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1. Introduction

The standard absolute value equation (AVE) is in the form of
Ax —|x| = b, (1.1)

where A € R™" is an M-matrix, |x| represents all the elements of the vector x € R" by absolute value
and b € R". If “|x|” is replaced by “Blx|” in (1.1), then the general AVE is obtained, see [24,30] . The
AVE has received considerable attention recently, as it is suitable for a wide variety of optimization
problems, e.g., linear programming, linear complementarity problems (LCP) and convex quadratic
programming [1-7,9-16,23,25,26].

In recent years, a wide variety of procedures have been developed for solving AVE (1.1). For
example, Wu and Li [34] presented a special shift splitting technique for determining the AVE (1.1)
and performed a convergence analysis. Ke and Ma [19] established the SOR-like process to solve the
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AVE (1.1). Chen et al. [8] modified the approach of [19] and analyzed the SOR-like approach using
optimal parameters. Fakharzadeh and Shams [12] recommended the mixed-type splitting iterative
scheme for determining (1.1) and established the convergence properties. Hu with Huang [17] have
developed the AVE system as an LCP without any premise and demonstrated the existence and
convexity properties. Caccetta et al. [7] studied a smoothing Newton procedure for solving (1.1) and
established that the procedure is globally convergent when ||JA~!|| < 1. Ning and Zhou [40] evaluated
improved adaptive differential evolution for AVEs; in this technique, they use local and global search.
Salkuyeh [41] addressed the Picard HSS iteration approach and provided sufficient conditions for its
convergence, while Edalatpour et al. [11] offered a generalization of the Gauss-Seidel (GGS)
approach for AVE (1.1). Cruz et al. [ 39] utilized the inexact non-smooth Newton approach and
designated global linear convergence of the approach. Moosaei et al. [22] proposed two techniques
for determining AVE (1.1), namely, the Newton technique with the Armijo step and the Homotopy
perturbation technique. For more details, see [18,20,27-29,31-38,43].

In this article, inspired by the work in [11], based on the GGS iteration method, the new generalized
Gauss-Seidel (NGGS) iteration methods are presented to solve the AVE (1.1), and its convergence
conditions are discussed in detail. By using some numerical tests, we demonstrate the efficacy of the
newly developed methods.

The rest of the article is designed as follows: Section 2 discusses some preliminary information.
Section 3 provides details of the proposed methodologies and its convergence conditions. Section 4
reports some tests to indicate the efficiency of the offered methods. Finally, section 5 draws some
conclusions.

2. Preliminaries

Here, we will provide some notations, the description of an M-matrix, as well as some helpful
lemmas for the later research.

Let A = (a;;) € R™", we represent the absolute value, tridiagonal and infinity norm of A as |A| =
(laijl), Trd(A) and || A ||, respectively. The matrix A € R™" is called an Z-matrix if a;; < 0 for i # J,
and an M-matrix if it is a nonsingular Z-matrix and with A~' > 0.

Lemma 2.1. [33] The matrix A = (a;;) € R™" is said to be strictly diagonally dominant when

Zijl,#i la;j| <lazl, i=1,2,---,n.

Furthermore, if A is strictly diagonally dominant, then A is invertible.

Lemma 2.2. [33] Consider z, x € R". Then |||z| — |xllle £ Iz = X||co-

3. Two NGGS methods

Here, we discuss the two NGGS methods: Method I represents the first method, while Method 11
represents the second method.
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3.1. Method I for AVE
By revising the AVE (1.1)

Ax—|x| =b.
By multiplying A on both sides, we obtain
AAx — A|x| = Ab. (3.1
Let ) )
A=Dy,-L-U=Q+Dy—-L)—(Q+U) (3.2)

where, D4, L and U respectively, are the diagonal, the strictly lower and upper-triangular parts of A.
Moreover, Q = ¥(2 — ¥)(I — D), where 0 < ¥ < 2 and I stands for the identity matrix. Using
Eqgs (3.1) and (3.2), the Method I is suggested as:

