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1. Introduction

Let (M, ω) be a complex n-dimensional compact Hermitian manifold and χ be a smooth real (1,1)-
form on (M, ω). Γωk is the set of all real (1,1)-forms whose eigenvalues belong to the k-positive cone
Γk. For any u ∈ C2(M), we can get a new (1,1)-form

χu := χ +
√
−1∂∂u.

In any local coordinate chart, χu can be expressed as

χu =
√
−1(χi j + ui j)dzi ∧ dz j.

In this article, we study the following form of parabolic Hessian quotient equations∂u(x,t)
∂t = log Ck

nχ
k
u∧ω

n−k

Cl
nχ

l
u∧ω

n−l − log φ(x, u), (x, t) ∈ M × [0,T ),
u(x, 0) = u0(x), x ∈ M,

(1.1)

where 0 ≤ l < k ≤ n, [0,T ) is the maximum time interval in which the solution exists and φ(x, z) ∈
C∞(M × R) is a given strictly positive function.
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The study of the parabolic flows is motivated by complex equations

χk
u ∧ ω

n−k =
Cl

n

Ck
n
φ(x, u)χl

u ∧ ω
n−l, χu ∈ Γωk . (1.2)

Equation (1.2) include some important geometry equations, for example, complex Monge-Ampère
equation and Donaldson equation [6], which have attracted extensive attention in mathematics and
physics since Yau’s breakthrough in the Calabi conjecture [28]. Since Eq (1.2) are fully nonlinear
elliptic, a classical way to solve them is the continuity method. Using this method, the complex Monge-
Ampère equation

χn
u = φ(x)ωn, χu ∈ Γωn

was solved by Yau [28]. Donaldson equation

χn
u =

∫
M
χn∫

M
χ ∧ ωn−1

χu ∧ ω
n−1, χu ∈ Γωn

was independently solved by Li-Shi-Yao [11], Collins-Szèkelyhidi [3] and Sun [17]. Equation (1.2)
also include the complex k-Hessian equation and complex Hessian quotient equation, which,
respectively, correspond to

Ck
nχ

k
u ∧ ω

n−k = φ(x)ωn, χu ∈ Γωk ,

χk
u ∧ ω

n−k =
Cl

n

Ck
n
φ(x)χl

u ∧ ω
n−l, χu ∈ Γωk .

Dinew and Kolodziej [7] proved a Liouville type theorem for m-subharmonic functions in Cn, and
combining with the estimate of Hou-Ma-Wu [10], solved the complex k-Hessian equation by using the
continuity method. Under the cone condition, Sun [16] solved the complex Hessian quotient equation
by using the continuity method. There have been many extensive studies for complex Monge-Ampère
equation, Donaldson equation, the complex k-Hessian equation and the complex Hessian quotient
equation on closed complex manifolds, see, e.g., [4, 12, 20, 22, 23, 29, 30]. When the right hand side
function φ in Eq (1.2) depends on u, that is φ = φ(x, u), it is interesting to ask whether we can solve
them. We intend to solve (1.2) by the parabolic flow method.

Equation (1.1) covers some of the important geometric flows in complex geometry. If k = n and
l = 0, (1.1) is known as the complex Monge-Ampère flow

∂u(x, t)
∂t

= log
χn

u

ωn − log φ(x), (x, t) ∈ M × [0,T ),

which is equivalent to the Kähler-Ricci flow. The result of Yau [28] was reproduced by Cao [2] through
Kähler-Ricci flow. Using the complex Monge-Ampère flow, similar results on a compact Hermitian
manifold and a compact almost Hermitian manifold were proved by Gill [9] and Chu [5], respectively.
To study the normalized twisted Chern-Ricci flow

∂ωt

∂t
= −Ric(ωt) − ωt + η,

which is equivalent to the following Mong-Ampère flow

∂ϕ

∂t
= log

(θt + ddcϕ)n

Ω
− ϕ,
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Tô [25, 26] considered the following complex Monge-Ampère flow

∂ϕ

∂t
= log

(θt + ddcϕ)n

Ω
− F(t, x, ϕ),

where Ω is a smooth volume form on M. From this, we can see that the given function φ depends on u
in some geometric flows. If l = 0, (1.1) is called as the complex k-Hessian flow

∂u(x, t)
∂t

= log
Ck

nχ
k
u ∧ ω

n−k

ωn − log φ(x, u), (x, t) ∈ M × [0,T ).

The solvability of complex k-Hessian flow was showed by Sheng-Wang [21].
In this paper, our research can be viewed as a generalization of Tô’s work in [26] and Sheng-Wang’s

work in [21]. To solve the complex Hessian quotient flow, the condition of the parabolic C-subsolution
is needed. According to Phong and Tô [14], we can give the definition of the parabolic C-subsolution
to Eq (1.1).

Definition 1.1. Let u(x, t) ∈ C2,1(M × [0,T )) and χu ∈ Γωk , if there exist constants δ,R > 0, such that
for any (x, t) ∈ M × [0,T ),

log
σk(λ)
σl(λ)

− ∂tu ≤ log φ(x, u), λ − λ(u) + δI ∈ Γn,

implies that
|λ| < R,

then u is said to be a parabolic C-subsolution of (1.1), where λ(u) denotes eigenvalue set of χu.

Obviously, we can give the equivalent definition of parabolic C-subsolution of (1.1).

