quad x \in \Omega, \\ u = 0, \quad x \in \partial\Omega, \end{cases}$$
(1.13)

where a, b > 0, $\lambda < a\lambda_1$, λ_1 is the principal eigenvalue of $(-\Delta, H_0^1(\Omega))$, and Ω is a smooth bounded domain in \mathbb{R}^3 , N = 1, 2, 3. By Nehari manifold argument, the authors proved that there exists $\wedge > 0$ such that the Eq (1.13) has at least one least energy sign-changing solution u_b for all $0 < b < \wedge$ and $\lambda < a\lambda_1$ and obtained that its energy is strictly larger than twice that of ground state solutions. Furthermore, they also studied the asymptotic behavior of u_b as $b \to 0$ and the nonexistence of signchanging solution for Eq (1.13). Obviously, the nonlinearity $\lambda u + |u|^2 u$ fails to satisfy super-linear near zero and super-three-linear near infinity, respectively. However, since their results strongly depends on the condition $0 < b < \wedge$, the methods used in [39] seem not valid for all b > 0.

In this paper, inspired by above works, we consider the existence of least energy sign-changing solution to Kirchhoff Eq (1.1) for all b > 0. Our method is closely related to the works in [1,12], where authors dealt with *p*-Laplacian equation and Schrödinger-Poisson system respectively.

Let $L^p(\Omega)$ be a Lebesgue space with the norm $|u|_p := (\int_{\Omega} |u|^p dx)^{\frac{1}{p}}, 1 \le p < \infty$ and $H_0^1(\Omega)$ be Sobolev space equipped with the inner product and norm

$$(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx, ||u|| = (u,u)^{\frac{1}{2}}.$$

AIMS Mathematics

Volume 7, Issue 5, 8879-8890.

Associated with Eq (1.1), the energy functional is defined by

$$\Phi(u) = \frac{a}{2} ||u||^2 - \frac{\lambda}{2} \int_{\Omega} |u|^2 dx + \frac{b}{4} ||u||^4 - \frac{\mu}{4} \int_{\Omega} |u|^4 dx = \frac{1}{2} \Phi_{\lambda}(u) + \frac{1}{4} \Phi_{\mu}(u), u \in H_0^1(\Omega),$$

where $\Phi_{\lambda}(u) = a||u||^2 - \lambda \int_{\Omega} |u|^2 dx$, $\Phi_{\mu}(u) = b||u||^4 - \mu \int_{\Omega} |u|^4 dx$. Moreover, $\Phi(u)$ belongs to C^1 , and

$$\langle \Phi'(u), v \rangle = a \int_{\Omega} \nabla u \cdot \nabla v dx - \lambda \int_{\Omega} uv dx + b ||u||^2 \int_{\Omega} \nabla u \cdot \nabla v dx - \mu \int_{\Omega} |u|^2 uv dx$$

for any $u, v \in H_0^1(\Omega)$.

Let $u^+ = \max\{u(x), 0\}, u^- = \min\{u(x), 0\}$, if $u \in H_0^1(\Omega)$ with $u^{\pm} \neq 0$ is a solution of problem (1.1), then we said that *u* is a sign-changing solution of Eq (1.1).

Let $\mathcal{M} = \{u \in H_0^1(\Omega), u^{\pm} \neq 0 \text{ and } \langle \Phi'(u), u^{\pm} \rangle = 0\}, m = \inf_{u \in \mathcal{M}} \Phi(u) \text{ and } \lambda_1 \text{ be the first eigenvalue of } u \in \mathcal{M}$

$$\begin{cases} -\Delta u = \lambda u, \text{ in } \Omega \\ u = 0, \text{ on } \partial \Omega. \end{cases}$$

In fact, $\lambda_1 = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\|u\|^2}{\|u\|_2^2}$. We remark that if $u \in H_0^1(\Omega)$ is a sign-changing solution of Eq (1.1), then

$$\langle \Phi'(u), u^{\pm} \rangle = \Phi_{\lambda}(u^{\pm}) + b ||u||^2 ||u^{\pm}||^2 - \mu \int_{\Omega} |u^{\pm}|^4 dx = 0.$$

Hence, it follows from $\lambda < a\lambda_1$ that $b||u||^2||u^{\pm}||^2 - \mu \int_{\Omega} |u^{\pm}|^4 dx = -\Phi_{\lambda}(u^{\pm}) < 0$, that is

$$\mu > \max\left\{\frac{b||u||^2||u^+||^2}{\int_{\Omega} |u^+|^4 dx}, \frac{b||u||^2||u^-||^2}{\int_{\Omega} |u^-|^4 dx}\right\}, \text{ for any } u \in \mathcal{M}.$$

