Mathematics

Research article

Infinity norm upper bounds for the inverse of $S D D_{1}$ matrices

Xiaoyong Chen, Yating Li, Liang Liu and Yaqiang Wang*

School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China

* Correspondence: Email: yaqiangwang1004@163.com.

Abstract

In this paper, a new proof that $S D D_{1}$ matrices is a subclass of H-matrices is presented, and some properties of $S D D_{1}$ matrices are obtained. Based on the new proof, some upper bounds of the infinity norm of inverse of $S D D_{1}$ matrices and $S D D$ matrices are given. Moreover, we show that these new bounds of $S D D$ matrices are better than the well-known Varah bound for $S D D$ matrices in some cases. In addition, some numerical examples are given to illustrate the corresponding results.

Keywords: $S D D_{1}$ matrices; $S D D$ matrices; upper bound; positive diagonal matrix; infinity norm Mathematics Subject Classification (2010): 15A15, 15A48, 65F05, 65F40

1. Introduction

Let n be an integer number, $N=\{1,2, \ldots, n\}$, and $\mathbb{C}^{n \times n}$ be the set of all complex matrices of order n. A matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}(n \geq 2)$ is called a strictly diagonally dominant $(S D D)$ matrix if

$$
\left|a_{i i}\right|>r_{i}(A), i \in N,
$$

where

$$
r_{i}(A)=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, i \in N .
$$

It was shown that $S D D$ matrices is a subclass of H-matrices [1], where a matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}$ is an H-matrix if and only if there exists a positive diagonal matrix X such that $A X$ is an $S D D$ matrix [1].

In 2011, a new subclass of H-matrices was proposed by J. M. Peña, which is called $S D D_{1}$ matrices [2], and the definition of $S D D_{1}$ matrix is given as follows.
Definition 1. [2] A matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}(n \geq 2)$ is called an $S D D_{1}$ matrix if

$$
\left|a_{i i}\right|>p_{i}(A), i \in N_{1}(A),
$$

where

$$
p_{i}(A)=\sum_{j \in N_{1}(A) \backslash\{i\}}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|,
$$

$N_{1}(A)=\left\{i| | a_{i i} \mid \leq r_{i}(A)\right\}$ and $N_{2}(A)=\left\{i| | a_{i i} \mid>r_{i}(A)\right\}$.
In [2], J. M. Peña "proved" the following result:
Theorem 1. ([2 Theorem 2.3]) If a matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}$ is an $S D D_{1}$ matrix by rows, then it is an H-matrix.

From the definition of H-matrix and Theorem 1, given an $S D D_{1}$ matrix A, there exists a correspondingly positive diagonal matrix D, such that $A D$ is an $S D D$ matrix. The great interest of the constitution of positive diagonal matrix D was commented in the introduction in [2], and divided it into two cases, that is, the given $S D D_{1}$ matrix has a unique row i strictly diagonally dominant and at least two rows i and j strictly diagonally dominant, to constitute positive diagonal matrix. However, Dai in [3] found that the proof of Theorem 1 is incorrect, and a counter example was given as follows.
Example 1. [3] Let us consider $S D D_{1}$ matrices

$$
A=\left[\begin{array}{llll}
4 & 1 & 1 & 1 \\
0 & 3 & 0 & 1 \\
0 & 0 & 4 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

From the proof of Theorem 1 in [2], it is easy to obtain that $D=\operatorname{diag}\left\{\frac{3}{4}, \frac{1}{3}, \frac{1}{4}, 1\right\}$, however, $A D$ is not an $S D D$ matrix by rows.

Dai found that the proof of the case that the given $S D D_{1}$ matrix has at least two rows i and j strictly diagonally dominant is incorrect, and a correct proof of Theorem 1 was presented in [3]. The correct proof of Theorem 1 divides the case that $S D D_{1}$ matrices have at least two rows i and j strictly diagonally dominant into $S=\varnothing$ and $S \neq \varnothing$, where S is given as follows:

$$
S=\left\{i \mid a_{i j}=0, \text { for some } i \in N_{2}(A), \text { all } j \in N_{2}(A) \backslash\{i\}\right\} .
$$

However, when we use the correct proof to give the upper bound for the infinity norm of the inverse of $S D D_{1}$ matrices, the upper bound needs to be considered in different cases. Therefore, in order to avoid the difficult, we need to improve the proof of Theorem 1.

In addition, it was shown that upper bound of the infinity norm of inverse of a given nonsingular matrix has many potential applications in computational mathematics, such as for bounding the condition number and for proving the convergence of iteration methods. Moreover, upper bounds of the infinity norm of inverse for different classes of matrix have been widely studied, such as Nekrasov matrices [4-6], S-Nekrasov matrices [7, 8], $Q N$-Nekrasov matrices [8], $\left\{p_{1}, p_{2}\right\}$-Nekrasov matrices [9, 10], DZT matrices [11, 12], $S-S D D$ matrices [13], $S-S D D S$ matrices [14] and so on. However, the estimation of upper bounds of the infinity norm of inverse for $S D D_{1}$ matrices has never been reported.

