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1. Introduction

Let n be an integer number, N = {1,2,...,n}, and C™" be the set of all complex matrices of order
n. A matrix A = [a;;] € C™" (n > 2) is called a strictly diagonally dominant (S DD) matrix if

lai| > ri(A),i € N,

where
n

ri(A) = Z |Cl,'j|, 1€ N.

Jj=1,j#i

It was shown that S DD matrices is a subclass of H-matrices [1], where a matrix A = [a;;] € C™" is
an H-matrix if and only if there exists a positive diagonal matrix X such that AX is an S DD matrix [1].
In 2011, a new subclass of H-matrices was proposed by J. M. Pefia, which is called S DD,
matrices [2], and the definition of S DD matrix is given as follows.
Definition 1. [2] A matrix A = [a;;] € C™" (n > 2) is called an § DD, matrix if

lai| > pi(A),i € Ni(A),
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where

ri(A)
i(A) = laij| + - aij|,
g jeN.Zm:)\{i} : jeN;‘)\{i} a1 ]
Ni(A) = {il la;i| < r(A)} and N»(A) = {il lai| > ri(A)}.

In [2], J. M. Pefia “proved” the following result:

Theorem 1. ([2 Theorem 2.3]) If a matrix A = [a;;] € C™" is an S DD, matrix by rows, then it is an
H-matrix.

From the definition of H-matrix and Theorem 1, given an S DD; matrix A, there exists a
correspondingly positive diagonal matrix D, such that AD is an S DD matrix. The great interest of the
constitution of positive diagonal matrix D was commented in the introduction in [2], and divided it
into two cases, that is, the given S DD; matrix has a unique row i strictly diagonally dominant and at
least two rows i and j strictly diagonally dominant, to constitute positive diagonal matrix. However,
Dai in [3] found that the proof of Theorem 1 is incorrect, and a counter example was given as follows.
Example 1. [3] Let us consider S DD; matrices

- o O B
—_— RN O =

1
1
1
2

—_— O W

From the proof of Theorem 1 in [2], it is easy to obtain that D = diag{%, 1}, however, AD is not
an S DD matrix by rows.

Dai found that the proof of the case that the given S DD, matrix has at least two rows i and j
strictly diagonally dominant is incorrect, and a correct proof of Theorem 1 was presented in [3]. The
correct proof of Theorem 1 divides the case that S DD, matrices have at least two rows i and j strictly

diagonally dominant into S = @ and § # @, where § is given as follows:

11
3’4’

S ={ila;j = 0, for some i € Ny(A), all j € N>(A)\{i}}.

However, when we use the correct proof to give the upper bound for the infinity norm of the inverse
of S DD, matrices, the upper bound needs to be considered in different cases. Therefore, in order to
avoid the difficult, we need to improve the proof of Theorem 1.

In addition, it was shown that upper bound of the infinity norm of inverse of a given nonsingular
matrix has many potential applications in computational mathematics, such as for bounding the
condition number and for proving the convergence of iteration methods. Moreover, upper bounds of
the infinity norm of inverse for different classes of matrix have been widely studied, such as Nekrasov
matrices [4-6], S-Nekrasov matrices [7, 8], QN-Nekrasov matrices [8], {pi,p.}-Nekrasov
matrices [9, 10], DZT matrices [11, 12], S-S DD matrices [13], S-S DDS matrices [14] and so on.
However, the estimation of upper bounds of the infinity norm of inverse for S DD, matrices has never
been reported.

In this paper, a new proof of Theorem 1 is given firstly. Secondly, some properties of S DD; matrices
are presented. Finally, based on the new proof, some upper bounds of the infinity norm of inverse of
S DD, matrices and S DD matrices are obtained. Moreover, it is shown that these new bounds of S DD
matrices works better than the well-known Varah bound in some cases, and numerical examples are
given to illustrate the corresponding results.
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2. Main results

Firstly, some notations and a lemma are listed.

D = diag{d,,d,,...,d,} denotes a diagonal matrix.

(AD);; denotes the entry (i, j) of matrix AD, and (AD);; denotes the diagonal element of the ith row
of matrix AD.
Lemma 1. If a matrix A = [g;;] € C™" (n > 2) is an § DD, matrix if and only if |a;| > p;(A) for all
i €N.

