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1. Introduction

Inverse problems in various disciplines can be expressed as split feasibility problems and their
generalizations, such as multiple-sets split feasibility problems and split common fixed point problems,
and many iterative algorithms have been presented to solve these problems (see [1–6] for multiple-sets
split feasibility problems, [7–10] for split feasibility problems, [11–18] for split common fixed point
problems, or [19–24] for a self-adaptive method).

The present article is focusing on the split common fixed point problem by virtue of self-adaptive
algorithms such that involved methods are simpler. The split common fixed point problem is a
generalization of the split feasibility problem which is a general way to characterize various inverse
problems arising in many real-world application problems, such as medical image reconstruction and
intensity-modulated radiation therapy.
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Recall that the split common fixed point problem is to find a point u ∈ H1 such that

u ∈ Fix(T ) and Au ∈ Fix(S ). (1.1)

The split feasibility problem is to find a point satisfying

u ∈ C and Au ∈ Q, (1.2)

where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively
and A : H1 → H2 is a bounded linear operator. Problem (1.2) was firstly introduced by Censor and
Elfving [25] in finite-dimensional Hilbert spaces. In [26], note that solving (1.1) can be translated to
solve the fixed point equation

u = S (u − τA∗(I − T )Au), τ > 0.

Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then, there has
been growing interest in the split common fixed point problem. In [27], based on the work [26],
Moudafi investigated an algorithm for solving the split common fixed-point problem for the class of
demicontractive operators in a Hilbert space. In [28], Kraikaew et al. modified the iterative scheme
studied by Moudafi for quasi-nonexpansive operators to obtain strong convergence to a solution of the
split common fixed point problem. In [29], based on Halpern’s type method, Boikanyo constructed an
algorithm for demicontractive operators that produces sequences that always converge strongly to a
specific solution of the split common fixed point problem. In [30], Ansari introduced an implicit
algorithm and an explicit algorithm for solving the split common fixed point problems. In [31], using
the hybrid method and the shrinking projection method in mathematical programming, Takahashi
proved strong convergence theorems for finding a solution of the split common fixed point problem in
two Banach spaces. In [32], Wang proposed a new algorithm for the split common fixed-point
problem that does not need any priori information of the operator norm.

In the case where C and Q in (1.2) are the intersections of finitely many fixed point sets of nonlinear
operators, problem (1.2) is called by Censor and Segal ( [26]) the split common fixed point problem.
More precisely, the split common fixed point problem requires one to seek an element u ∈ H1 such that

u ∈
s⋂

i=1

Fix(Ti) and Au ∈
t⋂

j=1

Fix(S i), (1.3)

where Fix(S i) and Fix(Ti) denote the fixed point sets of two classes of nonlinear operators S i : H1 → H1

and Ti : H2 → H2, respectively.
In particular, Yao et al. [21] introduced the following new iterative algorithms for the split common

fixed point problem of demicontractive operators.

Algorithm 1.1. Choose an arbitrary initial guess x0 ∈ H1. Assume xn has been constructed. If

‖xn − T xn + A∗(I − S )Axn‖ = 0, (1.4)

then stop; otherwise, continue and construct via the manner

xn+1 = xn − γτn(xn − S xn + A∗(I − T )Axn),
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where γ ∈ (0,min{1 − β, 1 − µ}) is a positive constant and τn is chosen self-adaptively as

τn =
‖xn − S xn‖

2 + ‖(I − T )Axn‖
2

‖xn − S xn + A∗(I − T )Axn‖
2 . (1.5)

Algorithm 1.2. Let u ∈ H1 and choose an arbitrary initial value x0 ∈ H1. Assume xn has been
constructed. If

‖xn − T xn + A∗(I − S )Axn‖ = 0, (1.6)

then stop; otherwise, continue and construct via the manner

xn+1 = αnu + (1 − αn)[xn − γτn(xn − T xn + A∗(I − S )Axn)], (1.7)

where γ ∈ (0,min{1 − β, 1 − µ}) is a positive constant and τn is chosen self-adaptively as