In this paper, a new proof of Theorem 1 is given firstly. Secondly, some properties of $S D D_{1}$ matrices are presented. Finally, based on the new proof, some upper bounds of the infinity norm of inverse of $S D D_{1}$ matrices and $S D D$ matrices are obtained. Moreover, it is shown that these new bounds of $S D D$ matrices works better than the well-known Varah bound in some cases, and numerical examples are given to illustrate the corresponding results.

2. Main results

Firstly, some notations and a lemma are listed.
$D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ denotes a diagonal matrix.
$(A D)_{i j}$ denotes the entry (i, j) of matrix $A D$, and $(A D)_{i i}$ denotes the diagonal element of the i th row of matrix $A D$.
Lemma 1. If a matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}(n \geq 2)$ is an $S D D_{1}$ matrix if and only if $\left|a_{i i}\right|>p_{i}(A)$ for all $i \in N$.

Proof. From Definition 1, we get that $\left|a_{i i}\right|>p_{i}(A)$ for any $i \in N_{1}(A)$ and for any $i \in N_{2}(A)$,

$$
\begin{equation*}
\left|a_{i i}\right|>r_{i}(A) \geq \sum_{\left.j \in N_{1}(A) \backslash i\right\}}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\rangle} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|=p_{i}(A), \tag{2.1}
\end{equation*}
$$

thus, we obtain that a matrix A is an $S D D_{1}$ matrix if and only if $\left|a_{i i}\right|>p_{i}(A)$ for all $i \in N$.
Next, a new proof of Theorem 1 is given as follows.
Proof. It is sufficient to prove that each $S D D_{1}$ matrix A is an H-matrix. In order to do that, let us define the diagonal matrix as $D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$, where

$$
d_{j}= \begin{cases}1 & , j \in N_{1}(A), \tag{2.2}\\ \frac{p_{j}(A)}{\left|a_{j j}\right|}+\varepsilon & , j \in N_{2}(A),\end{cases}
$$

and

$$
\begin{equation*}
0<\varepsilon<\min _{i \in N} \frac{\left|a_{i i}\right|-p_{i}(A)}{\sum_{j \in N_{2}(A) \backslash\{i\}}\left|a_{i j}\right|}, \tag{2.3}
\end{equation*}
$$

if $\sum_{j \in N_{2}(A) \backslash i j}\left|a_{i j}\right|=0$, then the corresponding fraction is defined to be α.
Since matrix A is an $S D D_{1}$ matrix, D is a positive diagonal matrix.
In the following, we prove that $A D$ is an $S D D$ matrix, and divided it into two cases.
Case 1: for any $i \in N_{1}(A)$, it is easy to obtain that $\left|(A D)_{i i}\right|=\left|a_{i i}\right|$, and

$$
\begin{aligned}
r_{i}(A D)=\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right| d_{j} & =\sum_{j \in N_{1}(A) \backslash\{i\}}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\rangle}\left(\frac{p_{j}(A)}{\left|a_{j j}\right|}+\varepsilon\right)\left|a_{i j}\right| \\
& \leq \sum_{j \in N_{1}(A) \backslash\{i\rangle}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\rangle} \varepsilon\left|a_{i j}\right|(\text { by inequality (2.1)) } \\
& =p_{i}(A)+\varepsilon \sum_{j \in N_{2}(A) \backslash\{i j}\left|a_{i j}\right|\left(\text { by the expression of } p_{i}(A)\right) \\
& <p_{i}(A)+\left|a_{i i}\right|-p_{i}(A)(\text { by inequality }(2.3)) \\
& =\left|a_{i i}\right|=\left|(A D)_{i i}\right| .
\end{aligned}
$$

Case 2: for any $i \in N_{2}(A)$, we get that $\left.\left|(A D)_{i i}\right|=\left|a_{i i}\right| \frac{p_{i}(A)}{\left|a_{i i}\right|}+\varepsilon\right)=p_{i}(A)+\varepsilon\left|a_{i i}\right|$, and

$$
\begin{aligned}
r_{i}(A D)=\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right| d_{j} & =\sum_{j \in N_{1}(A) \backslash\{i\}}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\}}\left(\frac{p_{j}(A)}{\left|a_{j j}\right|}+\varepsilon\right)\left|a_{i j}\right| \\
& \leq \sum_{j \in N_{1}(A) \backslash\{i\}}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\}} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\varepsilon \sum_{j \in N_{2}(A) \backslash\{i\}}\left|a_{i j}\right|(\text { by inequality (2.1)) } \\
& =p_{i}(A)+\varepsilon \sum_{j \in N_{2}(A) \backslash\{i\}}\left|a_{i j}\right|\left(\text { by the expression of } p_{i}(A)\right) \\
& <p_{i}(A)+\varepsilon\left|a_{i i}\right|=\left|(A D)_{i i l}\right|\left(\text { by }\left|a_{i i}\right|>r_{i}(A), \text { for } i \in N_{2}(A)\right) .
\end{aligned}
$$

From Cases 1 and 2, we obtain that $\left|(A D)_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| d_{j}=r_{i}(A D)$ for any $i \in N$, that is, $A D$ is an $S D D$ matrix, then according to the definition of H-matrix, A is an H-matrix.