Proof. From Definition 1, we get that |a;| > p;(A) for any i € N1(A) and for any i € N,(A),

ri(A)
@il >r@ = ) lal+ ), F ] = pia) 2.1)
JENTAN() JeNa ANy T
thus, we obtain that a matrix A is an S DD, matrix if and only if |a;| > p;(A) for all i € N. O

Next, a new proof of Theorem 1 is given as follows.

Proof. Itis sufficient to prove that each S DD matrix A is an H-matrix. In order to do that, let us define
the diagonal matrix as D = diag{d,,d,, ...,d,}, where

1 » J € N1(A),
dj =1 pi : (2.2)
B s e No(A),
and
il — pi(A
0 < & < min il = P& (2.3)
ieN 2 laijl
JEN2(A\{i}
if >, lajl =0, then the corresponding fraction is defined to be o .
JEN2(A\{i}
Since matrix A is an S DD; matrix, D is a positive diagonal matrix.
In the following, we prove that AD is an S DD matrix, and divided it into two cases.
Case 1: for any i € N;(A), it is easy to obtain that |(AD);;| = |a;|, and
- pi(A)
ri(AD) = laijld; = la;;| + ( +&]\aij
; Y jeN%\n : 'EN%\{'} ) i
jii 1 L J 2 L
ri(A)
< la;j| + L ay| + gla;| (by inequality (2.1))
'NZ'] .Z.ldjjl J Z J
JEN1(A\{E} JEN2(A\ (i} JEN2(A\{i}
= piA)+e¢ Z |la;;| (by the expression of p;(A))
JEN2(A\{i}
< pi(A) + lai| — pi(A) (by inequality (2.3))
= lail = [(AD);l.
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Case 2: for any i € Ny(A), we get that |(AD);| = laxl(Z4 + &) = pi(A) + &lay), and

|aiil

" (A
I",(AD) = Z |6ll'j|dj = Z |Cll'j| + Z (plcll(l) + 8) |6l,'j|
JJ

J=1 JENT(AN\} JEN2 (A}

Jj#i
ri(A) . :
< | Z | la;;| + | Z | Wlaijl +8‘ Z | |la;j|(by inequality (2.1))
JEN1(A\{3} JEN2(A)\{i} JEN2(A\{i}
= piA)+e¢ Z |a;j| (by the expression of pi(A))
JEN2(A\{i}

< pi(A) + élail = [(AD);| (by lai| > ri(A), for i € Ny(A)).

From Cases 1 and 2, we obtain that [(AD);| > ) la;jld; = ri(AD) for any i € N, that is, AD is an
j=1
i
S DD matrix, then according to the definition of H-matrix, A is an H-matrix. m]
Since the definition of S DD; matrix was proposed, some properties of S DD; matrices were
obtained, such as Schur complements of S DD, matrices [2], subdirect sums of S DD, matrices [15].
Next, some new properties of S DD; matrices are listed as follows.
Theorem 2. If a matrix A = [a;;] € C™" (n > 2) is an S DD, matrix by rows, and N,(A) # @, then for

each i € N;(A), there is at least one a;; # 0, where j € N>(A) and j # i.

Proof. Suppose on the contrary that for each i € N (A), a;; = 0, where j € N,(A) and j # i, then it
is easy to obtain that p;(A) = ri(A) for any i € N;(A) from Definition 1, thus we obtain that |a;| >
pi(A) = ri(A) < |a;|, which does not hold, hence for each i € N;(A), there is at least one a;; # 0, where
Jj € NyA)and j # i. |

Theorem 3. If a matrix A = [qg;;] € C™" (n > 2) is an S DD, matrix by rows, and for each i € N,(A),
there is at least one a;; # 0, where j € N>(A) and j # i, then |a;| > pi(A) > O for any i € N and
la;| > ri(A) > pi(A) > 0 for any i € N,(A).

Proof. From the Lemma 1, we get that |a;| > p;(A) for any i € N and |a;| > ri(A) > pi(A) for all
i € No(A).

Since A is an S DD; matrix, and from the condition that for each i € N,(A), A has at least one
a;j # 0, where j € N>(A) and j # i, it is easy to obtain that |a;| > r;(A) > p;(A) > 0 for any i € N,(A).

We next prove that |a;| > p;(A) > 0 for any i € N, and consider the following two cases separately.