On the other hand, if $\mu < \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \max\left\{\frac{b||u||^2||u^+||^2}{\int_{\Omega} |u^+|^4 dx}, \frac{b||u||^2||u^-||^2}{\int_{\Omega} |u^-|^4 dx}\right\}$, then, for any $u \in H_0^1(\Omega)$ with $u^{\pm} \neq 0$, we get

$$b||u||^2||u^+||^2 - \mu \int_{\Omega} |u^+|^4 dx \ge 0 \text{ or } b||u||^2||u^-||^2 - \mu \int_{\Omega} |u^-|^4 dx \ge 0.$$

So, it follows from $\Phi_{\lambda}(u^{\pm}) > 0$ that $\langle \Phi'(u), u^{+} \rangle \neq 0$ or $\langle \Phi'(u), u^{+} \rangle \neq 0$, that is $\mathcal{M} = \emptyset$. Hence, the Eq (1.1) has no sign-changing solution.

Let

$$\mu^* = \inf_{u \in H^1_0(\Omega) \setminus \{0\}} \left\{ \max\left\{ \frac{b ||u||^2 ||u^+||^2}{\int_{\Omega} |u^+|^4 dx}, \frac{b ||u||^2 ||u^-||^2}{\int_{\Omega} |u^-|^4 dx} \right\} \right\}.$$

Our result is the following theorem.

Theorem 1.1. If $\lambda < a\lambda_1$ and $\mu > \mu^*$, then the Eq (1.1) has a least energy sign-changing solution.

Remark 1.1. Although we obtain the existence of least energy sign-changing solution to Eq (1.1) for all b > 0, the parameter μ needs to be larger than one positive constant to achieve our goal. So, for all b > 0 and $\mu > 0$, we do not know whether Eq (1.1) has a least energy sign-changing solution or not.

2. Technical lemmas

For any $u \in H_0^1(\Omega)$ with $u^{\pm} \neq 0$, it is easy to see that

$$\Phi_{\lambda}(u) = \Phi_{\lambda}(u^{+}) + \Phi_{\lambda}(u^{-}), \qquad (2.1)$$

$$\Phi_{\mu}(u) = \Phi_{\mu}(u^{+}) + \Phi_{\mu}(u^{-}) + 2b||u^{+}||^{2}||u^{-}||^{2}, \qquad (2.2)$$

$$\Phi(u) = \Phi(u^{+}) + \Phi(u^{-}) + \frac{b}{2} ||u^{+}||^{2} ||u^{-}||^{2}, \qquad (2.3)$$

$$\langle \Phi'(u), u^{\pm} \rangle = \langle \Phi'(u^{\pm}), u^{\pm} \rangle + b ||u^{+}||^{2} ||u^{-}||^{2}.$$
 (2.4)

Denote

$$\mathcal{N} = \left\{ u \in H_0^1(\Omega), u^{\pm} \neq 0 : \Phi_{\mu}(u^{\pm}) + b ||u^{+}||^2 ||u^{-}||^2 < 0 \right\}$$
$$= \left\{ u \in H_0^1(\Omega), u^{\pm} \neq 0 : b ||u||^2 ||u^{\pm}||^2 - \mu \int_{\Omega} |u^{\pm}|^4 dx < 0 \right\}.$$
(2.5)

Lemma 2.1. If $\lambda < a\lambda_1$ and $\mu > \mu^*$, then $N \neq \emptyset$ and $\mathcal{M} \subset \mathcal{N}$.

Proof. Suppose that $\mu > \mu^*$, it follows from the definition of μ^* that there exists $v \in H_0^1(\Omega)$ with $v^{\pm} \neq 0$ such that

$$\mu > \max\left\{\frac{b\|v\|^2\|v^+\|^2}{\int_{\Omega} |v^+|^4 dx}, \frac{b\|v\|^2\|v^-\|^2}{\int_{\Omega} |v^-|^4 dx}\right\} \ge \mu^*.$$

So, $b||v||^2||v^{\pm}||^2 - \mu \int_{\Omega} |v^{\pm}|^4 dx < 0$, that is, $v \in \mathcal{N}$. Hence we obtain $\mathcal{N} \neq \emptyset$.