τn =
‖xn − S xn‖

2 + ‖(I − T )Axn‖
2

‖xn − S xn + A∗(I − T )Axn‖
2 . (1.8)

Yao et al. obtained the weak and strong convergence of Algorithms 1.1 and 1.2, respectively. It
should be pointed out that Algorithm 1.1 and 1.2 do not need any prior information of the operator
norm. Inspired by the work in the literature, the main purpose of this paper is to present two new
self-adaptive algorithms for approximating a solution of the split common fixed point problem (1.3)
for the class of quasi-pseudocontractive operators which is more general than the classes of
quasi-nonexpansive operators, directed operators and demicontractive operators. Weak and strong
convergence theorems are given under some mild assumptions.

2. preliminaries

In this section, we collect some tools including some definitions, some useful inequalities and
lemmas which will be used to derive our main results in the next section.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a
nonempty closed convex subset of H. Let T : C −→ C be an operator. We use Fix(T ) to denote the set
of fixed points of T , that is, Fix(T ) = {u|u = Tu, u ∈ C}.

First, we give some definitions related to the involved operators.

Definition 2.1. An operator T : C −→ C is said to be
(i) nonexpansive if ‖Tu − Tv‖ ≤ ‖u − v‖ for all u, v ∈ C.
(ii) quasi-nonexpansive if ‖Tu − u∗‖ ≤ ‖u − u∗‖ for all u ∈ C and u∗ ∈ Fix(T ).
(iii) firmly nonexpansive if ‖Tu − Tv‖2 ≤ ‖u − v‖2 − ‖(I − T )u − (I − T )v‖2 for all u, v ∈ C.
(iv) directed(or firmly quasi-nonexpansive) if ‖Tu − u∗‖2 ≤ ‖u − u∗‖2 − ‖Tu − u‖2for all u ∈ C and

u∗ ∈ Fix(T ).

Definition 2.2. An operator T : C −→ C is said to be pseudo-contractive if 〈Tu−Tv, u− v〉 ≤ ‖u− v‖2

for all u, v ∈ C.
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The interest of pseudocontractive operators lies in their connection with monotone operators;
namely, T is a pseudocontraction if and only if the complement I − T is a monotone operator. It is
well known that T is pseudocontractive if and only if

‖Tu − Tv‖2 ≤ ‖u − v‖2 + ‖(I − T )u − (I − T )v‖2,

for all u, v ∈ C.

Definition 2.3. An operator T is said to be strictly pseudocontractive if

‖Tu − Tv‖2 ≤ ‖u − v‖2 + k‖(I − T )u − (I − T )v‖2,

for all u, v ∈ C, where k ∈ [0, 1).

Definition 2.4. An operator T is said to be demicontractive if there exists a constant k ∈ [0, 1) such
that

‖Tu − u∗‖2 ≤ ‖u − u∗‖2 + k‖Tu − u‖2,

or equivalently,

〈u − Tu, u − u∗〉 ≥
1 − k

2
‖u − Tu‖2, (2.1)

for all u ∈ C and u∗ ∈ Fix(T ).

Remark 2.1. From the above definitions, we note that the class of demicontractive operators contains
important operators such as the directed operators, the quasi-nonexpansive operators and the strictly
pseudocontractive operators with fixed points. Such a class of operators is fundamental because it
includes many types of nonlinear operators arising in applied mathematics and optimization.

Definition 2.5. An operator T : C −→ C is said to be quasi-pseudocontractive if ‖Tu − u∗‖2 ≤
‖u − u∗‖2 + ‖Tu − u‖2 for all u ∈ C and u∗ ∈ Fix(T).

Definition 2.6. An operator T : C −→ C is said to be L-Lipschitzian if there exists L > 0 such that
‖Tu − Tv‖ ≤ L‖u − v‖ for all u, v ∈ C.

Usually, the convergence of fixed point algorithms requires some additional smoothness properties
of the mapping T such as demi-closedness.

Definition 2.7. An operator T is said to be demiclosed if, for any sequence {un}which weakly converges
to u∗, and if Tun −→ w, then Tu∗ = w.