Since the definition of $S D D_{1}$ matrix was proposed, some properties of $S D D_{1}$ matrices were obtained, such as Schur complements of $S D D_{1}$ matrices [2], subdirect sums of $S D D_{1}$ matrices [15]. Next, some new properties of $S D D_{1}$ matrices are listed as follows.
Theorem 2. If a matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}(n \geq 2)$ is an $S D D_{1}$ matrix by rows, and $N_{1}(A) \neq \varnothing$, then for each $i \in N_{1}(A)$, there is at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$.

Proof. Suppose on the contrary that for each $i \in N_{1}(A), a_{i j}=0$, where $j \in N_{2}(A)$ and $j \neq i$, then it is easy to obtain that $p_{i}(A)=r_{i}(A)$ for any $i \in N_{1}(A)$ from Definition 1, thus we obtain that $\left|a_{i i}\right|>$ $p_{i}(A)=r_{i}(A) \leq\left|a_{i i}\right|$, which does not hold, hence for each $i \in N_{1}(A)$, there is at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$.

Theorem 3. If a matrix $A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}(n \geq 2)$ is an $S D D_{1}$ matrix by rows, and for each $i \in N_{2}(A)$, there is at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, then $\left|a_{i i}\right|>p_{i}(A)>0$ for any $i \in N$ and $\left|a_{i i}\right|>r_{i}(A)>p_{i}(A)>0$ for any $i \in N_{2}(A)$.

Proof. From the Lemma 1, we get that $\left|a_{i i}\right|>p_{i}(A)$ for any $i \in N$ and $\left|a_{i i}\right|>r_{i}(A) \geq p_{i}(A)$ for all $i \in N_{2}(A)$.

Since A is an $S D D_{1}$ matrix, and from the condition that for each $i \in N_{2}(A), A$ has at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, it is easy to obtain that $\left|a_{i i}\right|>r_{i}(A)>p_{i}(A)>0$ for any $i \in N_{2}(A)$.

We next prove that $\left|a_{i i}\right|>p_{i}(A)>0$ for any $i \in N$, and consider the following two cases separately.
Case 1: if $N_{1}(A)=\varnothing$, then A is an $S D D$ matrix, and from the condition that for each $i \in N_{2}(A)$, A has at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, thus it is easy to get $\left|a_{i i}\right|>p_{i}(A)>0$ for any $i \in N=N_{2}(A)$.

Case 2: if $N_{1}(A) \neq \varnothing$, then from Theorem 2 and the condition that for each $i \in N_{2}(A), A$ has at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, we obtain that $\left|a_{i i}\right|>p_{i}(A)>0$ for all $i \in N$.

From Cases 1 and 2, we obtain that $\left|a_{i i}\right|>p_{i}(A)>0$ for any $i \in N$.
Theorem 4. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D_{1}$ matrix by rows, and for each $i \in N_{2}(A)$, A has at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, then there exists a diagonal matrix $D=$ $\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$, where $d_{i}=\frac{p_{i}(A)}{\left|a_{i i}\right|}, i=1,2, \ldots, n$, such that $A D$ is an $S D D$ matrix.

Proof. In order to prove that matrix $A D$ is an $S D D$ matrix, we need to prove that matrix $A D$ satisfies the following inequalities:

$$
\left|(A D)_{i i}\right|>r_{i}(A D) \text { for any } i \in N .
$$

Since for each $i \in N_{2}(A)$, there is at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, from Theorems 2 and 3, we obtain that $\left|a_{i i}\right|>p_{i}(A)>0$ for any $i \in N$ and $\left|a_{i i}\right|>r_{i}(A)>p_{i}(A)>0$ for all $i \in N_{2}(A)$.

Therefore, for any $i \in N$, it is easy to get $\left|(A D)_{i i}\right|=p_{i}(A)$, and from $0<\frac{p_{j}(A)}{\left|a_{j j}\right|}<\frac{r_{j}(A)}{\left|a_{j j}\right|}<1$ for any $j \in N_{2}(A)$, Theorems 2 and 3, we get that

$$
\begin{aligned}
r_{i}(A D)=\sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right| d_{j} & =\sum_{j \in N_{1}(A) \backslash\{i\rangle} \frac{p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\sum_{\left.j \in N_{2}(A) \backslash \backslash i\right\}} \frac{p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \\
& <\sum_{j \in N_{1}(A) \backslash\{i\}}\left|a_{i j}\right|+\sum_{j \in N_{2}(A) \backslash\{i\rangle} \frac{r_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \\
& =p_{i}(A)=\left|(A D)_{i i}\right| .
\end{aligned}
$$

Obviously, for any $i \in N$, we get $\left|(A D)_{i i}\right|>r_{i}(A D)$, that is, $A D$ is an $S D D$ matrix.
Finally, some upper bounds of the infinity norm of inverse of $S D D_{1}$ matrices and $S D D$ matrices are established. Before that, a theorem which will be used later is listed.
Theorem 5. (Varah bound) [4] Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D$ matrix, then

$$
\begin{equation*}
\left\|A^{-1}\right\|_{\infty} \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)} \tag{2.4}
\end{equation*}
$$