In the following, we prove $\mathcal{M} \subset \mathcal{N}$. For any $u \in \mathcal{M}$, then we have that

$$b||u||^{2}||u^{\pm}||^{2} - \mu \int_{\Omega} |u^{\pm}|^{4} dx = -\Phi_{\lambda}(u^{\pm}).$$
(2.6)

Thanks to $\lambda < a\lambda_1$, we get $\Phi_{\lambda}(u^{\pm}) > 0$. Then, from (2.6), we conclude that $u \in \mathcal{N}$, that is $\mathcal{M} \subset \mathcal{N}$. \Box

Lemma 2.2. If $\lambda < a\lambda_1$ and $\mu > \mu^*$ hold, then for any $u \in N$, there is a unique pair (s_u, t_u) with $s_u, t_u > 0$ such that $s_u u^+ + t_u u^- \in M$ and $\Phi(s_u u^+ + t_u u^-) = \max_{s,t>0} \Phi(su^+ + tu^-)$. Furthermore, if $\langle \Phi'(u), u^{\pm} \rangle \leq 0$, then we have $0 < s_u, t_u \leq 1$.

Proof. For any $u \in N$, it follows from (2.4) that $su^+ + tu^- \in M$ if and only if the positive pair (s, t) satisfies

$$\begin{cases} \langle \Phi'(su^+ + tu^-), su^+ \rangle = s^2 \Phi_{\lambda}(u^+) + s^4 \Phi_{\mu}(u^+) + bs^2 t^2 ||u^+||^2 ||u^-||^2 = 0, \\ \langle \Phi'(tu^+ + tu^-), tu^- \rangle = t^2 \Phi_{\lambda}(u^-) + t^4 \Phi_{\mu}(u^-) + bs^2 t^2 ||u^+||^2 ||u^-||^2 = 0. \end{cases}$$

That is

$$\begin{cases} s^{2} \Phi_{\mu}(u^{+}) + bt^{2} ||u^{+}||^{2} ||u^{-}||^{2} = -\Phi_{\lambda}(u^{+}), \\ t^{2} \Phi_{\mu}(u^{-}) + bs^{2} ||u^{+}||^{2} ||u^{-}||^{2} = -\Phi_{\lambda}(u^{-}), \end{cases}$$
(2.7)

AIMS Mathematics

Volume 7, Issue 5, 8879-8890.

which is equivalent to

$$\begin{bmatrix} \Phi_{\mu}(u^{+}) & b||u^{+}||^{2}||u^{-}||^{2} \\ b||u^{+}||^{2}||u^{-}||^{2} & \Phi_{\mu}(u^{-}) \end{bmatrix} \begin{bmatrix} s^{2} \\ t^{2} \end{bmatrix} = \begin{bmatrix} -\Phi_{\lambda}(u^{+}) \\ -\Phi_{\lambda}(u^{-}) \end{bmatrix}.$$

Then, since $u \in \mathcal{N}$, one has

$$\left|\begin{array}{cc} \Phi_{\mu}(u^{+}) & b||u^{+}||^{2}||u^{-}||^{2} \\ b||u^{+}||^{2}||u^{-}||^{2} & \Phi_{\mu}(u^{-}) \end{array}\right| = \Phi_{\mu}(u^{+})\Phi_{\mu}(u^{-}) - b^{2}||u^{+}||^{4}||u^{-}||^{4} > 0.$$

Hence, thanks to $\Phi_{\lambda}(u^{\pm}) > 0$, Eq (2.7) has a unique solution (s_u, t_u) such that $s_u, t_u > 0$.

Fixed $u \in \mathcal{N}$, define $\phi_u : (0, \infty) \times (0, \infty) \to \mathbb{R}$ by $\phi_u(s, t) = \Phi(su^+ + tu^-)$. Now we prove $\phi_u(s_u, t_u) = \Phi(s_uu^+ + t_uu^-) = \max_{s,t>0} \phi_u(s, t)$, where (s_u, t_u) is the unique solution of Eq (2.7). It follows that

$$\nabla \phi_u(s,t) = \left(\frac{\partial \phi_u}{\partial s}(s,t), \frac{\partial \phi_u}{\partial t}(s,t)\right)$$

= $\left(\langle \Phi'(su^+ + tu^-), u^+ \rangle, \langle \Phi'(su^+ + tu^-), u^- \rangle\right)$
= $\left(\frac{1}{s}\langle \Phi'(su^+ + tu^-), su^+ \rangle, \frac{1}{t}\langle \Phi'(su^+ + tu^-), tu^- \rangle\right),$

which shows that a positive pair (s, t) is a critical point of ϕ_u if and only if $su^+ + tu^- \in \mathcal{M}$. So, since (s_u, t_u) is the unique solution of Eq (2.7), we deduce that (s_u, t_u) is a unique critical point of the function ϕ_u .