Definition 1.2. Let u(x, t) ∈ C2,1(M × [0,T )) and χu ∈ Γωk , if there exist constant δ̃ > 0, for any
(x, t) ∈ M × [0,T ), such that

lim
µ→∞

log
σk(λ(u) + µei)
σl(λ(u) + µei)

>
∂u
∂t

+ δ̃ + log φ(x, u), 1 ≤ i ≤ n, (1.3)

then u is said to be a parabolic C-subsolution of (1.1).

Our main result is

Theorem 1.3. Let (M, g) a compact Hermitian manifold and χ be a smooth real (1, 1)-form on M.
Assume there exists a parabolic C-subsolution u for Eq (1.1) and

∂tu ≥ max{sup
M

(
log

σk(λ(u0))
σl(λ(u0))

− log φ(x, u0)
)
, 0}, (1.4)

φz(x, z)
φ

> cφ > 0, (1.5)

where cφ is a constant. Then there exits a unique smooth solution u(x, t) to (1.1) all time with

sup
x∈M

(
u0(x) − u(x, 0)

)
= 0. (1.6)

Moreover, u(x, t) is C∞ convergent to a smooth function u∞, which solves Eq (1.2).
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The rest of this paper is organized as follows. In Section 2, we give some important lemmas and
estimate on |ut(x, t)|. In Section 3, we prove C0 estimates of Eq (1.1) by the parabolic C-subsolution
condition and the Alexandroff-Bakelman-Pucci maximum principle. In Section 4, using the parabolic
C-subsolution condition, we establish the C2 estimate for Eq (1.1) by the method of Hou-Ma-Wu [10].
In Section 5, we adapt the blowup method of Dinew and Kolodziej [7] to obtain the gradient estimate.
In Section 6, we give the proof of the long-time existence of the solution to the parabolic equation and
its convergence, that is Theorem 1.3.

2. Preliminaries

In this section, we give some notations and lemmas. In holomorphic coordinates, we can set

ω =
√
−1gi jdzi ∧ dz j

=
√
−1δi jdzi ∧ dz j, χ =

√
−1χi jdzi ∧ dz j,

χu =
√
−1(χi j + ui j)dzi ∧ dz j

=
√
−1Xi jdzi ∧ dz j,

χu =
√
−1(χi j + ui j)dzi ∧ dz j

=
√
−1Xi jdzi ∧ dz j.

λ(u) and λ(u) denote the eigenvalue set of {Xi j} and {Xi j} with respect to {gi j}, respectively. In local
coordinates, (1.1) can be written as

∂tu = log
σk(λ(u))
σl(λ(u))

− log φ(x, u). (2.1)

For simplicity, set

F(λ(u)) = log
σk(λ(u))
σl(λ(u))

,

then (2.1) is abbreviated as
∂tu = F(λ(u)) − log φ(x, u). (2.2)

We use the following notation

F i j =
∂F
∂Xi j

, F =
∑

i

F ii, F i j,pq =
∂2F

∂Xi j∂Xpq
.

For any x0 ∈ M, we can choose a local holomorphic coordinates such that the matrix {Xi j} is diagonal
and X11 ≥ · · · ≥ Xnn, then we have, at x0 ∈ M,

λ(u) = (λ1, · · · , λn) = (X11, · · · , Xnn),

F i j = F iiδi j =
(σk−1(λ|i)

σk
−
σl−1(λ|i)
σl

)
δi j, F11 ≤ · · · ≤ Fnn.

To prove a priori C0-estimate for solution to Eq (1.1), we need the following variant of the
Alexandroff-Bakelman-Pucci maximum principle, which is Proposition 10 in [20].
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Lemma 2.1. [20] Let v : B(1)→ R be a smooth function, which meets the condition v(0)+ε ≤ inf∂B(1) v,
where B(1) denotes the unit ball in Rn. Define the set

Ω =

{
x ∈ B(1) : |Dv(x)| < ε

2 , and
v(y) ≥ v(x) + Dv(x) · (y − x),∀y ∈ B(1)

}
.

Then there exists a costant c0 > 0 such that

c0ε
n ≤

∫
Ω

det(D2v).

Next, we give an estimate on |ut(x, t)|.

Lemma 2.2. Under the assumption of Theorem 1.3, let u(x, t) be a solution to (1.1). Then for any
(x, t) ∈ M × [0,T ), we have

min{inf
M

ut(x, 0), 0} ≤ ut(x, t) ≤ max{sup
M

ut(x, 0), 0}. (2.3)

Furthermore, there is a constant C > 0 such that

sup
M×[0,T )

|∂tu(x, t)| ≤ sup
M
|∂tu(x, 0)| ≤ C,

where C depends on H = |u0|C2(M) and |φ|C0(M×[−H,H]).

Proof. Differentiating (2.2) on both sides simultaneously at t, we obtain

(ut)t = F i jXi jt −
φz

φ
ut = F i j(ut)i j −

φz

φ
ut. (2.4)

Set uεt = ut−εt, ε > 0. For any T ′ ∈ (0,T ), suppose uεt achieves its maximum Mt at (x0, t0) ∈ M×[0,T ′].
Without loss of generality, we may suppose Mt ≥ 0. If t0 > 0, From the parabolic maximum principle
and (2.4), we get

0 ≤(uεt )t − F i j(uεt )i j +
φz

φ
uεt

≤(ut)t − ε − F i j(ut)i j +
φz

φ
ut − ε

φz

φ
t0

≤ − ε − ε
φz

φ
t0.

This is obviously a contradiction, so t0 = 0 and

sup
M×[0,T ′]

uεt (x, t) = sup
M

ut(x, 0),

that is
sup

M×[0,T ′]
ut(x, t) = sup

M×[0,T ′]
(uεt (x, t) + εt) ≤ sup

M
ut(x, 0) + εT ′.
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Letting ε→ 0, we obtain
sup

M×[0,T ′]
ut(x, t) ≤ sup

M
ut(x, 0).