Theorem 6. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D_{1}$ matrix, then

$$
\begin{equation*}
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max \left\{1, \max _{i \in N_{2}(A)} \frac{p_{i}(A)}{\left|a_{i j}\right|}+\varepsilon\right\}}{\min \left\{\min _{i \in N_{1}(A)} H_{i}, \min _{i \in N_{2}(A)} Q_{i}\right\}}, \tag{2.5}
\end{equation*}
$$

where

$$
\begin{gathered}
H_{i}=\left|a_{i i}\right|-\sum_{j \in N_{1}(A) \backslash\{i\}}\left|a_{i j}\right|-\sum_{j \in N_{2}(A) \backslash\{i\}}\left(\frac{p_{j}(A)}{\left|a_{j j}\right|}+\varepsilon\right)\left|a_{i j}\right|, i \in N_{1}(A), \\
Q_{i}=\varepsilon\left(\left|a_{i i}\right|-\sum_{j \in N_{2}(A) \backslash\{i\}}\left|a_{i j}\right|\right)+\sum_{j \in N_{2}(A) \backslash\{i\rangle} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|, i \in N_{2}(A),
\end{gathered}
$$

and ε satisfy inequality (2.3).
Proof. From the new proof of Theorem 1, we obtain that there exists a positive diagonal matrix D such that $A D$ is an $S D D$ matrix, where D is defined as Eq (2.2). Therefore, we have the following inequality:

$$
\left\|A^{-1}\right\|_{\infty}=\left\|D\left(D^{-1} A^{-1}\right)\right\|_{\infty}=\left\|D(A D)^{-1}\right\|_{\infty} \leq\|D\|_{\infty}\left\|(A D)^{-1}\right\|_{\infty} .
$$

Since the matrix D is positive diagonal, it is easy to obtain that

$$
\|D\|_{\infty}=\max _{1 \leq i \leq n} d_{i}=\max \left\{1, \max _{i \in N_{2}(A)} \frac{p_{i}(A)}{\left|a_{i i}\right|}+\varepsilon\right\},
$$

where ε satisfy inequality (2.3).
Since $A D$ is an $S D D$ matrix, by Theorem 5, we obtain

$$
\begin{aligned}
\left\|(A D)^{-1}\right\|_{\infty} & \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|(A D)_{i i}\right|-r_{i}(A D)\right)} \\
& =\frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right| d_{i}-r_{i}(A D)\right)} \\
& =\frac{1}{\min _{\left.i \min _{i \in N_{1}(A)} H_{i}, \min _{i \in N_{2}(A)} Q_{i}\right\}} .} .
\end{aligned}
$$

Thus, we get

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max \left\{1, \max _{i \in N_{2}(A)} \frac{p_{i}(A)}{\left|a_{i}\right|}+\varepsilon\right\}}{\min \left\{\min _{i \in N_{1}(A)} H_{i}, \min _{i \in N_{2}(A)} Q_{i}\right\}}
$$

Based the new proof, the upper bound of the infinity norm of inverse of $S D D_{1}$ matrix is presented, and since $S D D$ matrices is a subclass of $S D D_{1}$ matrices, from Theorem 6, it is easy to obtain the following Corollary 1.
Corollary 1. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D$ matrix, then

$$
\begin{equation*}
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i n}\right|}+\varepsilon}{\min _{i \in N} M_{i}} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i}=\varepsilon\left(\left|a_{i i}\right|-r_{i}(A)\right)+\sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|, i \in N \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\varepsilon<\min _{i \in N} \frac{\left|a_{i i}\right|-p_{i}(A)}{r_{i}(A)} \tag{2.8}
\end{equation*}
$$

Example 2. Considering the following $S D D_{1}$ matrices

$$
A_{1}=\left[\begin{array}{llll}
4 & 1 & 2 & 0 \\
1 & 4 & 1 & 0 \\
2 & 0 & 8 & 0 \\
2 & 0 & 0 & 8
\end{array}\right]
$$

and

$$
A_{2}=\left[\begin{array}{cccc}
4 & 1 & 1 & 0 \\
1 & 4 & 1 & 0 \\
1 & 1 & 4 & 0 \\
0 & 0 & 0 & 0.2
\end{array}\right]
$$

Obviously, A_{1} and A_{2} are also $S D D$ matrices. By calculation, we have

$$
p_{1}\left(A_{1}\right)=1, p_{2}\left(A_{1}\right)=1, p_{3}\left(A_{1}\right)=1.5 p_{4}\left(A_{1}\right)=1.5 \text { and } 0<\varepsilon_{1}<1 \text {, }
$$

and

$$
p_{1}\left(A_{2}\right)=1, p_{2}\left(A_{2}\right)=1, p_{3}\left(A_{2}\right)=1, p_{4}\left(A_{2}\right)=0 \text { and } 0<\varepsilon_{2}<1.5 .
$$