Since $u \in \mathcal{N}$, we have

$$\begin{cases} \frac{\partial^2 \phi_u}{\partial s^2}(s_u, t_u) = \Phi_{\lambda}(u^+) + 3s_u^2 \Phi_{\mu}(u^+) + bt_u^2 ||u^+||^2 ||u^-||^2 = 2s_u^2 \Phi_{\mu}(u^+) < 0, \\ \frac{\partial^2 \phi_u}{\partial t^2}(s_u, t_u) = \Phi_{\lambda}(u^-) + 3t_u^2 \Phi_{\mu}(u^-) + bs_u^2 ||u^+||^2 ||u^-||^2 = 2t_u^2 \Phi_{\mu}(u^-) < 0, \\ \frac{\partial^2 \phi_u}{\partial s \partial t}(s_u, t_u) = \frac{\partial^2 \phi_u}{\partial t \partial s}(s_u, t_u) = 2bs_u t_u ||u^+||^2 ||u^-||^2. \end{cases}$$
(2.8)

Then we get

$$\left|\begin{array}{c} \frac{\partial^2 \phi_u}{\partial s^2}(s_u, t_u) & \frac{\partial^2 \phi_u}{\partial s \partial t}(s_u, t_u) \\ \frac{\partial^2 \phi_u}{\partial t \partial s}(s_u, t_u) & \frac{\partial^2 \phi_u}{\partial t^2}(s_u, t_u) \end{array}\right| = 4s_u^2 t_u^2 [\Phi_\mu(u^+)\Phi_\mu(u^-) - b^2 ||u^+||^4 ||u^-||^4] > 0.$$

That is, the Hessian matrix of ϕ_u is negative definite at (s_u, t_u) . So, we get $\phi_u(s_u, t_u) = \max_{s,t>0} \phi_u(s, t)$. Suppose $s_u \ge t_u > 0$. By $s_u u^+ + t_u u^- \in \mathcal{M}$, one has

$$\begin{cases} s_u^2 \Phi_{\mu}(u^+) + bt_u^2 ||u^+||^2 ||u^-||^2 = -\Phi_{\lambda}(u^+), \\ t_u^2 \Phi_{\mu}(u^-) + bs_u^2 ||u^+||^2 ||u^-||^2 = -\Phi_{\lambda}(u^-). \end{cases}$$
(2.9)

On the other hand, by $\langle \Phi'(u), u^{\pm} \rangle \leq 0$, one has

$$b||u||^{2}||u^{\pm}||^{2} - \mu \int_{\Omega} |u^{\pm}|^{4} dx \le -\Phi_{\lambda}(u^{\pm}) < 0.$$
(2.10)

According to (2.9) and (2.10), we have that

$$-s_{u}^{2}\Phi_{\lambda}(u^{+}) \geq s_{u}^{2}[b||u||^{2}||u^{+}||^{2} - \mu \int_{\Omega} |u^{+}|^{4}dx] = s_{u}^{2}[\Phi_{\mu}(u^{+}) + b||u^{+}||^{2}||u^{-}||^{2}]$$
$$\geq s_{u}^{2}\Phi_{\mu}(u^{+}) + bt_{u}^{2}||u^{+}||^{2}||u^{-}||^{2} = -\Phi_{\lambda}(u^{+}).$$

Thanks to $\Phi_{\lambda}(u^+) > 0$, we conclude that $s_u \le 1$. Thus, we have that $0 < s_u, t_u \le 1$.

AIMS Mathematics

Volume 7, Issue 5, 8879-8890.

Lemma 2.3. If $\lambda < a\lambda_1$ and $\mu > \mu^*$, then there is $\tau > 0$ satisfying $||u^{\pm}|| \ge \tau$ for all $u \in \mathcal{M}$. *Proof.* For any $u \in \mathcal{M}$, by Sobolev inequalities we have

$$\begin{split} (a - \frac{\lambda}{\lambda_1}) ||u^{\pm}||^2 &\leq a ||u^{\pm}||^2 - \lambda \int_{\Omega} |u^{\pm}|^2 dx \leq \Phi_{\lambda}(u^{\pm}) + b ||u||^2 ||u^{\pm}||^2 \\ &= \mu \int_{\Omega} |u^{\pm}|^4 dx \leq \mu \alpha_4^4 ||u^{\pm}||^4, \end{split}$$

where α_4 is positive constant such that $|u|_4 \le \alpha_4 ||u||, \forall u \in H_0^1(\Omega)$. So, $||u^{\pm}|| \ge \sqrt{\frac{(a-\frac{\lambda}{\lambda_1})}{\mu \alpha_4^4}} := \tau > 0$. \Box

Lemma 2.4. If $\lambda < a\lambda_1$ and $\mu > \mu^*$, then $m = \inf_{u \in \mathcal{M}} \Phi(u) > 0$ is achieved.