Definition 2.8. A sequence {un} is called Fejér-monotone with respect to a given nonempty set Ω if for
every u ∈ Ω,

‖un+1 − u‖ ≤ ‖un − u‖,

for all n ≥ 0.

Recall that the (nearest point or metric) projection from H onto C, denoted by PC, assigns to each
u ∈ H, the unique point PCu ∈ C with the property

‖u − PCu‖ = inf{‖u − v‖ : v ∈ C}.
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The metric projection PC of H onto C is characterized by

〈u − PCu, v − PCu〉 ≤ 0, (2.2)

for all u ∈ H, v ∈ C. It is well known that the metric projection PC : H → C is firmly nonexpansive,
that is,

〈u − v, PCu − PCv〉 ≥ ‖PCu − PCv‖2,

or ‖PCu − PCv‖2 ≤ ‖u − v‖2 − ‖(I − PC)u − (I − PC)v‖2,

for all u, v ∈ H.
Next we adopt the following notations:
• un ⇀ u means that {un} converges weakly to u;
• un → u means that {un} converges strongly to u;
• ωw(un) stands for the set of cluster points in the weak topology, that is,

ωw(un) = {u : ∃un j ⇀ u}.

Lemma 2.1. ( [33]) Let C be a nonempty closed convex subset in H. If the sequence {un} is Fejér
monotone with respect to Ω, then we have the following conclusions:

(i) un ⇀ u ∈ Ω iff ωw(un) ⊂ Ω;
(ii) the sequence {PΩun} converges strongly;
(iii) if un ⇀ u ∈ Ω, then u = limn→∞ PΩun.

For all u, v ∈ H, the following conclusions hold:

‖tu + (1 − t)v‖2 = t‖u‖2 + (1 − t)‖v‖2 − t(1 − t)‖u − v‖2, t ∈ [0, 1],

‖u + v‖2 = ‖u‖2 + 2〈u, v〉 + ‖v‖2,

and

‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉.

Lemma 2.2. ( [34]) Let H be a Hilbert space and ∅ , C ⊂ H be a closed convex set. If T : C → C is
an L-Lipschitzian operator with L ≥ 1. Then

Fix(((1 − δ)I + δT )T ) = Fix(T ((1 − δ)I + δT )) = Fix(T ),

where δ ∈ (0, 1
L ).

Lemma 2.3. ( [34]) Let H be a Hilbert space and ∅ , C ⊂ H be a closed convex set. If T : C → C is
an L-Lipschitzian operator with L ≥ 1 and I − T is demiclosed at 0, then the composition operator

I − T ((1 − δ)I + δT ),

is also demiclosed at 0 provided δ ∈ (0, 1
L ).
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Lemma 2.4. ( [34]) Let H be a Hilbert space and ∅ , C ⊂ H be a closed convex set. If T : C → C is
an L-Lipschitzian quasi-pseudocontractive operator. Then we have

‖T ((1 − ζ)I + ζT )u − u∗‖2 ≤ ‖u − u∗‖2 + (1 − ζ)‖T ((1 − ζ) + ζT )u − u‖2,

for all u ∈ C and u∗ ∈ Fix(T ) when 0 < ζ < 1
√

1+L2+1
.

Lemma 2.5. ( [35])Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1 − γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)
∑∞

n=1 γn = ∞;
(2) lim supn→∞

δn
γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

3. Results

Throughout the present article, let H1 and H2 be two real Hilbert spaces. We use 〈·, ·〉 to denote
the inner product, and ‖ · ‖ stands for the corresponding norm. Let s and t be positive integers, and
let Ti : H1 −→ H1 be an L1i-Lipschitzian quasi-pseudocontractive operator with 1 < L1i ≤ L1 and
S j : H2 −→ H2 be an L2 j-Lipschitzian quasi-pseudocontractive operator with 1 < L2 j ≤ L2, where
L1, L2 > 1. Denote the fixed point sets of Ti and S j by Fix(Ti) and Fix(S j), respectively. Let A :
H1 −→ H2 be a bounded linear operator with its adjoint A∗. Throughout, assume

Ω = {u ∈
s⋂

i=1

Fix(Ti) and Au ∈
t⋂

j=1

Fix(S j)} , ∅.