Q+Dy—AD)x = Ax| =[(1 = D(Q + Dy) + AQ + U)]x + Ab. (3.3)
Using the scheme, so Eq (3.3) can be written as
(Q+ Dy — AL = Ax™ = [(1 = D(Q + Dy) + AQ + U)X + Ab. (3.4)

Wherei = 0,1,2,...,and 0 < 2 < 1. Note that if 1 = 1 and Q = 0, then the Eq (3.4) is reduces to
the GGS method [11].
In order to demonstrate the convergence of Method I, we prove the theorem listed below.

Theorem 3.1. Assume that the diagonal elements of matrix A are all greater than one, and the Dy—L—1
matrix is a strict row-wise diagonally dominant matrix. If

IQ+Dy— AL ' [A=DQ+Dy) + AQ+ Ullo < 1 = A+ Dy — AL) Y|oo- (3.5)

Then the sequence {x'} of Method I converges to the unique solution x* of AVE (1.1).
Proof. We will show first [|(Q + Dy — AL) ||e < 1. Clearly, if we put L = 0, then

IQ + Ds = AL) Moo = (Q + Da) 'l < 1.

If we consider that L # 0, we get
0 <|ALlt < (Q+ Dy — D,

if we take
|ALIt < (Q+ D, — Dt

Taking both side by (Q + D4)~', we get
(Q+ D) ALt < (Q+ D) (Q + Dy) - D,
IAQ+ D) 'Lt < (I = (Q+ Dy) M,

AQ+ D) 'Lt <t—(Q+ Dy,
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Q+D) 't <t—|AQ + Dy 'L,
Q+D) 't <1 -0, (3.6)
where Q = A(Q+ Dy)'Landt=(1,1,...,1)". Also, we have
0<|II-O)=I+0+0*°+Q°+...+ 0",
<UT+10+10F +10P + ... +10" ) = -10)7". 3.7
Thus, from Eqgs (3.6) and (3.7), we get
(Q+Dy—AL) 't =T - Q) (Q+ D)t <= Q)7'IQ+ D) 'It,
<{I-1o)7'a-10nt =1t.

So, we obtain
IQ+ Dy — AL) Yl < 1.

To show the uniqueness of the solution, let x* and z* be two not the same solutions of the AVE (1.1).
Using Eq (3.4), we get

X = AQ+ Dy — AL) XM+ (Q+ Dy — ALY (1 = )(Q + Dy) + AQ + U))x* + Ab], (3.8)
F=AQ+ Dy — AL+ (Q+ Dy — ALY [(1 = D)(Q + Dy) + AQ + U))z* + Ab]. (3.9)
From Egs (3.8) and (3.9), we get
x* =25 =AQ + Dy — AL N (x*| = |2¥]) + (Da — AL N (1 = D(Q + D) + AQ + U))(x* = 2%).
Using Lemma 2.2 and Eq (3.5), the above equation can be written as
[ = 2¥lleo < AN+ Dy — AL) M laollx*] = 12*]llco
+HI(Q+ Da — AL (1 = D(Q + Dp) + AQ + U))lloolIX* = 2l
< AQ + Da = AL Moollx* = 2*lloo + (1 = AR + Dy — ALY lo)I* = 2¥|cos
[l = 2¥lleo = AQ + Dy = AL lsollx* = 2¥lleo < (1 = AR + D = ALY [l)lIx* = 2*[lco,
(1 = A+ Dy — AL) M)l = 2¥leo < (1 = AN + Dp = AL) o)™ = 2¥[lcos
6" = 2%[le0 < [IX* = 2¥]lco-

The above results are contradictory. Finally, x* = z*.
In order to verify the convergence, let x* is a unique solution of (1.1). So, from Eq (3.8) and