Case 1: if Nj(A) = @, then A is an S DD matrix, and from the condition that for each i € N,(A),
A has at least one a;; # 0, where j € N,(A) and j # i, thus it is easy to get |a;| > p;(A) > O for any
i €N =N,A).

Case 2: if N;(A) # @, then from Theorem 2 and the condition that for each i € N,(A), A has at least
one a;; # 0, where j € N>(A) and j # i, we obtain that |a;| > p;(A) > O foralli € N.

From Cases 1 and 2, we obtain that |a;| > p;(A) > 0 for any i € N. O

Theorem 4. Let A = (a;;)) € C™ (n > 2) be an SDD; matrix by rows, and for each i € N,(A),
A has at least one a;; # 0, where j € N,(A) and j # i, then there exists a diagonal matrix D =
diag{d,,d>,...,d,}, where d; = pid) G — 1,2,...,n, such that AD is an S DD matrix.

laiil
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Proof. In order to prove that matrix AD is an S DD matrix, we need to prove that matrix AD satisfies
the following inequalities:

|(AD);;| > ri(AD) foranyie€ N.

Since for each i € N,(A), there is at least one a;; # 0, where j € N>(A) and j # i, from Theorems 2
and 3, we obtain that |a;| > p;(A) > O for any i € N and |a;;| > r;(A) > p;(A) > 0 for all i € N,(A).

Therefore, for any i € N, it is easy to get [(AD);;| = pi(A), and from 0 < ﬁ;(j) < rl-;(,A") < 1 for any
J] JJ
J € N>(A), Theorems 2 and 3, we get that
C pi(A) pj(A)
r{AD) = ) |ajld; = la;;| + lai |
;Jl NZ la;l Z a1 Y
j=1 JENIA\i) JENAAi)
J#FL
ri(A)
< laijl + L
J'EN%)\{'} ’ NZ la ”l '
1 i JEN2(A\(i}
= pi(A) = |[(AD);l.
Obviously, for any i € N, we get [(AD);;| > ri(AD), that is, AD is an S DD matrix. O

Finally, some upper bounds of the infinity norm of inverse of S DD; matrices and S DD matrices
are established. Before that, a theorem which will be used later is listed.
Theorem 5. (Varah bound) [4] Let A = (a;;) € C™" (n > 2) be an S DD matrix, then

1
|IA™ ||oo < — . 2.4)
1<11<f’11 (laiil = ri(A))

Theorem 6. Let A = (g;;) € C™" (n > 2) be an S DD matrix, then

max{1, max pl’a(Al) + &}
ieN,(A) dii
A Nl < — , (2.5)
min{ min H;, min Q;}
ieN1(A) " ieN(A)

where

i € Ni(A),

H; = la;| - Z lai;| — Z (p (A)+8)

JENT(A\ (i} JEN2(A\{i} lajil

(A) = pi(A
0i=slail - > lagh+ Mlaﬁl,i € Nx(A),

JEN2(A\{i} JEN2(A\(i} lajil

and ¢ satisfy inequality (2.3).

Proof. From the new proof of Theorem 1, we obtain that there exists a positive diagonal matrix D
such that AD is an S DD matrix, where D is defined as Eq (2.2). Therefore, we have the following
inequality:

IA "l = ID(D™'A™ Dl = IDAAD) ' [lo < ID]|lI(AD) ™.
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Since the matrix D is positive diagonal, it is easy to obtain that

(A
DIl = max d; = max{1, max P L .
i€N2(A) |au|
where ¢ satisfy inequality (2.3).
Since AD is an S DD matrix, by Theorem 5, we obtain
IAD) Ml < !
T 1min (|(AD);i| — ri(AD))
<i<n
3 1
~ min (lajild; — ri(AD))
1<i<n
3 1
min i, Hi 2, O
Thus, we get
max{1, nzlv%) 1’|za(A|) + &}
_ ie il
1A e < -

min{ min H;, min Q;}
ieN1(A) 1 iEN,(A)

O

Based the new proof, the upper bound of the infinity norm of inverse of § DD, matrix is presented,
and since S DD matrices is a subclass of S DD; matrices, from Theorem 6, it is easy to obtain the
following Corollary 1.