Next we present the following iterative algorithm to solve (1.3).

Algorithm 3.1. Choose an arbitrary initial value x1 ∈ H1. Assume xn has been constructed. Compute

yn = Tin((1 − ζn)I + ζnTin)xn,

zn = (I − S jn((1 − ηn)I + ηnS jn))Axn,

un = xn − yn + A∗zn, n ≥ 1,
(3.1)

where 0 < ζn <
1√

1+L2
1+1

, 0 < ηn <
1√

1+L2
2+1

,

in = arg max {‖xn − Ti((1 − ζn)I + ζnTi)xn‖ : i ∈ I1 = {1, 2, . . . , s}},

and
jn = arg max {‖(I − S j((1 − ηn)I + ηnS j))Axn‖ : j ∈ I2 = {1, 2, . . . , t}}.

If

‖un‖ = 0, (3.2)
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then stop (in this case by Remark 3.2 below); otherwise, continue and construct via the manner

xn+1 = xn − τnun, (3.3)

where

τn = λn
‖xn − yn‖

2 + ‖zn‖
2

‖un‖
2 , (3.4)

in which λn > 0.

Remark 3.1. The equality (3.2) holds if and only if xn is a solution of (1.3). First, assume that xn is a
solution of (1.3), that is,

xn ∈

s⋂
i=1

Fix(Ti) and Axn ∈

t⋂
j=1

Fix(S i).

According to Lemma 2.2, we get that

Tin((1 − ζn)I + ζnTin)xn = xn = Tin xn,

and
S jn((1 − ηn)I + ηnS jn))Axn = Axn = S jn Axn.

From (3.1), it turns out that zn = 0 and xn = yn. Therefore, un = xn − yn + A∗zn = 0.
In the sequel, we assume that the equality (3.2) holds. For any u ∈ Ω, we have

0 = 〈un, xn − u〉

= 〈xn − yn + A∗zn, xn − u〉

= 〈xn − Tin((1 − ζn)I + ζnTin)xn, xn − u〉

+ 〈A∗(I − S jn((1 − ηn)u + ηnS jn))Axn, xn − u〉

= 〈xn − Tin((1 − ζn)I + ζnTin)xn, xn − u〉

+ 〈(I − S jn((1 − ηn)I + ηnS jn))Axn, Axn − Au〉.

(3.5)

By Lemma 2.4, Tin((1 − ζn)I + ζnTin) and S jn((1 − ηn)I + ηnS jn) are demicontractive, from (2.1), we
deduce

〈xn − Tin((1 − ζn)I + ζnTin)xn, xn − u〉

≥
1 − (1 − ζn)

2
‖xn − Tin((1 − ζn)I + ζnTin)xn‖

2

=
ζn

2
‖xn − Tin((1 − ζn)I + ζnTin)xn‖

2,

(3.6)

and

〈(I− S jn((1 − ηn)I + ηnS jn))Axn, Axn − Au〉

≥
1 − (1 − ηn)

2
‖(I − S jn((1 − ηn)I + ηnS jn))Axn‖

2

=
ηn

2
‖(I − S jn((1 − ηn)I + ηnS jn))Axn‖

2.

(3.7)
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By(3.5)–(3.7), we get

0 = 〈un, xn − u〉

≥
ζn

2
‖xn − Tin((1 − ζn)I + ζnTin)xn‖

2

+
ηn

2
‖(I − S jn((1 − ηn)I + ηnS jn))Axn‖

2.