¥ = AQ + Dy — AL A+ (Q+ Dy — AL) (1 = D(Q + Dy) + AQ + U))x' + Ab],
we deduce
X = x* =AQ + Dy — AL (X = 1) + (Q + Dy — AL) (1 = D(Q + Dy) + AQ + U))(x' = xM)].
Based on Lemma 2.2 and the infinity norm, we get

6! = x*leo = ANQ + Da = AL) oI = 2l
<@+ Da = AL (1 = DEQ + Dy) + AQ + U))leollx’ = x*|eos

and since ||(Q + D4 — AL)™Y||., < 1 it follows that
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I(Q + Dy = L)' (1 = D(Q + Da) + AQ + U))lleo

||xi+1 _ x*”oo < _
1= AQ+ Dy — ALl

[lx" = x*lco.

According to this inequality, the convergence of Method I is possible when condition Eq (3.5) is
fulfilled.

3.2. Method Il for AVE

Here, we outline Method II of the NGGS method. By using Eqgs (3.1) and (3.2), we can formulate
Method II to determine AVE (1.1) as follows:

(Q+ Dy — AL = A = [ - DQ+ D)+ AQ+ X +ab, i=0,1,2,....

In order to demonstrate the convergence of Method II, we prove the theorem listed below.

Theorem 3.2. Assume that the diagonal elements of matrix A are all greater than one, and the D, —L—1
matrix is a strict row-wise diagonally dominant matrix. Then the sequence {x'} of Method II converges
to the unique solution x* of AVE (1.1).

Proof. The uniqueness result follows from Theorem 3.1. To demonstrate the convergence, suppose

A = = AQ+ Dy — AL X+ (Q + Dy — AL) (1 = D(Q + Dy) + AQ + U)x'! + ab]

—AQ + Dy — ALY XM+ (Q+ Dy — AL) (1 = D(Q + Dy) + AQ + U))x* + b)),

(Q+ Dy — AL = x*) = 21X = 2D + (1 = D(Q + Dy) + AQ + U)(xH — x%),
ADy — L—U)x" = Ax™ = ADy — L - U)x* — Ax*|,
(D4 — L - U)X — ¥ = (Dy — L - U)x* —|x*]. (3.10)
By using Eqgs (3.2) and (3.10), we get
Axi+l _ |xi+1| — Ax* _ |x*|’

Axi+l _ |xi+1| =b.

Therefore, x'*!' solves the AVE (1.1).
4. Numerical tests

The purpose of this section is to present a number of numerical tests that demonstrate the
effectiveness of new approaches from three perspectives: The iteration steps (Itr), computing time
(Time), and norm of absolute residual vectors (RVS). Where, RVS is defined by

RVS = IAX —|x'|—bll» < 10°6
’ [Ib]l2 = ’

All calculations are run on Intel (C) Core (TM) 15-3337U, 4 GB RAM, 1.80 GHz, and MATLAB
(2016a). Furthermore, the zero vector is the initial vector for Example 4.1.
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Problem 4.1. Let
4, for j =i,
j=i+1, i=12,..,n—-1,
A=<-1, for
j=i—-1, i=2,..,n,

0, otherwise.

Calculate b = Ax* — |x*|, where x* = ((=1)’, (i = 1,2, ..,n))" € R". We describe the suggested methods
in comparison with the optimal parameters SOR-like algorithm given in [8] (written as SLM using
w = 0.825), the special shift splitting algorithm presented in [34] (written as SSM), and the GGS
technique shown in [11]. In Table 1, we examine the results.

Table 1. The outcomes of Problem 4.1 with ¥ = 0.5 and 4 = 0.95.