Since T ′ ∈ (0,T ) is arbitrary, we have

sup
M×[0,T )

ut(x, t) ≤ sup
M

ut(x, 0). (2.5)

Similarly, setting uεt = ut + εt, ε > 0, we obtain

inf
M×[0,T )

ut(x, t) ≥ inf
M

ut(x, 0). (2.6)

(2.1) yields

|ut(x, 0)| = | log
σk(λ(u0))
σl(λ(u0))

− log φ(x, u0)| ≤ C. (2.7)

Combining (2.5)–(2.7), we complete the proof of Proposition 2.2.
�

From the concavity of F(λ(u)) and the condition of the parabolic C-subsolution, we give the
following lemma, which plays an important role in the estimation of C2.

Lemma 2.3. Under the assumption of Theorem 1.3 and assuming that X11 ≥ · · · ≥ Xnn, there exists
two positive constants N and θ such that we have either

F ii(uii − uii) − ∂t(u − u) ≥ θ(1 + F ) (2.8)

or
F11 ≥

θ

N
(1 + F ). (2.9)

Proof. Since u is a parabolic C-subsolution to Eq (1.1), from Definition 1.2, there are uniform constants
δ̃ > 0 and N > 0, such that

log
σk(λ(u) + Ne1)
σl(λ(u) + Nue1)

>
∂u
∂t

+ δ̃ + log φ(x, u). (2.10)

If ε > 0 is sufficiently small, it can be obtained from (2.10)

log
σk(λ(u) − εI + Ne1)
σl(λ(u) − εI + Nue1)

≥
∂u
∂t

+ δ̃ + log φ(x, u).

Set λ′ = λ(u) − εI + Ne1, then

F(λ′) ≥
∂u
∂t

+ δ̃ + log φ(x, u). (2.11)

Using the concavity of F(λ(u)) gives

F ii(uii − uii) = F ii({Xii − Xii)

= F ii({Xii − εδii + Nδi1 − Xii) + εF − NF11 (2.12)
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≥ F(λ′) − F(λ(u)) + εF − NF11.

From Lemma 2.2 and (1.4), we obtain

ut(x, t) ≥ ut(x, t), ∀(x, t) ∈ M × [0,T ). (2.13)

In addition, it can be obtained from the condition (1.6)

u(x, 0) ≥ u(x, 0), ∀x ∈ M × [0,T ). (2.14)

(2.13) and (2.14) deduce that

u(x, t) ≥ u(x, t), ∀(x, t) ∈ M × [0,T ). (2.15)

It follows from this that
φ(x, u) ≥ φ(x, u). (2.16)

Combining (2.2), (2.11) and (2.16) gives that

F(λ′) − F(λ(u)) ≥ut(x, t) − ut(x, t) + δ̃ + log φ(x, u) − log φ(x, u) (2.17)

≥ut(x, t) − ut(x, t) + δ̃.

Put (2.17) into (2.12)

F ii(uii − uii) ≥ ut(x, t) − ut(x, t) + δ̃ + εF − NF11 ≥ δ̃ + εF − NF11.

Let

θ = min{
δ̃

2
,
ε

2
}.

If F11N ≤ θ(1 + F ), Inequality (2.8) is obtained, otherwise Inequality (2.9) must be true. �

3. C0 Estimates

In this section, we prove the C0 estimates by the existence of the parabolic C-subsolution and the
Alexandroff-Bakelman-Pucci maximum principle.

Proposition 3.1. Under the assumption of Theorem1.3, let u(x, t) be a solution to (1.1). Then there
exists a constant C > 0 such that

|u(x, t)|C0(M×[0,T )) ≤ C,

where C depends on |u0|C2(M) and |u|C2(M×[0,T )).

Proof. Combining (2.13), (2.14) and ∂φ(x,z)
∂z ≥ 0 yields

ut(x, t) + log φ(x, u) ≥ ut(x, t) + log φ(x, u). (3.1)

Let’s rewrite Eq (2.2) as
F(λ(u)) = ∂tu + log φ(x, u). (3.2)

AIMS Mathematics Volume 7, Issue 5, 7441–7461.
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when fix t ∈ [0,T ), Eq (3.2) is elliptic. From (3.1), we see that the parabolic C-subsolution u(x, t) is a
C-subsolution to Eq (3.2) in the elliptic sense. From (2.15), we have

sup
M×[0,T )

(u − u) = 0.

Our goal is to obtain a lower bound for L = infM×t(u − u). Note that λ(u) ∈ Γk, which implies that
λ(u) ∈ Γ1, then ∆(u − u) ≥ −C̃, where ∆ is the complex Laplacian with respect to ω. According to
Tosatti-Weinkove’s method [22], we can prove that ‖u−u‖L1(M) is bounded uniformly. Let G : M×M →
R be the associated Green’s function, then, by Yau [28], there is a uniform constant K such that

G(x, y) + K ≥ 0, ∀(x, y) ∈ M × M, and
∫

y∈M
G(x, y)ωn(y) = 0.

Since
sup

M×[0,T )
(u − u) = 0,

then for fixed t ∈ [0,T ) there exists a point x0 ∈ M such that (u − u)(x0, t) = 0. Thus

(u − u)(x0, t) =

∫
M

(u − u)dµ −
∫

y∈M
G(x0, y)∆(u − u)(y)ωn(y)

=

∫
M

(u − u)dµ −
∫

y∈M
(G(x0, y) + K)∆(u − u)(y)ωn(y)

≤

∫
M

(u − u)dµ + C̃K
∫

M
ωn,

that is ∫
M

(u − u)dµ =

∫
M
|(u − u)|dµ ≤ C̃K

∫
M
ωn.