(3.8)

Since ζn, ηn ∈ (0, 1), we deduce

‖xn − Tin((1 − ζn)I + ζnTin)xn‖ = 0, (3.9)

and

‖(I − S jn((1 − ηn)I + ηnS jn))Axn‖ = 0. (3.10)

According to the definitions of in and jn, it follows from (3.9) and (3.10) that

‖xn − Ti((1 − ζn)I + ζnTi)xn‖ = 0, (3.11)

for all i ∈ I1 and

‖(I − S j((1 − ηn)I + ηnS j))Axn‖ = 0, (3.12)

for all j ∈ I2. Hence, by Lemma 2.2, we have

xn ∈

s⋂
i=1

Fix(Ti((1 − ζn)I + ζnTi)) =

s⋂
i=1

Fix(Ti),

and

Axn ∈

t⋂
j=1

Fix(S j((1 − ηn)I + ηnS j)) =

t⋂
j=1

Fix(S j).

Therefore, xn ∈ Ω.

Assume that the sequence {xn} generated by Algorithm 3.1 is infinite. In other words, Algorithm 3.1
does not terminate in a finite number of iterations. Next, we demonstrate the convergence analysis of
the sequence {xn} generated by Algorithm 3.1.

Theorem 3.1. Suppose that I − Ti (for all i ∈ I1) and I − S j (for all j ∈ I2) are demiclosed at zero. If
Ω , ∅ and the following conditions are satisfied:

(C1) 0 < ζ ≤ ζn <
1√

1+L2
1+1

;

(C2) 0 < η ≤ ηn <
1√

1+L2
2+1

;

(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{ζ, η}.
Then the sequence {xn} generated by Algorithm 3.1 converges weakly to a solution

z∗(= limn→∞ PΩ(xn)) of problem (1.3).
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Proof. Firstly, we prove that the sequence {xn} is Fejér-monotone with respect to Ω. Picking up z ∈ Ω,
from (3.8), we have

〈un, xn − z〉

= 〈xn − yn + A∗zn, xn − z〉

≥
ζ

2
‖xn − Tin((1 − ζn)I + ζnTin)xn‖

2

+
η

2
‖(I − S jn((1 − ηn)I + ηnS jn))Axn‖

2

≥
1
2

min{ζ, η}(‖xn − yn‖
2 + ‖zn‖

2).

(3.13)

According to (3.1), (3.3), (3.4) and (3.13), we derive

‖xn+1 − z‖2

= ‖xn − z − τnun‖
2

= ‖xn − z‖2 − 2τn〈un, xn − z〉 + τ2
n‖un‖

2

≤ ‖xn − z‖2 −min{ζ, η}
λn(‖xn − yn‖

2 + ‖zn‖
2)2

‖un‖
2

+
λ2

n(‖xn − yn‖
2 + ‖zn‖

2)2

‖un‖
2

= ‖xn − z‖2 − λn(θ − λn)
(‖xn − yn‖

2 + ‖zn‖
2)2

‖un‖
2 ,

(3.14)

where
θ = min{ζ, η}.

By virtue of (3.14), we deduce that the sequence {xn} is Fejér-monotone with respect to Ω. Next,
we show that every weak cluster point of the sequence {xn} belongs to the solution set of problem (1.3),
i.e. ωw(xn) ⊂ Ω.

From the Fejér-monotonicity of {xn} it follows that the sequence {xn} is bounded, and so are the
sequences {Axn}, {Tixn}(i ∈ I1) and {S jAxn}( j ∈ I2). Further, from (3.14), we obtain

λn(θ − λn)
(‖xn − yn‖

2 + ‖zn‖
2)2

‖un‖
2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2, (3.15)

which implies that

lim
n→∞

(‖xn − yn‖
2 + ‖zn‖

2)2

‖un‖
2 = 0. (3.16)