Corollary 1. Let A = (a;;) € C™" (n > 2) be an § DD matrix, then

mallvx ”Iiffll) +¢
A . i€ u , 2
Al < —min v (2.6)
ieEN
where
ri(A) - pi(A
My = ellail -y + S FEZPA ) ey 2.7)
JEN\(i) lajjl
and
. lail = pi(A)
O<e< rlrgvn W (2.8)

Example 2. Considering the following S DD; matrices

A1:

NN NSRS
SO B~ =
S 0 = N
o O OO
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and
4 1 1 O
1 41 0
=14 0
0 0 0 02

Obviously, A; and A, are also S DD matrices. By calculation, we have
pi(A) =1, pa(A) =1, p3(A) =15 ps(A) =15and 0 < g < 1,

and
pl(Az) =1, pz(Az) =1, p3(A2) =1, p4(A2) =0and 0 < & < 1.5.

By the Varah bound (2.4) of Theorem 5, we obtain that ||A1‘1||oo < 1 and IIAQIIIOO < 5. By the

bound (2.6) of Corollary 1, we obtain that [|A]']lo < g5s (where 0 < & < 1) and [IA;']le <

5 (where 0 < & < 1.5). In fact, ||A‘1||oo 0.4434 and ||A;1||o<, = 5. Obviously, for the matrix

Al, 1t is easy to obtain that ||A] N ~ 0.4434 < 832755:81 < 1 for any the number 0 < £; < 1. However,

for the matrix A,, we have that ||A21||oo =5<5+ 72 for any the number 0 < &, < 1.5, which means
that the bound in Corollary 1 is better than the Varah bound in Theorem 5 in some cases. Then, a
meaningful discussion is concerned: under what conditions, the bound in Corollary 1 is better than the
Varah bound in Theorem 5.

The following Theorem 7 shows that the bound in Corollary 1 is better than in Theorem 5 in some
conditions.
Theorem 7. Let A = (a;;) € C™" (n > 2) be an S DD matrix, if

(A) : ri(A) — p;(A)
max 2D minqa,l - rcay < min 3 ZEZPA
ieN |a| ieN N e i
then
m%x%+8 1
i< 1
1A oo <

<
mi]\? M; {mn (lai| = ri(A))°
where M, is given as in Eq (2.7) and ¢ satisfy inequality (2.8).

Proof. From the condition

pi(A)

ri(A)—piA
max min(|a;| — r;(A)) < min Z M | .
i laii| ieN ieN 4 la,j|
JEN\{}

it is easy to obtain that

pi(A
max
N laj

) min(la;| - ri(A)) + & min(la;| - ri(A)) < min Z HA) = pid) |

aij| + emin(la;| — r;i(A)),
a1l v
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thus, from combining similar terms at the left end of the above inequality, we obtain the following
inequality

Z ri(A) = pj(A)

(A . . .
(max 2 | s) min(la;| - r(4)) <min g + & min(lazl - ri(A))

ieN |a,~l~| JEN) |a]]|
ri(A)—p;iA
=min ) A= pid) || + min (&l - r(A))
ieN 4 la;;l ieN
JEN\{i} (2.9)
ri(A)—pi(A
<mine(lagl —r(A) + 4 = p,(4) s
ieN . . |ajj|
JEN\{i}
=min M,.
ieN
Since A is an S DD matrix, we have
la;i| > ri(A) and M; > 0 foranyi e N.
Therefore, from inequality (2.9), it is easy to have
max 24 4 ¢
ieN il < 1
minM; ~ min (|la;| — r/(A))’
ieEN 1<i<n
and thus from Corollary 1, we have
max % +& 1
A o < = < — .
min Mi min (|a,~,~| - I”Z(A))
ieN 1<i<n
O

The following Example 3 also illustrates the Theorem 7.
Example 3. This is the previous Example 2. For the matrix A;, by a simple calculation, we obtain

A A A A
PUAD s P2AD o5 PAD 1875 gng PHAD _ ¢ 1875,
la| || lass Q44
thus,
riAy) —pi(A riAy) —pi(A
Z J( 1) pj( 1) |a1j| = 0.375, Z j( 1) pj( 1) |612j| = 0.5625.
JeN\{1} i JEN\(2} la
Z ri(Ay) — pj(Ap) |a | L and Z ri(Ay) — pi(Ay) |a | _1
3j| — 45| = 1.
JEN\G) ) jenva) laj