Let us work in local coordinates, for which the infimum L is achieved at the origin, that is L = u(0, t)−
u(0, t). We write B(1) = {z : |z| < 1}. Let v = u − u + ε |z|2, for a small ε > 0. We have inf v = L = v(0),
and v(z) ≥ L + ε for z ∈ ∂B(1). From Lemma 2.1, we get

c0ε
2n ≤

∫
Ω

det(D2v). (3.3)

At the same time, if x ∈ Ω, then D2v(x) ≥ 0 implies that

ui j(x) − ui j(x) + εδi j ≥ 0.

If ε is sufficiently small, then
λ(u) ∈ λ(u) − δI + Γn.

Set µ = λ(u) − λ(u). Since λ(u) satisfies Eq (3.2), then

F(λ(u) + µ) = ∂tu + log φ(x, u), µ + δI ∈ Γn. (3.4)

u is a C-subsolution to Eq (3.2) in the elliptic sense, so there is a uniform constant R > 0, such that

|µ| ≤ R,
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which means |vi j| ≤ C, for any x ∈ Ω. As in Blocki [1], for x ∈ Ω, we have D2v(x) ≥ 0 and so

D2v(x) ≤ 22n det(vi j)
2 ≤ C′.

From this and (3.3), we obtain

c0ε
2n ≤

∫
Ω

det(D2v) ≤ C′ · vol(Ω). (3.5)

On the other hand, by the definition of Ω in Lemma 2.1, for x ∈ Ω, we get

v(0) ≥ v(x) − Dv(x) · x > v(x) −
ε

2
,

and so
|v(x)| > |L +

ε

2
|.

It follows that ∫
M
|v(x)| ≥

∫
Ω

|v(x)| ≥ |L +
ε

2
| · vol(Ω). (3.6)

Since ‖u − u‖L1(M) is bounded uniformly,
∫

M
|v(x)| is also bounded uniformly. If L is very large,

Inequality (3.6) contradicts (3.5), which means that L has a lower bound. For any t ∈ [0,T ),
Inequality (3.1) holds, thus

|u(x, t)|C0(M×[0,T )) ≤ |L| + sup
M×[0,T )

|u| ≤ C.

�

4. C2 Estimates

In this section, we prove that the second-order estimates are controlled by the square of the gradient
estimate linearly. Our calculation is a parabolic version of that in Hou-Ma-Wu [10].

Proposition 4.1. Under the assumption of Theorem1.3, let u(x, t) be a solution to (1.1). Then there
exists a constant C̃ such that

sup
M×[0,T )

|
√
−1∂∂u| ≤ C̃

(
sup

M×[0,T )
|∇u|2 + 1

)
,

where C̃ depends χ, ω, |φ|C2(M×[−C,C]), |u|C2(M×[0,T )), |∂tu|C0(M×[0,T )) and |u0|C2(M).

Proof. Let λ(u) = (λ1, . . . , λn) and λ1 is the maximum eigenvalue. For any T ′ < T , we consider the
following function

W(x, t) = log λ1 + ϕ(|∇u(x, t)|2) + ψ(u(x, t) − u(x, t)), (x, t) ∈ M × [0,T ′], (4.1)

where ϕ and ψ are determined later. We want to apply the maximum principle to the function W. Since
the eigenvalues of the matrix {Xi j} with respect to ω need not be distinct at the point where W achieves
its maximum, we will perturb {Xi j} following the technique of [20]. Let W achieve its maximum at

AIMS Mathematics Volume 7, Issue 5, 7441–7461.
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(x0, t0) ∈ M × [0,T ′]. Near (x0, t0), we can choose local coordinates such that {Xi j} is diagonal with
X11 ≥ · · · ≥ Xnn, and λ(u) = (X11, · · · , Xnn). Let D be a diagonal matrix such that D11 = 0 and
0 < D22 < · · · < Dnn are small, satisfying Dnn < 2D22. Define the matrix X̃ = X − D. At (x0, t0), X̃ has
eigenvalues

λ̃1 = λ1, λ̃i = λi − Dii, n ≥ i ≥ 2.

Since all the eigenvalues of X̃ are distinct, we can define near (x0, t0) the following smooth function

W̃ = log λ̃1 + ϕ(|∇u|2) + ψ(u − u), (4.2)

where
ϕ(s) = −

1
2

log(1 −
s

2K
), 0 ≤ s ≤ K − 1,

ψ(s) = −E log(1 +
s

2L
), −L + 1 ≤ s ≤ L − 1,

K = sup
M×[0,T ′]

|∇u|2 + 1,

L = sup
M×[0,T ′]

|u| + sup
M×[0,T ′]

|u| + 1,

E = 2L(C1 + 1),

and C1 > 0 is to be chosen later. Direct calculation yields

0 <
1

4K
≤ ϕ

′

≤
1

2K
, ϕ

′′

= 2(ϕ
′

)2 > 0, (4.3)

and
C1 + 1 ≤ −ψ

′

≤ 2(C1 + 1), ψ
′′

≥
4ε

1 − ε
(ψ
′

)2, ∀ ε ≤
1

4E + 1
. (4.4)

Without loss of generality, we can assume that λ1 > 1. From here on, all calculations are done at
(x0, t0). From the maximum principle, calculating the first and second derivatives of the function W̃
gives

0 = W̃i =
λ̃1,i

λ1
+ ϕ

′

(|∇u|2)i + ψ
′

(u − u)i, 1 ≤ i ≤ n, (4.5)

0 ≥ W̃ii =
λ̃1,ii

λ1
−
λ̃1,iλ̃1,i

λ2
1

+ ϕ
′

(|∇u|2)ii + ϕ
′′

|(|∇u|2)i|
2 (4.6)

+ ψ
′

(u − u)ii + ψ
′′

|(u − u)i|
2.