Proof. Firstly, we assert that m > 0. In fact, for any $u \in \mathcal{M}$, by Lemma 2.3 we have

$$\Phi(u) - \frac{1}{4} \langle \Phi'(u), u \rangle = \frac{1}{4} \Phi_{\lambda}(u) \ge \frac{1}{4} (a - \frac{\lambda}{\lambda_1}) ||u||^2 \ge \frac{1}{4} (a - \frac{\lambda}{\lambda_1}) \tau^2 > 0,$$

which implies m > 0.

In the following, we prove that *m* is achieved. Let $\{u_n\} \subset \mathcal{M}$ such that $\lim_{n\to\infty} \Phi(u_n) = m$. It is easy to see that $\{u_n\}$ is bounded in $H_0^1(\Omega)$. Then, there is $u \in H_0^1(\Omega)$ such that $u_n \rightharpoonup u$. Furthermore, for all $p \in [1, 6)$, one has

$$u_n \to u \text{ in } L^p(\Omega), u_n(x) \to u(x) \text{ a.e. } x \in \Omega.$$
$$u_n^{\pm} \to u^{\pm} \text{ in } H_0^1(\Omega), u_n^{\pm} \to u^{\pm} \text{ in } L^p(\Omega), u_n^{\pm}(x) \to u^{\pm}(x) \text{ a.e. } x \in \Omega.$$
(2.11)

By $\{u_n\} \subset \mathcal{M}$, we have

$$a||u_{n}^{\pm}||^{2} \leq a||u_{n}^{\pm}||^{2} + b||u_{n}||^{2}||u_{n}^{\pm}||^{2} = \lambda \int_{\Omega} |u_{n}^{\pm}|^{2}dx + \mu \int_{\Omega} |u_{n}^{\pm}|^{4}dx \leq \frac{\lambda}{\lambda_{1}}||u_{n}^{\pm}||^{2} + \mu \int_{\Omega} |u_{n}^{\pm}|^{4}dx.$$

So, $0 < (a - \frac{\lambda}{\lambda_1})\mu^{-1}||u_n^{\pm}||^2 \leq \int_{\Omega} |u_n^{\pm}|^4 dx$. It follows from (2.11) and Lemma 2.3 that $\int_{\Omega} |u^{\pm}|^4 dx \geq (a - \frac{\lambda}{\lambda_1})\mu^{-1}\tau^2 > 0$. Hence, we conclude that $u^{\pm} \neq 0$.

On the other hand, since $\{u_n\} \subset \mathcal{M}$, it follows from weakly lower semicontinuity of norm that

$$a||u^{\pm}||^{2} + b||u||^{2}||u^{\pm}||^{2} \leq \liminf_{n \to \infty} [a||u_{n}^{\pm}||^{2} + b||u_{n}||^{2}||u_{n}^{\pm}||^{2}] = \lambda \int_{\Omega} |u^{\pm}|^{2} dx + \mu \int_{\Omega} |u^{\pm}|^{4} dx,$$

that is, $\langle \Phi'(u), u^{\pm} \rangle \leq 0$. So, it follows from (2.10) that $u \in \mathcal{N}$.

According to Lemma 2.2, there exists $0 < s_u, t_u \le 1$ such that $\overline{u} := s_u u^+ + t_u u^- \in \mathcal{M}$. Thanks to (2.11) and the norm in $H_0^1(\Omega)$ is lower semicontinuous, we have that

$$\begin{split} m &\leq \Phi(s_u u^+ + t_u u^-) = \Phi(s_u u^+ + t_u u^-) - \frac{1}{4} \langle \Phi(s_u u^+ + t_u u^-), s_u u^+ + t_u u^- \rangle \\ &= \frac{s_u^2}{4} \Phi_\lambda(u^+) + \frac{t_u^2}{4} \Phi_\lambda(u^-) \leq \frac{1}{4} \Phi_\lambda(u^+) + \frac{1}{4} \Phi_\lambda(u^-) = \frac{a}{4} ||u||^2 - \frac{\lambda}{4} |u|_2^2 \leq \liminf_{n \to \infty} [\frac{a}{4} ||u_n||^2 - \frac{\lambda}{4} |u_n|_2^2] \\ &= \liminf_{n \to \infty} [\Phi(u_n) - \frac{1}{4} \langle \Phi'(u_n), u_n \rangle] = m. \end{split}$$

Therefore, $s_u = t_u = 1$, and *m* is achieved by $\overline{u} = u \in \mathcal{M}$.

AIMS Mathematics

Volume 7, Issue 5, 8879-8890.

3. The proof of main results

According to Lemma 2.4, we only prove that the minimizer *u* for *m* satisfies $\Phi'(u) = 0$.

Proof of Theorem 1.1.