It is easy to verify that

ri(Ay) — pi(Ay)

|61jj|

pi(A1) . _ .
ax min(lay| - r,(A1) = 0.25 < 0.375 = min >

|Cli j| >
ieN |a” ieEN . X
JEN\{i}
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that is, the matrix A, satisfies the conditions of Theorem 7. Therefore, from Theorem 7, we obtain that
forany 0 < g < 1,

0.25 + €1 <= 1
0.375 + ¢ - lmm (lail — ri(Ay)

-1
AT lleo <

However, the upper bound (2.5) contains the parameter €. Next, based on the Theorem 4, a upper
bound of the infinity norm of inverse of S DD, matrices is presented as follows, and this upper bound
only depends on the elements of given matrices.

Theorem 8. Let A = (a;;) € C™" (n > 2) be an § DD, matrix, and for each i € N,(A), there is at least
one a;; # 0, where j € N>(A) and j # i, then

max
1A e < = :
: pj(A)
min | p;(A) — X —|j..| |aijl
ieN jGN\{l} ajj

Proof. By Theorem 4, we obtain that there exists a positive diagonal matrix D such that AD is an S DD
matrix, where D is defined as Theorem 4. Therefore, we get the following inequality:

IA " | = ID(D™'A™ Dl = IDAAD) ' [lo < IDI|l(AD) |-

Since the matrix D is positive diagonal, it is easy to obtain that

(A
DIl = max d; = max 2.
1<i<n ieN |ajl

Since AD is an S DD matrix, by Theorem 5, we obtain

1
AD) M. < —
IAD = i (@D~ raD))
<i<n
B 1
~ min (laiild; — ri(AD))
1<i<n
_ 1
min(p,-(A)— )y ’jf(f‘l)la,-jl)
ieN JEN\(i} i
Thus, we get that
max
1Al < — :
. pj(A)
mln(pi(A)— DI |aij|)
iEN jeN\(iy

O
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Since S DD matrices is a subclass of S DD, matrices, from Theorem 8, it is easy to obtain the

following corollary.

Corollary 2. Let A = (g;;) € C™" (n > 2) be an S DD matrix, if r;,(A) # 0 for all i € N, then

max
_ €. un
1Al < : .
. AP, A)
min ) |aij|
N jenyiy

The following Theorems 9 and 10 show that the bound in Corollary 2 is better than in Theorem 5 in

some conditions.
Theorem 9. Let A = (a;;) € C™" (n > 2) be an S DD matrix, if r;(A) # 0 for all i € N and

Z ri(A) = pj(A)

min a;;| > min(|a;| — ri(A
ieN ) |a . | | l]| ieN (l u| z( )),

JEN\{i} JJ
then

”A 1” r?eajlvx p|ta(f|) 1
_ < .
o = . (A)=pi(A . .
mln Z rj( l)apll( )|Cl,J| }’1;111<I;1! (laiil — r,(A))
eN jeN\iy si=

Proof. Since A is an S DD matrix, it is easy to get that
la;| > pi(A) foranyi€ N,
thus

pi(A)
max
ieN  |agl

<1,

and from the condition

Z ri(A) = pi(A)

min |a~~| > min(|a;| — r;i(A
ieN 4 la; | ij < I (lail = ri(A)),
JeN\{i} JJ
we obtain
max pi(4)
ieN il 1

< — :
min —r’(Al)a_pl-"(A)|a,~j| min (lai| = ri(A))
ieN R Ji <i<

JEN\E)

Therefore, from Corollary 2, we get

max !
(< i
1A Nl < — < — :
min Y 2SR, min (gl - ri(A))
ieN ; : Ji SIS
JEN\{i}

O
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The following Example 4 also illustrates the Theorem 9.
Example 4. Considering the following S DD matrix

25 2 04 O

2 55 3 0
A=l 1 2 35 0
1 2 0 35

By the Varah bound (2.4) of Theorem 5, we obtain that ||Ag1 Io
By a simple calculation, we obtain

< 10.