This together with the boundedness of the sequence {un} implies that

lim
n→∞
‖xn − yn‖ = 0,

and
lim
n→∞
‖zn‖ = 0.
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Hence,
lim
n→∞
‖xn − Ti((1 − ζn)I + ζnTi)xn‖ = 0,

for all i ∈ I1 and
lim
n→∞
‖Axn − S j((1 − ηn)I + ηnS j)Axn‖ = 0,

for all j ∈ I2. It follows that

‖xn− Tixn‖

≤ ‖xn − Ti((1 − ζn)I + ζnTi)xn‖

+ ‖Ti((1 − ζn)I + ζnTi))xn − Tixn‖

≤ ‖xn − Ti((1 − ζn)I + ζnTi)xn‖

+ ζnL1i‖xn − Tixn‖

≤ ‖xn − Ti((1 − ζn)I + ζnTi)xn‖

+ ζnL1‖xn − Tixn‖,

(3.17)

for all i ∈ I1 and

‖Axn− S jAxn‖

≤ ‖Axn − S j((1 − ηn)I + ηnS j)Axn‖

+ ‖S j((1 − ηn)I + ηnS j)Axn − S jAxn‖

≤ ‖Axn − S j((1 − ηn)I + ηnS j)Axn‖

+ ηnL2 j‖Axn − S jAxn‖

≤ ‖Axn − S j((1 − ηn)I + ηnS j)Axn‖

+ ηnL2‖Axn − S jAxn‖,

(3.18)

for all j ∈ I2. By (C1), we have ζn(
√

1 + L2
1 + 1) < 1 and so ζnL1 < 1 − ζn ≤ 1 − ζ. This together

with (3.17) implies that

‖xn − Tixn‖ ≤
1

1 − ζnL1
‖xn − Ti((1 − ζn)I + ζnTi))xn‖

≤
1
ζ
‖xn − Ti((1 − ζn)I + ζnTi))xn‖,

(3.19)

for all i ∈ I1. Employing a similar way, we obtain

‖Axn − S jAxn‖ ≤
1

1 − ηnL2
‖Axn − S j((1 − ηn)I + ηnS j))Axn‖

≤
1
η
‖Axn − S j((1 − ηn)I + ηnS j))Axn‖,

(3.20)

for all j ∈ I2. Therefore,
lim
n→∞
‖xn − Tixn‖ = 0,
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for all i ∈ I1, and
lim
n→∞
‖Axn − S jAxn‖ = 0,

for all j ∈ I2. By the demiclosedness (at zero) of I−Ti (for all i ∈ I1) and I−S j (for all j ∈ I2), we deduce
immediately ωw(xn) ⊂ Ω. To this end, the conditions of Lemma 2.1 are all satisfied. Consequently,
xn ⇀ z∗(= limn→∞ PΩxn). The proof is completed. �

Algorithm 3.1 has only weak convergence. Now, we present a new algorithm with strong
convergence.

Algorithm 3.2. Let u ∈ H1 and choose an arbitrary initial value x1 ∈ H1. Assume xn has been
constructed. Compute

yn = Tin((1 − ζn)I + ζnTin)xn,

zn = (I − S jn((1 − ηn)I + ηnS jn))Axn,

un = xn − yn + A∗zn, n ≥ 1,
(3.21)

where 0 < ζn <
1√

1+L2
1+1

, 0 < ηn <
1√

1+L2
2+1

,

in = arg max {‖xn − Ti((1 − ζn)I + ζnTi)xn‖ : i ∈ I1 = {1, 2, . . . , s}},

and
jn = arg max {‖(I − S j((1 − ηn)I + ηnS j))Axn‖ : j ∈ I2 = {1, 2, . . . , t}}.

If

‖un‖ = 0, (3.22)

then stop; otherwise, continue and construct via the manner

xn+1 = αnu + (1 − αn)(xn − τnun), (3.23)

where αn ∈ (0, 1) and

τn = λn
‖xn − yn‖

2 + ‖zn‖
2

‖un‖
2 , (3.24)

in which λn > 0.

Assume that the sequence {xn} generated by Algorithm 3.2 is infinite. In other words, Algorithm 3.2
does not terminate in a finite number of iterations.