0 ≤ W̃t =
λ̃1,t

λ1
+ ϕ

′

(|∇u|2)t + ψ
′

(u − u)t. (4.7)

Define
L := F i j∇ ∂

∂z j
∇ ∂

∂zi
− ∂t.

Obviously,
0 ≥ LW̃ = L log λ̃1 +Lϕ(|∇u|2) +Lψ(u − u). (4.8)
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Next, we will estimate the terms in (4.8). Direct calculation shows that

L log λ̃1 = F ii
λ̃1,ii

λ1
− F ii |̃λ1,i|

2

λ2
1

−
λ̃1,t

λ1
. (4.9)

According to Inequality (78) in [20], we have

λ̃1,ii ≥ Xii11 − 2Re(Xi11T 1
i1) −C0λ1, (4.10)

where C0 depending χ, ω, |φ|C2(M×[−C,C]), |u|C2(M×[0,T )), |∂tu|C0(M×[0,T )) and |u0|C2(M)). From here on, C0

can always absorb the constant it represents before, and can change from one line to the next, but it
does not depend on the parameter we choose later. By calculating the covariant derivatives of (4.7) in
the direction ∂

∂z1 and ∂

∂z1 , we obtain

ut1 = F iiXii1 − (log φ)1 − (log φ)uu1, (4.11)

and

ut11 =F i j,pqXi j1Xpq1 + F iiXii11 − (log φ)11 − (log φ)1uu1 (4.12)

− (log φ)u1u1 − (log φ)uu|u1|
2 − (log φ)uu11.

Notice that

X11i =χ11i + u11i

=(χ11i − χi11 + T p
i1χp1) + Xi11 − T 1

i1λ1, (4.13)

therefore
|X11i|

2 ≤ |Xi11|
2 − 2λ1Re(Xi11T 1

i1) + C0(λ2
1 + |X11i|). (4.14)

Combining (4.14) with
λ̃1,i = X11i − (D11)i,

gives

−F ii |̃λ1,i|
2

λ2
1

= − F ii |X11i|
2

λ2
1

+
2
λ2

1

F iiRe
(
X11i(D

11)i
)
−

F ii|(D11)i|
2

λ2
i

≥ − F ii |X11i|
2

λ2
1

−
C0

λ2
1

F ii|X11i| −C0F (4.15)

≥ − F ii |Xi11|
2

λ2
1

+
2
λ1

F iiRe(Xi11T 1
i1) −

C0

λ2
1

F ii|X11i| −C0F .

Let’s set λ1 ≥ K, otherwise the proof is completed. Putting 4.10–4.12 and (4.15) into (4.9) yields

L log λ̃1 ≥
−F i j,pqXi j1Xpq1

λ1
− F ii |Xi11|

2

λ2
1

−
C0

λ1
F ii |X11i|

λ1
−C0F
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+
(log φ)11 + (log φ)1uu1 + (log φ)u1u1 + (log φ)uu|u1|

2 − (log φ)uχ11

λ1

≥
−F i j,pqXi j1Xpq1

λ1
− F ii |Xi11|

2

λ2
1

−
C0

λ1
F ii |X11i|

λ1
−C0F −C0 (4.16)

A simple computation gives

Lϕ(|∇u|2) = ϕ
′

F ii(|∇u|2)ii + ϕ
′′

F ii|(|∇u|2)i|
2 − ϕ

′

(|∇u|2)t. (4.17)

Next, we estimate the formula (4.17). Differentiating Eq (2.2), we have

(ut)p = F iiXiip − (log φ)p − (log φ)uup, (4.18)

and
(ut)p = F iiXiip − (log φ)p − (log φ)uup. (4.19)

It follows from (4.18) and (4.19) that

∂t|∇u|2 =
∑

p

utpup +
∑

p

uputp

=F ii
∑

p

(Xiipup + Xiipup) −
∑

p

(log φ)pup (4.20)

−
∑

p

(log φ)pup − 2
∑

p

(log φ)u|∇u|2.

By commuting derivatives, we have the identity

F iiXiip =F iiuiip + F iiχiip (4.21)

=F iiupii − F iiT q
piuqi − F iiuqR q

iip
+ F iiχiip.

Direct calculation gives

F ii(|∇u|2)ii =
∑

p

F ii(upiiup + upiiup) +
∑

p

F ii(upiupi + upiupi). (4.22)

It follows from (4.21) that

F iiupiiup − F iiXiipup

=F iiT q
piuqiup + F iiupuqR q

iip
− F iiχiipup (4.23)

≥ −C0K
1
2 F iiXii −C0K

1
2F −C0KF .