Pi(A3) ~ 2.1610, pa(A3) ~ 4.4914, pi(As) ~ 2.7782 and py(A3) ~ 2.7782,

then,
A A A A
P 08644, P24 L 8166, 229 07038 ana P42 < 07038
la| |azs| lass| lass
thus,
(A:) — pi(A i(A3)—pi(A
1) A, 02103, > HA) A, 1~ 03813,
JENV(1) i EN2) i

(A3) - pi(A (A3) - pi(A
ri(Az) — pj( 3)Ia3jlz0.2806 and ri(Az) — pi(As)

las;| ~ 0.2806.
JEN\{3} |ajj| JEN\{4} |ajj|

It is easy to verify that

min
ieEN

Z ri(Az) — pj(Az)

la;;| = 0.2103 > 0.1 = min(|a;| — r;(A3)).
|Cljj| ieN

JEN\{}
Therefore, the matrix As satisfies the conditions of Theorem 9, thus from the bound of Theorem 9,
we obtain

143" | < 4.1103.

In fact, ||A§1||oo ~ (0.9480. Obviously, ||A§1||00 ~ (0.9480 < 4.1103 < 10, which means that the bound
in Corollary 2 is better than Varah bound of Theorem 5 in some conditions.
Theorem 10. Let A = (a;;) € C™" (n > 2) be an S DD matrix, if r;(A) # 0 for all i € N and

A) . : ri(A) — p;(A) :
max pi4) min(|a;| — ri(A)) < min Z A |a,»j| < min(la;| — ri(A)),
ieN ag| ieN ieN 4 la;;l ieN
JEN\E)
then
max pi(A)
ieN  laiil 1

1A oo <

<
: A2, = min (gl - r(A)
r}gvnjdg\m o lail lsiSn(l iil = ri(A))
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Proof. Since A is an S DD matrix, we have
la;i| > ri(A) for anyi € N.
From the condition r;(A) # O for all i € N and Theorem 4, it is easy to obtain that

Z ”j(A) - Pj(A) |

] al-j|>0f0ranyi€N.
ajj

JEN\E)

Therefore, from the condition

A) . : ri(A) - p;(A)
maxp( )mm(laiil—ri(A)) < min Z %M ,
ieN |aii| ieN iEN ) |ajj|
we obtain
max J1GY)
ieN laiil < 1
: rj(A)-p;(A) T mi | = g ’
min ¥ L) min (a;| — r:(A))
N jenvy -
and thus from Corollary 2, we get
max !
-1 IS "
min Y, LR min (jai] - ri(A))
ieN jEN\{l} Iajjl 1<i<n

The following Example 5 also illustrates the Theorem 10.
Example 5. Considering the following the following S DD matrix

A4=

—_— = N s
N N o0 =
S BN -
~ O O O

By the Varah bound (2.4) of Theorem 5, we obtain that ||A; [l < 1.
By calculation, we obtain that

P1(Ag) = 1.25, pr(Ag) = 2.5, p3(Ag) = 1.5 and ps(Ag) = 1.5,

then,
A A A A
P 3105, 2249 3105, 2249 _ 375 na 2249 _ 37,
@] ax a3 s
thus,
(A —pi(A (Ag) — pi(A
2 A0 =PI = 05625, > WAD P = 1125,

JENV(1) lajil JENV(2) lajil
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] las;| = 0.5625 and ]
JEN\(3) ajj JEN\{4} 4ii

Z I’j(A4) - pj(A4) lasi| = 0.5625
il=0. .

Z ri(Ag) — pi(As)

It is easy to verify that

max pi(As)
ieN ay

Z ri(Ag) — pi(As)

min(la;| - ri(44)) = 0.375 < min laj

la;jl = 0.5625 < 1 = mgl(|aii| - 1i(As)),
JEN{i) €

that is, the matrix A, satisfies the conditions of Theorem 10, thus by the bound of Theorem 10, we
obtain

145" | < 0.6667.

In fact, ||A;1||oo ~ 0.4019. Obviously, ||A;1||Do ~ 0.4019 < 0.6667 < 1, which means that the bound
in Corollary 2 is better than Varah bound of Theorem 5 in some conditions.

3. Conclusions

In this paper, a new proof that S DD, matrices is a subclass of H-matrices is given and based on the
new proof, some upper bounds of the infinity norm of inverse of S DD; matrices are established, and
some new upper bounds of the infinity norm of inverse of S DD matrices are also obtained. Moreover,
we show that these new upper bounds of the infinity norm of inverse of S DD matrices are better
than well-known Varah bound under some cases. In addition, some numerical examples are given to
illustrate the corresponding results.
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