By the Varah bound (2.4) of Theorem 5, we obtain that $\left\|A_{1}^{-1}\right\|_{\infty} \leq 1$ and $\left\|A_{2}^{-1}\right\|_{\infty} \leq 5$. By the bound (2.6) of Corollary 1, we obtain that $\left\|A_{1}^{-1}\right\|_{\infty} \leq \frac{0.25+\varepsilon_{1}}{0.375+\varepsilon_{1}}$ (where $0<\varepsilon_{1}<1$) and $\left\|A_{2}^{-1}\right\|_{\infty} \leq$ $5+\frac{5}{4 \varepsilon_{2}}$ (where $0<\varepsilon_{2}<1.5$). In fact, $\left\|A_{1}^{-1}\right\|_{\infty} \approx 0.4434$ and $\left\|A_{2}^{-1}\right\|_{\infty}=5$. Obviously, for the matrix A_{1}, it is easy to obtain that $\left\|A_{1}^{-1}\right\|_{\infty} \approx 0.4434<\frac{0.25+\varepsilon_{1}}{0.375+\varepsilon_{1}}<1$ for any the number $0<\varepsilon_{1}<1$. However, for the matrix A_{2}, we have that $\left\|A_{2}^{-1}\right\|_{\infty}=5<5+\frac{5}{4 \varepsilon_{2}}$ for any the number $0<\varepsilon_{2}<1.5$, which means that the bound in Corollary 1 is better than the Varah bound in Theorem 5 in some cases. Then, a meaningful discussion is concerned: under what conditions, the bound in Corollary 1 is better than the Varah bound in Theorem 5.

The following Theorem 7 shows that the bound in Corollary 1 is better than in Theorem 5 in some conditions.
Theorem 7. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D$ matrix, if

$$
\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) \leq \min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|,
$$

then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|}+\varepsilon}{\min _{i \in N} M_{i}} \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)},
$$

where M_{i} is given as in Eq (2.7) and ε satisfy inequality (2.8).
Proof. From the condition

$$
\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) \leq \min _{i \in N} \sum_{j \in N \backslash \backslash i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|,
$$

it is easy to obtain that

$$
\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right)+\varepsilon \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) \leq \min _{i \in N} \sum_{j \in N \backslash i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\varepsilon \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right),
$$

thus, from combining similar terms at the left end of the above inequality, we obtain the following inequality

$$
\begin{align*}
\left(\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|}+\varepsilon\right) \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) & \leq \min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\varepsilon \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) \\
& =\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|+\min _{i \in N}\left(\varepsilon\left(\left|a_{i i}\right|-r_{i}(A)\right)\right) \tag{2.9}\\
& \leq \min _{i \in N}\left(\varepsilon\left(\left|a_{i i}\right|-r_{i}(A)\right)+\sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|\right) \\
& =\min _{i \in N} M_{i} .
\end{align*}
$$

Since A is an $S D D$ matrix, we have

$$
\left|a_{i i}\right|>r_{i}(A) \text { and } M_{i}>0 \text { for any } i \in N .
$$

Therefore, from inequality (2.9), it is easy to have

$$
\frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|}+\varepsilon}{\min _{i \in N} M_{i}} \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)},
$$

and thus from Corollary 1, we have

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|}+\varepsilon}{\min _{i \in N} M_{i}} \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)}
$$

The following Example 3 also illustrates the Theorem 7.
Example 3. This is the previous Example 2. For the matrix A_{1}, by a simple calculation, we obtain

$$
\frac{p_{1}\left(A_{1}\right)}{\left|a_{11}\right|}=0.25, \frac{p_{2}\left(A_{1}\right)}{\left|a_{22}\right|}=0.25, \frac{p_{3}\left(A_{1}\right)}{\left|a_{33}\right|}=0.1875 \text { and } \frac{p_{4}\left(A_{1}\right)}{\left|a_{44}\right|}=0.1875
$$

thus,

$$
\begin{gathered}
\sum_{j \in N \backslash\{1\}} \frac{r_{j}\left(A_{1}\right)-p_{j}\left(A_{1}\right)}{\left|a_{j j}\right|}\left|a_{1 j}\right|=0.375, \sum_{j \in N \backslash\{2\}} \frac{r_{j}\left(A_{1}\right)-p_{j}\left(A_{1}\right)}{\left|a_{j j}\right|}\left|a_{2 j}\right|=0.5625, \\
\sum_{j \in N \backslash\{3\}} \frac{r_{j}\left(A_{1}\right)-p_{j}\left(A_{1}\right)}{\left|a_{j j}\right|}\left|a_{3 j}\right|=1 \text { and } \sum_{j \in N \backslash\{4\}} \frac{r_{j}\left(A_{1}\right)-p_{j}\left(A_{1}\right)}{\left|a_{j j}\right|}\left|a_{4 j}\right|=1 .
\end{gathered}
$$

It is easy to verify that

$$
\max _{i \in N} \frac{p_{i}\left(A_{1}\right)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}\left(A_{1}\right)\right)=0.25<0.375=\min _{i \in N} \sum_{j \in N \backslash i i\}} \frac{r_{j}\left(A_{1}\right)-p_{j}\left(A_{1}\right)}{\left|a_{j j}\right|}\left|a_{i j}\right|,
$$

that is, the matrix A_{1} satisfies the conditions of Theorem 7. Therefore, from Theorem 7, we obtain that for any $0<\varepsilon_{1}<1$,

$$
\left\|A_{1}^{-1}\right\|_{\infty} \leq \frac{0.25+\varepsilon_{1}}{0.375+\varepsilon_{1}}<1=\frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}\left(A_{1}\right)\right)}
$$