Theorem 3.2. Suppose that I − Ti (for all i ∈ I1) and I − S j (for all j ∈ I2) are demiclosed at zero. If
Ω , ∅ and the following conditions are satisfied:

(C1) 0 < ζ ≤ ζn <
1√

1+L2
1+1

;

(C2) 0 < η ≤ ηn <
1√

1+L2
2+1

;

(C3) limn→∞ αn = 0
∑∞

n=1 αn = +∞;
(C4) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{ζ, η}.
Then the sequence {xn} generated by Algorithm 3.2 converges strongly to a solution z(= PΩ(u)) of

problem (1.3).
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Proof. Set vn = xn − τnun for all n ≥ 0. By (3.14),we have

‖vn − z‖2 ≤ ‖xn − z‖2 − λn(θ − λn)
(‖xn − yn‖

2 + ‖zn‖
2)2

‖un‖
2 . (3.25)

In particular, we have ‖vn − z‖ ≤ ‖xn − z‖. Thus, from (3.23), we obtain

‖xn+1 − z‖

= ‖αnu + (1 − αn)vn − z‖

≤ αn‖u − z‖ + (1 − αn)‖xn − z‖

≤ max{‖u − z‖, ‖xn − z‖}.

(3.26)

By induction, we derive
‖xn+1 − z‖ ≤ max{‖u − z‖, ‖x0 − z‖}.

Hence, {xn} is bounded and so are the sequences {Axn}, {Tixn}(i ∈ I1) and {S jAxn}( j ∈ I2).
From (3.23), we have

‖xn+1 − z‖2

= ‖αn(u − z) + (1 − αn)(vn − z)‖2

≤ (1 − αn)‖vn − z)‖2 + 2αn〈u − z, xn+1 − z〉.

(3.27)

By virtue of (3.25) and (3.27), we deduce

‖xn+1 − z‖2

≤ (1 − αn)‖xn − z‖2 + 2αn〈u − z, xn+1 − z〉

− (1 − αn)λn(θ − λn)
(‖xn − yn‖

2 + ‖zn‖
2)2

‖un‖
2

≤ (1 − αn)‖xn − z‖2 + αn[2〈u − z, xn+1 − z〉

−
1 − αn

αn
λn(θ − λn)

(‖xn − yn‖
2 + ‖zn‖

2)2

‖un‖
2 ].

(3.28)

Set $n = ‖xn − z‖2 and

δn = 2〈u − z, xn+1 − z〉 −
1 − αn

αn
λn(θ − λn)

(‖xn − yn‖
2 + ‖zn‖

2)2

‖un‖
2

for all n ≥ 1. Then, from (3.28), we have

0 ≤ $n+1 ≤ (1 − αn)$n + αnδn, n ≥ 1. (3.29)

It is obvious that
δn ≤ 2〈u − z, xn+1 − z〉 ≤ 2‖u − z‖ · ‖xn+1 − z‖.

So, lim supn→∞ δn < ∞. Next, we show that lim supn→∞ δn ≥ −1 by contradiction. Assume that
lim supn→∞ δn < −1. Then there exists m such that δn ≤ −1 for all n ≥ m. It follows from (3.29) that

$n+1 ≤ (1 − αn)$n + αnδn

= $n + αn(δn −$n)
≤ $n − αn,

(3.30)
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for all n ≥ m. Thus,

$n+1 ≤ $m −

n∑
i=m

αi.

Hence, by taking lim sup as n→ ∞ in the last inequality, we obtain

0 ≤ lim sup
n→∞

$n+1 ≤ $m −

∞∑
i=m

αi = −∞,

which is a contradiction. Therefore, lim supn→∞ δn > −1 and it is finite. Consequently, we can take a
subsequence {ni} such that

lim sup
n→∞

δn = lim
i→∞

δni

= lim
i→∞

[−
1 − αni

αni

λni(θ − λni)
(‖xni − yni‖

2 + ‖zni‖
2)2

‖uni‖
2

+ 2〈u − z, xni+1 − z〉].

(3.31)

Since 〈u − z, xni+1 − z〉 is a bounded real sequence, without loss of generality, we may assume the
limit limi→∞〈u − z, xni+1 − z〉 exists. Consequently, from (3.31), the following limit also exists

lim
i→∞

1 − αni

αni

λni(θ − λni)
(‖xni − yni‖

2 + ‖zni‖
2)2

‖uni‖
2 .