Proof. Thanks to $u \in \mathcal{M}$, $\langle \Phi'(u), u^{\pm} \rangle = 0$. It follows from Lemma 2.2 that, for $(s, t) \in (\mathbb{R}_+ \times \mathbb{R}_+) \setminus (1, 1)$,

$$\Phi(su^{+} + tu^{-}) < \Phi(u^{+} + u^{-}) = m.$$
(3.1)

Arguing indirectly, we suppose $\Phi'(u) \neq 0$. Then, it follows from $\Phi \in C^1$ that there are $\delta > 0$ and $\theta > 0$ such that $||\Phi'(v)|| \ge \theta$, for all $||v - u|| \le 3\delta$.

Since $\Phi_{\lambda}(u^{\pm}) > 0$, there exists $\sigma \in (0, 1)$ small enough such that $\min_{t \in [1-\sigma, 1+\sigma]} \Phi_{\lambda}(tu^{\pm}) > 0$. Denote $\Pi := (1 - \sigma, 1 + \sigma) \times (1 - \sigma, 1 + \sigma)$ and $\psi(s, t) = su^{+} + tu^{-}$, $(s, t) \in \Pi$. It follows from (3.1) that

$$m_0 := \max_{\partial \Pi} \Phi \circ \psi < m. \tag{3.2}$$

Let $\varepsilon := \min\{(m - m_0)/3, \theta \delta/8\}$ and $S_{\delta} := B(u, \delta)$, it follows from Lemma 2.3 in [34] that there is $\gamma \in C([0, 1] \times H_0^1(\Omega), H_0^1(\Omega))$ satisfying

- (a) $\gamma(\alpha, v) = v$ if $\alpha = 0$ or $v \notin \Phi^{-1}([m 2\varepsilon, m + 2\varepsilon] \cap S_{2\delta})$;
- (*b*) $\Phi(\gamma(\alpha, v)) < m$ for all $v \in S_{\delta}$ with $\Phi(v) \le m$ and $\alpha \in (0, 1]$;
- (c) $\Phi(\gamma(\alpha, v)) \le \Phi(v)$ for all $v \in H_0^1(\Omega)$ and $\alpha \in [0, 1]$. We claim that

$$\max_{(s,t)\in\Pi} \Phi(\gamma(\alpha,\psi(s,t))) < m, \forall \alpha \in (0,1].$$
(3.3)

Thanks to (*b*), we have that $\max_{\{(s,t)\in\Pi:\psi(s,t)\in S_{\delta}\}} \Phi(\gamma(\alpha,\psi(s,t))) < m, \forall \alpha \in (0,1]$. On the other hand, it follows from (*c*) that

$$\max_{\{(s,t)\in\Pi:\psi(s,t)\notin S_{\delta}\}} \Phi(\gamma(\alpha,\psi(s,t))) \leq \max_{\{(s,t)\in\Pi:\psi(s,t)\notin S_{\delta}\}} \Phi(\psi(s,t)) < m, \forall \alpha \in [0,1].$$

So, (3.3) can be concluded.

Since $\min_{t \in [1-\sigma, 1+\sigma]} \Phi_{\lambda}(tu^{\pm}) > 0$, it follows from the continuity of γ and Φ_{λ} that there is $\alpha_0 \in (0, 1)$ such that

$$\Phi_{\lambda}(\gamma^{\pm}(\alpha_{0},\psi(s,t))) > 0, \forall (s,t) \in \Pi.$$
(3.4)

Next, we prove that $\gamma(\alpha_0, \psi(\Pi)) \cap \mathcal{M} \neq \emptyset$. Let $\chi(s, t) := \gamma(\alpha_0, \psi(s, t))$ and

$$\Psi_0(s,t) := (\langle \Phi'(\psi(s,t)), su^+ \rangle, \langle \Phi'(\psi(s,t)), tu^- \rangle) := (\varphi_u^1(s,t), \varphi_u^2(s,t)),$$

 $\Psi_1(s,t) := (\langle \Phi'(\chi(s,t)), (\chi(s,t))^* \rangle, \langle \Phi'(\chi(s,t)), (\chi(s,t))^- \rangle).$ Let

$$Q = \begin{bmatrix} \frac{\partial \varphi_u^1(s,t)}{\partial s} |_{(1,1)} & \frac{\partial \varphi_u^2(s,t)}{\partial s} |_{(1,1)} \\ \frac{\partial \varphi_u^1(s,t)}{\partial t} |_{(1,1)} & \frac{\partial \varphi_u^2(s,t)}{\partial t} |_{(1,1)} \end{bmatrix}.$$

AIMS Mathematics

Volume 7, Issue 5, 8879-8890.