Methods n 1000 2000 3000 4000
SILM Itr 18 18 18 18
Time 3.0156 13.1249 33.9104 65.1345
RVS 6.12e-07 6.13e-07 6.13e-07 6.14e-07
SSM Itr 14 14 14 14
Time 2.8128 9.0954 17.3028 29.1644
RVS 8.91e-07 8.92e-07 8.93e-07 8.93e-07
GGS Itr 9 8 8 8
Time 2.1924 7.5182 15.3273 24.3822
RVS 4.02e-07 7.78e-07 6.35¢-07 5.49¢-07
Method I Itr 8 8 8 8
Time 2.0704 5.2615 9.3395 17.6224
RVS 9.14e-07 6.46e-07 5.28e-07 4.57e-07
Method 11 Itr 6 6 6 6
Time 1.5811 2.9428 3.5738 6.3929

RVS 9.60e-07 9.61e-07 9.61e-07 9.61e-07

All methods in Table 1 analyze the solution x* for various values of n, respectively. Clearly, Method
I is more effective than SLM and SSM procedures, and the “Time’ of Method I is less than the GGS.
Moreover, Method II demonstrates high computational performance from the perspective of ‘Itr’ and
‘Time’.
Problem 4.2. Let A = M + I € R™" and the vector b = Ax* — |x*| € R", such that

M = Trd(-1.51,,H,,-0.51,) € R™", x*=(1,2,1,2,..,1,2)" € R",

where H, = Trd(-1.5,4,-0.5) € R and n = v*. Here, use the same initial vector and stopping criteria
described in [12]. We compare the presented techniques with the AOR method [21], the mixed-type
splitting (MT) iterative scheme [12] and the GGS method [11]. Table 2 provides the numerical data.

In Table 2, we present the numeric outcomes of the AOR method, MT method, GGS method,
Method I and Method II, respectively. We can conclude from these outcomes that our proposed
methods are more efficient than AOR and MT and GGS techniques.
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Problem 4.3. Let A = M + 41 € R™" and the vector b = Ax* — |x*| € R", such that
M =Trd(-1,,H,,~I,) e R™", xf =((-1),(=1,2,.,n)" €R",

where H, = Trd(-1,4,—1) € R™, I € R™ is the unit matrix and n = v*. In this problem, we use the
same initial vector and stopping criteria described in [12]. We compare the offered procedures with
the AOR method [21], the mixed-type splitting (MT) iterative scheme [12], and the technique
presented in [14] (expressed by SISA). The computational outcomes are listed in Table 3.

All methods in Table 3 analyze the solution x* for various values of n, respectively. Clearly, Method
I is more effective than AOR and MT procedures, and the “Time’ of Method I is less than the SISA
method. Moreover, Method II demonstrates high computational performance from the perspective of
‘Itr’ and “Time’.
Problem 4.4. Let
A=Trd(-1,8,-1) e R™, xF=(-1Y, (i=12,..,n) eR"

and b = Ax* — |x*| € R". Using the same initial vector and the stopping criteria described in [14]. We
compare the novel approaches with the technique offerd in [14] (expressed by SISA using w = 1.0455),
the SOR-like method proposed in [19] (written by SOR) and the modulus-based SOR method presented
in [42] (written as MSOR). The outcomes are listed in Table 4.

It is clear from Table 4 that all the tested methods provide a quick calculation of AVE (1.1). We
observe that the ‘Itr’ and ‘“Time’ of the recommended methods are less than the existing techniques.
The results of our study indicate that our suggested methods for AVEs are feasible and highly effective.

Table 2. The outcomes of Problem 4.2 with ¥ = 0.7 and 4 = 0.98.