Noticing that

F iiXii =
σk−1(λ|i)
σk

λi −
σl−1(λ|i)
σl

λi = k − l, (4.24)

from this and (4.23), we obtain

F iiupiiup − F iiXiipup ≥ −C0K
1
2 −C0K

1
2F −C0KF . (4.25)
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In the same way, we can get

F iiupiiup − F iiXiipup ≥ −C0K
1
2 −C0K

1
2F −C0KF . (4.26)

Using (4.20)–(4.26) in (4.17), we have

Lϕ(|∇u|2) ≥ϕ
′′

F ii|(|∇u|2)i|
2 + ϕ

′

(−C0K
1
2 −C0K

1
2F −C0KF )

+ ϕ
′
∑

p

(
(log φ)pup + (log φ)pup + 2(log φ)u|∇u|2

)
+

∑
p

F ii(|upi|
2 + |upi|

2)

≥ϕ
′′

F ii|(|∇u|2)i|
2 +

∑
p

F ii(|upi|
2 + |upi|

2) −C0 −C0F . (4.27)

A simple calculation gives

Lψ(u − u) = ψ
′′

F ii|(u − u)i|
2 + ψ′[F ii(u − u)ii − ∂t(u − u)]. (4.28)

Substituting (4.27), (4.28) and (4.16) into (4.8),

0 ≥
−F i j,pqXi j1Xpq1

λ1
− F ii |Xi11|

2

λ2
1

−
C0

λ1
F ii |X11i|

λ1

+ ϕ
′′

F ii|(|∇u|2)i|
2 + ϕ′

∑
p

F ii(|upi|
2 + |upi|

2) −C0 −C0F (4.29)

+ ψ
′′

F ii|(u − u)i|
2 + ψ′[F ii(u − u)ii − ∂t(u − u)].

Let δ > 0 be a sufficiently small constant to be chosen later and satisfy

δ ≤ min{
1

1 + 4E
,

1
2
}. (4.30)

We separate the rest of the calculations into two cases.
Case 1: λn < −δλ1.

Using(4.5), we find that

−
F ii|X11i|

2

λ2
1

= − F ii
∣∣∣ϕ′(|∇u|2)i + ψ

′

(u − u)i −
(D11)i

λ1

∣∣∣2
≥ − 2(ϕ

′

)2F ii
∣∣∣(|∇u|2)i

∣∣∣2 − 2F ii
∣∣∣ψ′(u − u)i −

(D11)i

λ1

∣∣∣2 (4.31)

≥ − 2(ϕ
′

)2F ii
∣∣∣(|∇u|2)i

∣∣∣2 −C0|ψ
′

|2KF −C0F .

From (4.13), we have
|Xi11|

2

λ2
1

≤
|X11i|

2

λ2
1

+ C0(1 +
|X11i|

λ1
). (4.32)
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Combining (4.31) with (4.32), we conclude that

−
F ii|Xi11|

2

λ2
1

≥ − 2(ϕ
′

)2F ii
∣∣∣(|∇u|2)i

∣∣∣2 −C0|ψ
′

|2KF −C0F (4.33)

−C0F ii |X11i|

λ1
.

Note that the operator F is concave, which implies that

−F i j,pqXi j1Xpq1

λ1
≥ 0. (4.34)

Applying (4.33) and (4.34) to (4.29) and using ϕ′′ = 2(ϕ′)2 yield that

0 ≥ −C0F ii |X11i|

λ1
−

C0

λ1
F ii |X11i|

λ1
+ ϕ′

∑
p

F ii(|upi|
2 + |upi|

2)

−C0|ψ
′

|2KF −C0F −C0 + ψ
′′

F ii|(u − u)i|
2 (4.35)

+ ψ′[F ii(u − u)ii − ∂t(u − u)].

Note that the fact
|X11i|

λ1
=

∣∣∣ − ϕ′(upiup + upupi) − ψ′(u − u)i +
(D11)i

λ1

∣∣∣,
It follows that

−C0F ii |X11i|

λ1
≥ −C0ϕ

′K−
1
2 F ii(|upi| + |upi|) + C0ψ

′K
1
2F −C0F . (4.36)

Using the following inequality

K−
1
2 (|upi| + |upi|) ≤

1
4C0

(|upi|
2 + |upi|

2) + C0K.

deduces

−C0F ii |X11i|

λ1
≥ −

1
4
ϕ′F ii(|upi|

2 + |upi|
2) + C0ψ

′K
1
2F −C0F . (4.37)

Note that λ1 > 1, we have

−
C0

λ1
F ii |X11i|

λ1
≥ −

1
4
ϕ′F ii(|upi|

2 + |upi|
2) + C0ψ

′K
1
2F −C0F . (4.38)

Since ψ
′′

> 0, which implies that

ψ
′′

F ii|(u − u)i|
2 ≥ 0. (4.39)

According to Lemma 2.3, there are at most two possibilities:
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(1) If (2.8) holds true, then

ψ′[F ii(u − u)ii − ∂t(u − u)] ≥ θ(1 + F )|ψ′|. (4.40)

Substituting (4.37)—(4.40) into (4.35) and using ϕ′ ≥ 1
4K yield that

0 ≥
1

8K

∑
p

F ii(|upi|
2 + |upi|

2) −C0|ψ
′

|2KF −C0(F + 1) + θ(1 + F )|ψ′|

≥
1

8K
F iiλ2

i −C0(C1 + 1)2KF + θ(C1 + 1)(F + 1) −C0(F + 1) (4.41)

≥
δ2λ2

1

8nK
F −C0(C1 + 1)2KF + θ(C1 + 1)(F + 1) −C0(F + 1).

We may set θC1 ≥ C0. It follows from (4.41) that λ1 ≤ C̃K.
(2) If (2.9) holds true,

F11 >
θ

N
(1 + F ). (4.42)

According to ψ
′

< 0 and the concavity of the operator F, we have

ψ′[F ii(u − u)ii − ∂t(u − u)] =ψ′[F ii(Xii − Xii) − ∂t(u − u)]
≥ψ′[F(χu) − F(χu) − ∂tu + ∂tu] (4.43)
=ψ′[φ(x, u) + ∂tu − F(χu)]
≥C0ψ

′.