This together with conditions (C3) and (C4) implies that

lim
i→∞

(‖xni − yni‖
2 + ‖zni‖

2)2

‖uni‖
2 = 0,

which yields limi→∞ ‖xni − yni‖ = 0 and limi→∞ ‖zni‖ = 0. By a similar proof as in Theorem 3.3, we
conclude that any weak cluster point of {xni} belongs to Ω. Note that

‖xni+1 − xni‖

= ‖αniu + (1 − αni)vni − xni‖

≤ αni‖u − xni‖ + (1 − αni)‖vni − xni‖

≤ αni‖u − xni‖ + τni‖uni‖

≤ αni‖u − xni‖ + λni

‖xni − yni‖
2 + ‖zni‖

2

2‖uni‖

→ 0.

(3.32)

This indicates thatωw(xni+1) ⊂ Ω. Without loss of generality, we assume that xni+1 converges weakly
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to x† ∈ Ω. Now by (3.31), we infer that

lim sup
n→∞

δn = lim
i→∞

δni

= lim
i→∞

[−
1 − αni

αni

λni(θ − λni)
(‖xni − yni‖

2 + ‖zni‖
2)2

‖uni‖
2

+ 2〈u − z, xni+1 − z〉]
≤ 2 lim

i→∞
〈u − z, xni+1 − z〉

= 2〈u − z, x† − z〉

≤ 0,

(3.33)

due to the fact that z = PΩu and (2.2). Finally, applying Lemma 2.5 to (3.29), we conclude that xn → z.
This completes the proof. �

4. Numerical illustrations

In this section, some numerical results are presented. The MATLAB codes run in MATLAB version
9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200 CPU @ 2.30 GHz 2.40 GHz, RAM 8.00 GB. In all
examples y-axes shows the value of xn while the x-axis indicates to the number of iterations.

Example 4.1. Let T1 : R→ R be odd function and defined by

T1(x) =


x, x ∈ [0, 1],
− 4x + 5, ∈ (1, 2),
4x − 11, ∈ [2, 3),
x − 2, ∈ [3,+∞).

(4.1)

Let S 1 : R→ R be odd function and defined by

S 1(x) =


x, x ∈ [0, 1],
− 5x + 6, ∈ (1, 2),
5x − 14, ∈ [2, 3),
x − 2, ∈ [3,+∞).

(4.2)

Let T2 : R → R and S 2 : R → R be defined by T2(x) = T1(x + 1) − 1 and S 2(x) = S 1(x + 1) − 1,
respectively. It is obvious that Fix(T1) = [−1, 1], Fix(S 1) = [−1, 1], Fix(T2) = [−2, 0] and Fix(S 2) =

[−2, 0]. We can easily see that T1, T2, S 1 and S 2 are quasi-pseudocontractive operators but neither
pseudocontractive nor quasi-nonexpansive operators. We also observe that T1, T2, S 1 and S 2 are
Lipschitzian operators. The values of control parameters for Algorithm 3.1 and Algorithm 3.2 are
ηn = ζn = 0.125, λn = 0.1, αn = 1

n , x1 = 3 and u = 3.
The numerical results regarding Example 4.1 is reported in Figures 1 and 2.
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Figure 1. Example 4.1: Numerical behaviour of Algorithm 3.1.

Figure 2. Example 4.1: Numerical behaviour of Algorithm 3.2.
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Remark 4.1. In finite dimensional Hilbert spaces, weak convergence and strong convergence are
equivalent. As can be seen from Figures 1 and 2, Algorithm 3.1 is more efficient than Algorithm 3.2
for finite dimensional Hilbert spaces. However, for infinite dimensional Hilbert spaces, in order to
ensure strong convergence, generally speaking, we have to use Algorithm 3.2.

5. Conclusions

In this paper, we considered a class of the split common fixed point problem. we present two new
self-adaptive algorithms for approximating a solution of the split common fixed point problem (1.3)
for the class of quasi-pseudocontractive operators. Besides, weak and strong convergence theorems
are established under some mild assumptions. Numerical findings have been documented to compare
the numerical efficiency of Algorithms 3.1 and 3.2.
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