However, the upper bound (2.5) contains the parameter ε. Next, based on the Theorem 4, a upper bound of the infinity norm of inverse of $S D D_{1}$ matrices is presented as follows, and this upper bound only depends on the elements of given matrices.
Theorem 8. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D_{1}$ matrix, and for each $i \in N_{2}(A)$, there is at least one $a_{i j} \neq 0$, where $j \in N_{2}(A)$ and $j \neq i$, then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|}}{\min _{i \in N}\left(p_{i}(A)-\sum_{j \in N \backslash\langle i\rangle} \frac{p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|\right)}
$$

Proof. By Theorem 4, we obtain that there exists a positive diagonal matrix D such that $A D$ is an $S D D$ matrix, where D is defined as Theorem 4 . Therefore, we get the following inequality:

$$
\left\|A^{-1}\right\|_{\infty}=\left\|D\left(D^{-1} A^{-1}\right)\right\|_{\infty}=\left\|D(A D)^{-1}\right\|_{\infty} \leq\|D\|_{\infty}\left\|(A D)^{-1}\right\|_{\infty}
$$

Since the matrix D is positive diagonal, it is easy to obtain that

$$
\|D\|_{\infty}=\max _{1 \leq i \leq n} d_{i}=\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|} .
$$

Since $A D$ is an $S D D$ matrix, by Theorem 5, we obtain

$$
\begin{aligned}
\left\|(A D)^{-1}\right\|_{\infty} & \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|(A D)_{i i}\right|-r_{i}(A D)\right)} \\
& =\frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right| d_{i}-r_{i}(A D)\right)} \\
& =\frac{1}{\min _{i \in N}\left(p_{i}(A)-\sum_{j \in N \backslash i j\}} \frac{p_{j}(A)}{\left|a_{j j j}\right|}\left|a_{i j}\right|\right)} .
\end{aligned}
$$

Thus, we get that

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i(A)}}{\left|a_{i i}\right|}}{\min _{i \in N}\left(p_{i}(A)-\sum_{j \in N \backslash\{i\}} \frac{p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|\right)} .
$$

Since $S D D$ matrices is a subclass of $S D D_{1}$ matrices, from Theorem 8, it is easy to obtain the following corollary.
Corollary 2. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D$ matrix, if $r_{i}(A) \neq 0$ for all $i \in N$, then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{| | c i a i l}}{\min _{i \in N} \sum_{j \in N \backslash \backslash i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|}
$$

The following Theorems 9 and 10 show that the bound in Corollary 2 is better than in Theorem 5 in some conditions.
Theorem 9. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D$ matrix, if $r_{i}(A) \neq 0$ for all $i \in N$ and

$$
\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \geq \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right),
$$

then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i j}\right|}}{\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|}<\frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)} .
$$

Proof. Since A is an $S D D$ matrix, it is easy to get that

$$
\left|a_{i i}\right|>p_{i}(A) \text { for any } i \in N,
$$

thus

$$
\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|}<1,
$$

and from the condition

$$
\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \geq \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right),
$$

we obtain

$$
\frac{\max _{i \in N} \frac{p_{i}(A)}{| |_{i j} \mid}}{\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|}<\frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)} .
$$

Therefore, from Corollary 2, we get

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i}\right|}}{\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|}<\frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)} .
$$

The following Example 4 also illustrates the Theorem 9.
Example 4. Considering the following $S D D$ matrix

$$
A_{3}=\left[\begin{array}{cccc}
2.5 & 2 & 0.4 & 0 \\
2 & 5.5 & 3 & 0 \\
1 & 2 & 3.5 & 0 \\
1 & 2 & 0 & 3.5
\end{array}\right]
$$

By the Varah bound (2.4) of Theorem 5, we obtain that $\left\|A_{3}^{-1}\right\|_{\infty} \leq 10$.
By a simple calculation, we obtain

$$
p_{1}\left(A_{3}\right) \approx 2.1610, p_{2}\left(A_{3}\right) \approx 4.4914, p_{3}\left(A_{3}\right) \approx 2.7782 \text { and } p_{4}\left(A_{3}\right) \approx 2.7782
$$

then,

$$
\frac{p_{1}\left(A_{3}\right)}{\left|a_{11}\right|} \approx 0.8644, \frac{p_{2}\left(A_{3}\right)}{\left|a_{22}\right|} \approx 0.8166, \frac{p_{3}\left(A_{3}\right)}{\left|a_{33}\right|} \approx 0.7938 \text { and } \frac{p_{4}\left(A_{3}\right)}{\left|a_{44}\right|} \approx 0.7938
$$

thus,

$$
\begin{aligned}
& \sum_{j \in N \backslash\{1\}} \frac{r_{j}\left(A_{3}\right)-p_{j}\left(A_{3}\right)}{\left|a_{j j}\right|}\left|a_{1 j}\right| \approx 0.2103, \sum_{j \in N \backslash\{2\}} \frac{r_{j}\left(A_{3}\right)-p_{j}\left(A_{3}\right)}{\left|a_{j j}\right|}\left|a_{2 j}\right| \approx 0.3813, \\
& \sum_{j \in N \backslash\{3\}} \frac{r_{j}\left(A_{3}\right)-p_{j}\left(A_{3}\right)}{\left|a_{j j}\right|}\left|a_{3 j}\right| \approx 0.2806 \text { and } \sum_{j \in N \backslash\{4\}} \frac{r_{j}\left(A_{3}\right)-p_{j}\left(A_{3}\right)}{\left|a_{j j}\right|}\left|a_{4 j}\right| \approx 0.2806 .
\end{aligned}
$$