Methods n 100 400 900 1600 4900
Itr 97 190 336 706 384
AOR Time 0.4721 2.8203 3.2174 6.3887 9.2344
RVS 9.80e-07 9.61e-07 9.73e-07 9.84e-07 9.36e-07
Itr 88 157 250 386 342
MT Time 0.4041 1.7953 3.0219 5.7626 8.8965
RVS 8.91e-07 9.65e-07 9.18e-07 9.56e-07 9.89¢-07
Itr 34 52 67 81 95
GGS Time 0.2207 0.5346 1.0472 1.7328 2.7612
RVS 9.53e-07 8.40e-07 8.42e-07 8.35e-07 9.89e-07
Itr 32 49 63 76 84
MethodI  Time 0.1971 0.3177 0.9243 1.3922 1.9920
RVS 9.59¢-07 8.20e-07 8.40e-07 8.60e-07 7.42e-07
Itr 20 31 41 49 62
Method I Time 0.1329 0.1936 0.8341 1.0271 1.3872

RVS 9.55e-07 8.39e-07 6.22e-07 9.32e-07 8.90e-07
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Table 3. The outcomes of Problem 4.3 with ¥ = 0.7 and A = 0.98.

Methods n 64 256 1024 4096
Itr 14 14 15 35
AOR Time 0.3483 1.9788 2.3871 5.8097
RVS 5.21e-07 6.29¢-07 6.54e-07 8.74e-07
Itr 14 14 15 25
MT Time 0.3168 1.0952 1.9647 2.2194
RVS 4.31e-07 5.46e-07 5.06e-07 9.38e-07
Itr 12 12 12 12
SISA Time 0.3299 1.8322 2.027 3.446
RVS 5.03e-07 7.58e-07 8.77e-07 9.28e-07
Itr 11 12 12 12
Method I Time 0.1928 0.8374 1.5738 2.0733
RVS 7.30e-07 6.01e-07 7.93e-07 8.88e-07
Itr 5 5 5 5
Method 11 Time 0.1372 0.3871 0.9622 1.7482
RVS 6.51e-08 6.52e-08 6.23e-08 5.99¢-08

Table 4. The outcomes of Problem 4.4 with ¥ = 0.3 and A = 0.95.

Methods n 1000 2000 3000 4000 5000
Itr 13 13 14 14 14
SISA Time 3.9928 8.8680 24.4031 51.3946 73.3394
RVS 6.04e-07 8.54e-07 2.33e-07 2.69e-07 3.01e-07
Itr 12 13 13 13 13
SOR Time 1.5136 3.3817 6.1262 7.1715 9.5261
RVS 9.45e-08 2.69e—08 3.29e-08 3.80e-08 4.25e-07
Itr 10 10 10 10 10

MSOR Time 3.9996 9.2833 29.3747 59.3392 82.3477
RVS 4.14e-07 5.86e-07 7.18e-07 8.29¢-07 9.27e-07

Itr 9 9 9 9 9
Method I  Time 1.2751 2.6184 5.7322 6.8911 7.3618
RVS 5.11e-07 5.12e-07 5.12e-07 5.12e-07 5.78e-07
Itr 6 6 6 6 6
Method I Time 0.2283 0.4829 0.9572 1.4829 2.0038

RVS 3.62e-08 5.12e-08 6.27e-08 7.24e-08 8.01e-08

5. Conclusions

In this work, two NGGS methods (Method I and Method II) are presented to solve the AVEs. The
convergence properties of the strategies are examined. A number of experiments have been conducted
in order to establish the effectiveness of the new approaches.
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The GGS technique has been successfully extended by two additional parameters when A is an
M-matrix. The cases for more general coefficient matrices are the next issue to be considered.

Appendix

The following is an explanation of how our proposed techniques can be implemented. From Ax —
|x| = b, we have
x =AY(x| + b).

Thus, we can approximate x'*! as follows,

x = ATN(|X] + b).
This process is known as the Picard technique [31]. Now, we examine the procedure for Method I.

Algorithm for Method I. (1) Choose the parameters, an starting vector x° € R" and set i = 0.
(2) Compute y' = x*! =~ A~1(|x'| + b),
(3) Calculate x™*! = A(Q + Dy — AL)'y| + (Q+ Dy — AL)'[((1 = D)(Q + Dy) + AQ + U))x' + Ab].
(4) If x*! = x', then stop. Else, apply i = i + 1 and repeat step 2.
For Method 11, follow the same steps.
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