Using (4.37)—(4.39) and (4.43) in (4.35), together with (4.42), we find that

0 ≥
1

8K
F iiλ2

i −C0|ψ
′

|2KF + C0ψ
′ −C0(F + 1)

≥
θλ2

1

8NK
(1 + F ) +

δ2λ2
1

8nK
F −C0(C1 + 1)2KF (4.44)

−C0(C1 + 1) −C0(F + 1).

Let λ1 be sufficiently large, so that

θλ2
1

8NK
(1 + F ) −C0(C1 + 1) −C0(F + 1) ≥ 0,

It follows from (4.44 )that λ1 ≤ C̃K.
Case 2: λn ≥ −δλ1.
Let

I =
{
i ∈ {1, · · · , n}|F ii > δ−1F11}.

Let us first treat those indices which are not in I. Similar to (4.31), we obtain

−
∑
i<I

F ii|X11i|
2

λ2
1

≥ −2(ϕ
′

)2
∑
i<I

F ii
∣∣∣(|∇u|2)i

∣∣∣2 − C0K
δ
|ψ
′

|2F11 −C0F . (4.45)
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Using (4.32) yields that

−
∑
i<I

F ii|Xi11|
2

λ2
1

≥ − 2(ϕ
′

)2
∑
i<I

F ii
∣∣∣(|∇u|2)i

∣∣∣2 − C0K
δ
|ψ
′

|2F11

−C0

∑
i<I

F ii|X11i|

λ1
−C0F . (4.46)

Since

−F i1,1i =
F ii − F11

X11 − Xii
and λi ≥ λn ≥ −δλ1,

which implies that

−
∑
i∈I

F i1,1i ≥
1 − δ
1 + δ

1
λ1

∑
i∈I

F ii,

It follows that

−
F i1,1i|Xi11|

2

λ1
≥

1 − δ
1 + δ

∑
i∈I

F ii |Xi11|
2

λ2
1

. (4.47)

Recalling ϕ′′ = 2(ϕ′)2 and 0 < δ ≤ 1
2 , we obtain from (4.5) that∑

i∈I

ϕ
′′

F ii
∣∣∣(|∇u|2)i

∣∣∣2
=2

∑
i∈I

F ii
∣∣∣∣∣Xi11

λ1
+ ψ′(u − u)i +

χ11i − χi11 + T p
i1χp1 − (D11)i

λ1

∣∣∣∣∣2
≥2

∑
i∈I

F ii
(
δ

∣∣∣∣∣Xi11

λ1

∣∣∣∣∣2 − 2δ
1 − δ

(ψ
′

)2|(u − u)i|
2 −C0

)
(4.48)

≥2δ
∑
i∈I

F ii
∣∣∣∣∣Xi11

λ1

∣∣∣∣∣2 − 4δ
1 − δ

(ψ
′

)2F ii|(u − u)i|
2 −C0F .

Notice that ψ
′′

≥ 4ε
1−ε (ψ

′

)2 if ε = 1
4E+1 . Since 1

4E+1 ≥ δ, we get that

ψ′′F ii|(u − u)i|
2 −

4δ
1 − δ

(ψ
′

)2F ii|(u − u)i|
2 ≥ 0. (4.49)

Take (4.46)–(4.49) into (4.29),

0 ≥ −C0

∑
i<I

F ii |X11i|

λ1
−

C0

λ1
F ii |X11i|

λ1
+ ϕ′

∑
p

F ii(|upi|
2 + |upi|

2)

−C0F −C0 −
C0K
δ
|ψ
′

|2F11 + ψ′[F ii(u − u)ii − ∂t(u − u)]. (4.50)

Similar to (4.37) and (4.38), by using the third term of (4.50) to absorb the first two terms of it, We get
that

0 ≥
1

8K

∑
p

F ii(|upi|
2 + |upi|

2) −
C0K
δ
|ψ
′

|2F11
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−C0F −C0 + ψ′[F ii(u − u)ii − ∂t(u − u)] (4.51)

≥
1

8K

∑
p

F iiλ2
i −

C0K
δ
|ψ
′

|2F11 −C0(F + 1)

+ ψ′[F ii(u − u)ii − ∂t(u − u)].

According to Lemma2.3, there are at most two possibilities:
(1) If (2.8) holds true, then

ψ′[F ii(u − u)ii − ∂t(u − u)] ≥ θ(1 + F )|ψ′|. (4.52)

Put (4.52) into (4.51)

0 ≥
1

8K

∑
p

F iiλ2
i −

C0K
δ
|ψ
′

|2F11 −C0(F + 1) + θ(1 + F )|ψ′| (4.53)

≥
1

8K

∑
p

F11λ2
1 −

C0K
δ

(1 + C1)2F11 −C0(F + 1) + θ(1 + F )(1 + C1).

Here, C1 is determined finally, such that
θC1 ≥ C0.

It follows from (4.53) that
λ1 ≤ C̃K.

(2) If (2.9) holds true,

F11 >
θ

N
(1 + F ). (4.54)

Substituting (4.43) into (4.51) and using (4.54) give that

0 ≥
1

8K
λ2

1 −
C0K
δ
|(1 + C1)|2 −

N
θ

C0(1 + C1) −
N
θ

C0 (4.55)

It follows that
λ1 ≤ C̃K.

�

5. C1 Estimates

To obtain the gradient estimates, we adapt the blow-up method of Dinew and Kolodziej [7] and
reduce the problem to a Liouville type theorem which is proved in [7].