It is easy to verify that

$$
\min _{i \in N} \sum_{j \in N \backslash \backslash i\}} \frac{r_{j}\left(A_{3}\right)-p_{j}\left(A_{3}\right)}{\left|a_{j j}\right|}\left|a_{i j}\right|=0.2103>0.1=\min _{i \in N}\left(\left|a_{i i}\right|-r_{i}\left(A_{3}\right)\right) .
$$

Therefore, the matrix A_{3} satisfies the conditions of Theorem 9, thus from the bound of Theorem 9, we obtain

$$
\left\|A_{3}^{-1}\right\|_{\infty} \leq 4.1103
$$

In fact, $\left\|A_{3}^{-1}\right\|_{\infty} \approx 0.9480$. Obviously, $\left\|A_{3}^{-1}\right\|_{\infty} \approx 0.9480<4.1103<10$, which means that the bound in Corollary 2 is better than Varah bound of Theorem 5 in some conditions.
Theorem 10. Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}(n \geq 2)$ be an $S D D$ matrix, if $r_{i}(A) \neq 0$ for all $i \in N$ and

$$
\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) \leq \min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|<\min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right),
$$

then

$$
\left.\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \leq \frac{p_{i}(A)}{\left|A_{i}\right|}}{\min _{i \in N}} \sum_{j \in N \backslash\{i\rangle} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right| \right\rvert\, c \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)}
$$

Proof. Since A is an $S D D$ matrix, we have

$$
\left|a_{i i}\right|>r_{i}(A) \text { for any } i \in N .
$$

From the condition $r_{i}(A) \neq 0$ for all $i \in N$ and Theorem 4, it is easy to obtain that

$$
\sum_{j \in N \backslash i\rangle} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|>0 \text { for any } i \in N .
$$

Therefore, from the condition

$$
\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}(A)\right) \leq \min _{i \in N} \sum_{j \in N \backslash \backslash i\}} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|,
$$

we obtain

$$
\frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i j}\right|}}{\min _{i \in N} \sum_{j \in N \backslash\{i\rangle} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|} \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)},
$$

and thus from Corollary 2, we get

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N} \frac{p_{i}(A)}{\left|a_{i j}\right|}}{\min _{i \in N} \sum_{j \in N \backslash i j} \frac{r_{j}(A)-p_{j}(A)}{\left|a_{j j}\right|}\left|a_{i j}\right|} \leq \frac{1}{\min _{1 \leq i \leq n}\left(\left|a_{i i}\right|-r_{i}(A)\right)}
$$

The following Example 5 also illustrates the Theorem 10.
Example 5. Considering the following the following $S D D$ matrix

$$
A_{4}=\left[\begin{array}{llll}
4 & 1 & 1 & 0 \\
2 & 8 & 2 & 0 \\
1 & 2 & 4 & 0 \\
1 & 2 & 0 & 4
\end{array}\right]
$$

By the Varah bound (2.4) of Theorem 5, we obtain that $\left\|A_{4}^{-1}\right\|_{\infty} \leq 1$.
By calculation, we obtain that

$$
p_{1}\left(A_{4}\right)=1.25, p_{2}\left(A_{4}\right)=2.5, p_{3}\left(A_{4}\right)=1.5 \text { and } p_{4}\left(A_{4}\right)=1.5 \text {, }
$$

then,

$$
\frac{p_{1}\left(A_{4}\right)}{\left|a_{11}\right|}=0.3125, \frac{p_{2}\left(A_{4}\right)}{\left|a_{22}\right|}=0.3125, \frac{p_{3}\left(A_{4}\right)}{\left|a_{33}\right|}=0.375 \text { and } \frac{p_{4}\left(A_{4}\right)}{\left|a_{44}\right|}=0.375,
$$

thus,

$$
\sum_{j \in N \backslash\{1\}} \frac{r_{j}\left(A_{4}\right)-p_{j}\left(A_{4}\right)}{\left|a_{j j}\right|}\left|a_{1 j}\right|=0.5625, \sum_{j \in N \backslash\{2\}} \frac{r_{j}\left(A_{4}\right)-p_{j}\left(A_{4}\right)}{\left|a_{j j}\right|}\left|a_{2 j}\right|=1.125,
$$

$$
\sum_{j \in N \backslash\{3\}} \frac{r_{j}\left(A_{4}\right)-p_{j}\left(A_{4}\right)}{\left|a_{j j}\right|}\left|a_{3 j}\right|=0.5625 \text { and } \sum_{j \in N \backslash\{4\}} \frac{r_{j}\left(A_{4}\right)-p_{j}\left(A_{4}\right)}{\left|a_{j j}\right|}\left|a_{4 j}\right|=0.5625 .
$$