From $u \in \mathcal{M}$, we can obtain that det Q > 0. Since $\Psi_0(s, t)$ is a C^1 function and (1, 1) is the unique isolated zero point of Ψ_0 , by using the degree theory, we deduce that deg $(\Psi_0, \Pi, 0) = 1$. By $m_0 < m - 2\varepsilon$ and (a), we have that $\gamma(\alpha, \psi(s, t)) = \psi(s, t), \forall (s, t) \in \partial \Pi, \alpha \in [0, 1]$. So, we conclude that $\Psi_0(s, t) = \Psi_1(s, t)$ on $\partial \Pi$. By degree theory, we have deg $(\Psi_1, \Pi, 0) = 1$, which shows that $\Psi_1(s_0, t_0) = 0$ for some $(s_0, t_0) \in \Pi$. According to (3.4), we obtain $\chi(s_0, t_0) = \gamma(\alpha_0, \psi(s_0, t_0)) \in \mathcal{M}$, that is, we obtain that $\gamma(\alpha_0, \psi(\Pi)) \cap \mathcal{M} \neq \emptyset$. Thanks to (3.3), we conclude a contradiction. So, we obtain desire result. \Box

4. Conclusions

In this paper, by the minimization argument on the nodal Nehari manifold and the quantitative deformation lemma, we discussed the existence of least energy sign-changing solution for a class of Kirchhoff equation on bounded domains. Our result is complementary to the results by Zhong and Tang obtained in [39].

Acknowledgments

This research was supported by the National Natural Science Foundation of China (11961043, 11561043).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

- 1. V. Bobkov, Least energy nodal solutions for elliptic equations with indefinite nonlinearity, *Electron*. *J. Qual. Theo.*, **2014** (2014), 1–15. http://dx.doi.org/10.14232/ejqtde.2014.1.56
- 2. D. Cassani, Z. Liu, C. Tarsi, J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, *Nonlinear Anal.*, **186** (2019), 145–161. http://dx.doi.org/10.1016/j.na.2019.01.025
- 3. B. Cheng, X. H. Tang, Ground state sign-changing solutions for asymptotically 3linear Kirchhoff-type problems, *Complex Var. Elliptic Equ.*, **62** (2017), 1093–1116. http://dx.doi.org/10.1080/17476933.2016.1270272
- Y. B. Deng, S. J. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in ℝ³, J. Funct. Anal., 269 (2015), 3500–3527. http://dx.doi.org/10.1016/j.jfa.2015.09.012
- 5. Y. B. Deng, W. Shuai, Sign-changing multi-bump solutions for Kirchhoff-type equations in ℝ³, *Discrete Cont. Dyn.-A*, **38** (2018), 3139–3168. http://dx.doi.org/10.3934/dcds.2018137
- G. M. Figueiredo, N. Ikoma, J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, *Arch. Ration. Mech. An.*, 213 (2014), 931– 979. http://dx.doi.org/10.1007/s00205-014-0747-8
- 7. G. M. Figueiredo, R. G. Nascimento, Existence of a nodal solution with minimal energy for a Kirchhoff equation, *Math. Nachr.*, **288** (2015), 48–60. http://dx.doi.org/10.1002/mana.201300195