Proposition 5.1. Under the assumption of Theorem 1.3, let u(x, t) be a solution to (1.1). Then there
exists a uniform constant C̃ such that

sup
M×[0,T )

|∇u| ≤ C̃. (5.1)
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Proof. Suppose that the gradient estimate (5.1) does not hold. Then there exists a sequence (xm, tm) ∈
M × [0,T ) with tm → T such that

sup
M×[0,tm]

|∇u(x, t)| = |∇u(xm, tm)| and lim
m→∞
|∇u(xm, tm)| = ∞.

After passing to a subsequence, we may assume that limm→∞ xm = x0 ∈ M. We choose a coordinate
chart {U, (z1, · · · , zn)} at x0, which we identify with an open set in Cn, and such that ω(0) = β =√
−1

∑
i dzi ∧ dzi. We may assume that the open set contains B1(0) and m is sufficiently large so that

zm = z(xm) ∈ B1(0). Define
|∇u(xm, tm)| = Cm, ũm(z) = u(

z
Cm

, tm).

From this and Proposition 4.1, we have

sup
M
|∇ũm| = 1, sup

M
|
√
−1 ∂∂ũm| ≤ C̃.

This yields that ũm is contained in the Hölder space C1,γ(Cn) with a uniform. Along with a standard
application of Azela-Ascoli theorem, we may suppose ũm has a limit ũ ∈ C1,γ(Cn) with

|̃u| + |∇ũ| < C and |∇ũ(0)| , 0, (5.2)

in particular ũ is not constant. On the other hand, similar to the method of Dinew and Kolodziej [7],
we have [

χu(
z

Cm
)
]k

∧

[
ω(

z
Cm

)
]n−k

=e∂tuφm(
z

Cm
, u)

[
χu(

z
Cm

)
]l

∧

[
ω(

z
Cm

)
]n−l

.

Fixing z, we obtain

C2(k−l)
m

[
O(

1
C2

m
)β +

√
−1 ∂∂ũm(z)

]k

∧

[
(1 + O(

|z|2

C2
m

))β
]n−k

(5.3)

=e∂tumφm(
z

Cm
, um)

[
O(

1
C2

m
)β +

√
−1 ∂∂ũm(z)

]l

∧

[
(1 + O(

|z|2

C2
m

))β
]n−l

.

Lemma 2.2 gives ∂tu is bounded uniformly. Since

φm(
z

Cm
, um) ≤ sup

M×[−C,C]
φ,

which implies that φm( z
Cm
, um) is bounded uniformly. Taking the limits on both sides of 5.3 by m→ ∞

yields that
(
√
−1∂∂ũ)k ∧ βn−k = 0. (5.4)

which is in the pluripotential sense. Moreover, a similar reasoning tells us that for any 1 ≤ p ≤ k,

(
√
−1∂∂ũ)p ∧ βn−p ≥ 0. (5.5)

Then, (5.4) and (5.5) imply ũ is a k-subharmonic. By a result of Blocki [1], ũ is a maximal
k-subharmonic function in Cn. Applying the Liouville theorem in [7], we find that ũ is a constant,
which contradicts with (5.2).

�
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6. Long-time existence and convergence

In this section, we shall give a proof of the long-time existence to the flow and its convergence, that
is Theorem 1.3.

From Lemma 2.2, Proposition 3.1, Propositions 4.1 and 5.1, we conclude that Eq 1.1 is uniformly
parabolic. Therefore by Evans-Krylov’s regularity theory [8, 13, 19, 27] for uniformly parabolic
equation, we obtain higher order derivative estimates. By the a priori estimates which don’t depend on
time, one can prove that the short time existence on [0,T ) extends to [0,∞), that is the smooth
solution exists at all time t > 0. After proving C∞ estimates on [0,∞), we are able to show the
convergence of the solution flow.

Let v = eγtut, where 0 < γ < cφ. Commuting derivative of v with respect to t and using (2.4), we
obtain

vt =eγtutt + γv

=γv + eγt(F i juti j −
φz

φ
ut)

=F i jvi j + (γ −
φz

φ
)v.

Using the condition (1.5) yields γ − φz
φ
< 0, According to the parabolic maximum principle, it

follows that
sup

M×[0,∞)
|v(x, t)| ≤ sup

M
|ut(x, 0)| ≤ sup

M
|F(λ(u0)) − φ(x, u0)| ≤ C,

which means that |ut| decreases exponentially, in particular

∂t(u +
C
γ

e−γt) ≤ 0.

According to Proposition 3.1, it follows that u + C
γ

e−γt is bounded uniformly and decreasing in t.
Thus it converges to a smooth function u∞. From the higher order prior estimates, we can see that the
function u(x, t) converges smoothly to u∞. Letting t → ∞ in Eq (2.1),

σk(λ(u∞))
σl(λ(u∞))

= φ(x, u∞).

7. Conclusions

In this paper, we have considered the parabolic Hessian quotient equation (1.1), in which the right
hand side function φ depends on u. Firstly, we prove C0 estimates of Eq (1.1) by the parabolic
C-subsolution condition and the Alexandroff-Bakelman-Pucci maximum principle. Secondly, we
establish the C2 estimate for Eq (1.1) by using the parabolic C-subsolution condition. Thirdly, we
obtain the gradient estimate by adapting the blowup method. Finally we give the proof of the
long-time existence of the solution to the parabolic equation and its convergence. As an application,
we show the solvability of a class of complex Hessian quotient equations, which generalizes the
relevant results.
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