It is easy to verify that

$$
\max _{i \in N} \frac{p_{i}\left(A_{4}\right)}{\left|a_{i i}\right|} \min _{i \in N}\left(\left|a_{i i}\right|-r_{i}\left(A_{4}\right)\right)=0.375<\min _{i \in N} \sum_{j \in N \backslash\{i\}} \frac{r_{j}\left(A_{4}\right)-p_{j}\left(A_{4}\right)}{\left|a_{j j}\right|}\left|a_{i j}\right|=0.5625<1=\min _{i \in N}\left(\left|a_{i i}\right|-r_{i}\left(A_{4}\right)\right),
$$

that is, the matrix A_{4} satisfies the conditions of Theorem 10, thus by the bound of Theorem 10, we obtain

$$
\left\|A_{4}^{-1}\right\|_{\infty} \leq 0.6667 .
$$

In fact, $\left\|A_{4}^{-1}\right\|_{\infty} \approx 0.4019$. Obviously, $\left\|A_{4}^{-1}\right\|_{\infty} \approx 0.4019<0.6667<1$, which means that the bound in Corollary 2 is better than Varah bound of Theorem 5 in some conditions.

3. Conclusions

In this paper, a new proof that $S D D_{1}$ matrices is a subclass of H-matrices is given and based on the new proof, some upper bounds of the infinity norm of inverse of $S D D_{1}$ matrices are established, and some new upper bounds of the infinity norm of inverse of $S D D$ matrices are also obtained. Moreover, we show that these new upper bounds of the infinity norm of inverse of $S D D$ matrices are better than well-known Varah bound under some cases. In addition, some numerical examples are given to illustrate the corresponding results.

Acknowledgments

This work is partly supported by the National Natural Science Foundations of China (31600299), Natural Science Basic Research Program of Shaanxi, China (2020JM-622); the Scientific Research Program Funded by Shaanxi Provincial Education Department (18JK0044); the Science and Technology Project of Baoji (2017JH2-24); the Key Project of Baoji University of Arts and Sciences (ZK16050) and the Postgraduate Innovative Research Project of Baoji University of Arts and Sciences (YJSCX20ZD05).

Conflict of interest

The authors declare that they have no competing interests.

References

1. A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, New York: Academic Press, 1979.
2. J. M. Peña, Diagonal dominance, Schur complements and some classes of H-matrices and P matrices, Adv. Comput. Math., 35 (2011), 357-373. https://doi.org/10.1007/s10444-010-9160-5
3. P. F. Dai, A note diagonal dominance, Schur complements and some classes of H-matrices and P-matrices, Adv. Comput. Math., 42 (2016), 1-4. https://doi.org/10.1007/s10444-014-9375-y
4. L. Y. Kolotilina, On bounding inverses to Nekrasov matrices in the infinity norm, J. Math. Sci., 199 (2014), 432-437. https://doi.org/10.1007/s10958-014-1870-7
5. L. Gao, Q. Liu, New upper bounds for the infinity norm of Nekrasov matrices, J. Math. Inequal., 14 (2020), 723-733. http://dx.doi.org/10.7153/jmi-2020-14-46
6. H. Orera, J. M. Peña, Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices, Appl. Math. Comput., 358 (2019), 119-127. https://doi.org/10.1016/j.amc.2019.04.027
7. L. Cvetković, V. Kostić, K. Doroslovačkic, Max-norm bounds for the inverse of S-Nekrasov matrices, Appl. Math. Comput., 218 (2012), 9498-9503. https://doi.org/10.1016/j.amc.2012.03.040
8. L. Y. Kolotilina, Bounds for the inverses of generalized Nekrasov matrices, J. Math. Sci., 207 (2015), 786-794. https://doi.org/10.1007/s10958-015-2401-x
9. L. Y. Kolotilina, Nekrasov type matrices and upper bounds for their inverses, J. Math. Sci., 249 (2020), 221-230. https://doi.org/10.1007/s10958-020-04936-5
10. Y. Q. Wang, L. Gao, An improvement of the infinity norm bound for the inverse of $\left\{p_{1}, p_{2}\right\}$ Nekrasov matrices, J. Inequal. Appl., 2019 (2019), 177. https://doi.org/10.1186/s13660-019-21343
11. C. L. Li, L. Cvetković, Y. M. Wei, J. X. Zhao, An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications, Linear Algebra Appl., 565 (2019), 99-122. https://doi.org/10.1016/j.laa.2018.12.013
12. L. Y. Kolotilina, On Dashnic-Zusmanovich (DZ) and Dashnic-Zusmanovich type (DZT) matrices and their inverses, J. Math. Sci., 240 (2019), 799-812. https://doi.org/10.1007/s10958-019-043975
13. N. Morača, Upper bounds for the infinity norm of the inverse of $S D D$ and $S-S D D$ matrices, J. Comput. Appl. Math., 206 (2007), 666-678. https://doi.org/10.1016/j.cam.2006.08.013
14. L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242-255. https://doi.org/10.1007/s10958-020-04938-3
15. X. Y. Chen, Y. Q. Wang, Subdirect sums of $S D D_{1}$ matrices, J. Math., 2020 (2020), 3810423. https://doi.org/10.1155/2020/3810423

AIMS Press

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