- G. M. Figueiredo, J. R. Santos Júnior, Existence of a least energy nodal solution for a Schrödinger-Kirchhoff equation with potential vanishing at infinity, *J. Math. Phys.*, 56 (2015), 051506. http://dx.doi.org/10.1063/1.4921639
- 9. Z. Guo, Ground state for Kirchhoff equations without compact condition, *J. Differ. Equations*, **259** (2015), 2884–2902. http://dx.doi.org/10.1016/j.jde.2015.04.005
- 10. X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^3 , *J. Differ. Equations*, **252** (2012), 1813–1834. http://dx.doi.org/10.1016/j.jde.2011.08.035
- 11. Y. S. Huang, Z. Liu, Y. Wu, On Kirchhoff type equations with critical Sobolev exponent, *J. Math. Anal. Appl.*, **462** (2018), 483–504. http://dx.doi.org/10.1016/j.jmaa.2018.02.023
- 12. S. Khoutir, Least energy sign-changing solutions for a class of Schrödinger-Poisson system on bounded domains, *J. Math. Phys.*, **62** (2021), 031509. http://dx.doi.org/10.1063/5.0040741
- 13. G. Kirchhoff, Mechanik, Teubner: Leipzig, 1883.
- 14. F. Y. Li, C. Gao, X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 448 (2017), 60–80. http://dx.doi.org/10.1016/j.jmaa.2016.10.069
- 15. G. B. Li, P. Luo, S. J. Peng, C. H. Wang, C. L. Xiang, A singularly perturbed Kirchhoff problem revisited, *J. Differ. Equations*, **268** (2020), 541–589. http://dx.doi.org/10.1016/j.jde.2019.08.016
- 16. G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^3 , *J. Differ. Equations*, **257** (2014), 566–600. http://dx.doi.org/10.1016/j.jde.2014.04.011
- Q. Li, X. Du, Z. Zhao, Existence of sign-changing solutions for nonlocal Kirchhoff-Schrödinger-type equations in ℝ³, J. Math. Anal. Appl., 477 (2019), 174–186. http://dx.doi.org/10.1016/j.jmaa.2019.04.025
- 18. Y. H. Li, F. Y. Li, J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equations, 253 (2012), 2285–2294. http://dx.doi.org/10.1016/j.jde.2012.05.017
- 19. J. L. Lions, On some questions in boundary value problems of mathematical physics, *North-Holland Math. Stud.*, **30** (1978), 284–346. http://dx.doi.org/10.1016/s0304-0208(08)70870-3
- 20. S. Lu, Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, *J. Math. Anal. Appl.*, **432** (2015), 965–982. http://dx.doi.org/10.1016/j.jmaa.2015.07.033
- 21. B. B. V. Maia, On a class of p(x)-Choquard equations with sign-changing potential and upper critical growth, *Rend. Circ. Mat. Palermo.*, **70** (2021), 1175–1199. http://dx.doi.org/10.1007/s12215-020-00553-y
- 22. A. M. Mao, S. X. Luan, Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, *J. Math. Anal. Appl.*, **383** (2011), 239–243. http://dx.doi.org/10.1016/j.jmaa.2011.05.021
- 23. A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the *P.S.* condition, *Nonlinear Anal.*, **70** (2009), 1275–1287. http://dx.doi.org/ 10.1016/j.na.2008.02.011
- 24. D. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer., **32** (1960), 1529–1538. http://dx.doi.org/10.1121/1.1907948

- 25. M. Shao, A. Mao, Signed and sign-changing solutions of Kirchhoff type problems, *J. Fix. Point Theory A.*, **20** (2018), 1–20. http://dx.doi.org/10.1007/s11784-018-0486-9
- 26. W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, *J. Differ. Equations*, **259** (2015), 1256–1274. http://dx.doi.org/10.1016/j.jde.2015.02.040
- 27. J. Sun, L. Li, M. Cencelj, B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in ℝ³, *Nonlinear Anal.*, **186** (2019), 33–54. http://dx.doi.org/10.1016/j.na.2018.10.007
- 28. X. H. Tang, B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, *J. Differ. Equations*, **261** (2016), 2384–2402. http://dx.doi.org/10.1016/j.jde.2016.04.032
- X. H. Tang, S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, *Calc. Var. Partial Dif.*, 56 (2017), 1–25. http://dx.doi.org/10.1007/s00526-017-1214-9
- 30. C. Vetro, Variable exponent p(x)-Kirchhoff type problem with convection, *J. Math. Anal. Appl.*, **506** (2022), 125721. http://dx.doi.org/10.1016/J.JMAA.2021.125721
- 31. D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, *J. Math. Phys.*, **61** (2020), 011501. http://dx.doi.org/10.1063/1.5074163
- 32. J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, *J. Differ. Equations*, 253 (2012), 2314–2351. http://dx.doi.org/10.1016/j.jde.2012.05.023
- 33. L. Wang, B. L. Zhang, K. Cheng, Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in ℝ³, *J. Math. Anal. Appl.*, **466** (2018), 1545–1569. http://dx.doi.org/10.1016/j.jmaa.2018.06.071
- 34. M. Willem, Minimax Theorems, Bosten: Birkhäuser, 1996.
- 35. Q. L. Xie, S. W. Ma, X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, *J. Differ. Equations*, **261** (2016), 890–924. http://dx.doi.org/10.1016/j.jde.2016.03.028
- 36. H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in \mathbb{R}^N , *J. Math. Anal. Appl.*, **431** (2015), 935–954. http://dx.doi.org/10.1016/j.jmaa.2015.06.012
- 37. H. Zhang, Ground state and nodal solutions for critical Schrödinger-Kirchhoff-type Laplacian problems, *J. Fix. Point Theory A.*, **23** (2021), 1–16. http://dx.doi.org/10.1007/s11784-021-00870-4
- Sign changing solutions of Kirchhoff 38. Z. T. Zhang, K. Perera, type problems via invariant sets of descentow, J. Math. Anal. Appl., 317 (2006),456-463. http://dx.doi.org/10.1016/j.jmaa.2005.06.102
- 39. X. Zhong, C. L. Tang, The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem, *Commun. Pur. Appl. Anal.*, **16** (2017), 611–628. http://dx.doi.org/10.3934/CPAA.2017030

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)