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1. Introduction

Currently, the study of non-linear fractional differential equations (NLFDEs) play a key role in the
arena of solitary wave theory. The analysis of such models [1–3], is significant to understand the
everyday physical phenomena in non-linear evolution models. Nowadays technological developments
have exposed that, fractional calculus have developed as a dominant instrument in numerous fields of
applied sciences and engineering [4, 5]. A big advantage of fractional models is that their narrative is
more suitable than the ordinary models [6]. These properties motivate our interest to yield
consideration in a noteworthy and appropriate model for (4+1)-dimensional fractional-order
non-linear Fokas equation. Non-linear Fokas equation is one of the well-known physical models [7,8]
that defines a huge diversity of phenomena, such as non-linear optics, fluid mechanics, condensed
matter, and plasmas. The properties of fractional derivatives are complex, therefore, it is not easy to
solve fractional-order problems using novel derivatives. As for as we know, there is no regular
scheme to answer the fractional-order non-linear models. A number of novel arithmetical and
analytical schemes [9–20], are suggested for fractional-order models by using ordinary calculus,
however, it’s static task for the scholars. Fokas [21] improved the Lax couples of integrable non-linear
KP and DS equations, and consequent the simple wave equation. In wave systems, DS and KP
models are proposed to define the surface and internal waves in canals with altering depth and
breadth [22, 23]. The Fokas equation has many applications in quantum mechanics and plasma
physics to explore the transmission of solitons. The important applications of the Fokas equation lie
in real world problems considered as a higher dimensional integrable model in mathematical physics.
The importance of the Fokas equation suggests that the idea of complexifying time can be
investigated in the context of modern field theories via the existence of integrable nonlinear equations
in four spatial dimensions involving complex time [24, 25]. In this paper, we deal the non-linear
fractional-order (4+1)-dimensional Fokas equation (FE),
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= 0, (1.1)

where u is a function and wave velocity physically also 0 < α < 1. While α = 1 then Eq (1.1) converts
to simple (4+1)-dimensional FE. Assume this general Eq (1.1) to designate the gesture of waves in
multifaceted broadcasting. It shows the distortion or dispersion of the external wave. So, various
types of solution of FE will offer us proposals to instruct the multifaceted system of DS and KD
models. Also, according above-stated evidences and the significant uses of the FE, it is crucial to
discover the innovative solitons solutions of Eq (1.1). In recent times, physicists and mathematicians
have great concern to discover the Eq (1.1), such as Zhang et al. [26] applied the sub-equation method
(SM) to determine the solution of Eq (1.1) using some derivative in the form of rational,
trigonometric, and functions of hyperbolic. Zhang et al. [27] utilized the new SM, in fractional form
of (G0 = G)-expansion scheme. Choi et al. [28] applied the SM using different schemes and attained
the novel analytical solutions of Eq (1.1). Zhang [29] used Exp-function method to explore the
solitary wave solution of Eq (1.1). Zhao et al. [30] suggested the improved fractional
(G0 = G)-expansion scheme and acquire the exact solutions. Solitons are used to denote the
particle-like properties of non-linear pulses. The significance of solitons is due to their existence in a
variety of non-linear differential equations representing many complex nonlinear phenomena, such as
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acoustics, optics, convictive fluids, condensed matter, and solid-state physics. There are numerous
type of solitary wave and solitons solutions [31–41].

The study of non-linear PDEs has become much significant in pure and applied mathematics from
many years. Through the aid of computer technology, the new horizons are opened in the field of
applied sciences for the mathematicians. There has been a growing interest in PDEs which are
frequently used in engineering sciences and mathematical physics. The PDEs arise commonly in
biological and physical sciences as well. Many problems of physics, chemistry, and engineering lead
naturally to the resolution of PDEs. In the light of the literature review, there are various models of
PDEs, particularly, PDEs whose exact solutions need to be discussed. The application of non-linear
PDEs in mathematical modeling has induced a motivation for research in the field of differential
problems.

The prominent concern of this existing study is to utilize the novel meanings of fractional-order
derivative, named conformable derivative, for space-time fractional-order (4 + 1)-dimensional FE. As
our best knowledge the considered methods have not been utilized for such model in the literature.
Several type of solutions in the form of bright soliton, dark soliton, combined dark-bright soliton,
periodic soliton and general solitary waves solutions of FE are missing in the literature. As compared
our obtained results with previous existing results in literature, some of results are not available in
literature with other methods lies in [42–46]. In this article our goal is to discover novel various
soliton solutions of (4+1)-dimensional fractional-order non-linear Fokas equation using
Sardar-subequation [47, 48] and new extended hyperbolic function method [49–52]. As a result, novel
soliton solutions are more generalized and in different form which have never been obtained before.
To the best of our knowledge, these novel properties and interesting structures are investigated for the
first time in (4+1)-dimensional Fokas equation. Our results enrich the variety of the dynamics of
higher-dimensional non-linear wave field. It is hoped that these results will provide some valuable
information in the higher-dimensional non-linear field.

The layouts of this paper are: Section 2 contains the governing model. Section 3 consists on the
analysis of the methods. In section 4 the applications of the proposed methods are presented. Section 5
describes results and discussion and conclusion of this work is presented in section 6.

2. Conformable derivative

Progress in fractional-calculus is more beneficial for scholars to express the physical phenomena
with novel techniques. Newly, Caputo et al. [53] modified the Caputo derivative [54], Atangana-
Baleanu (AB) presented a novel fractional derivative (FD), known as AB derivative [55]. In 2014,
Khalil et al. [56] proposed a conformable derivative. The Caputo, Riemann-Liouville (RL) [57, 58],
and further derivatives do not follow the simple instructions, which are supposed by Newtonian kind
simple derivative. Such as:

(1) For RL derivative, Dαt P , 0, P is any constant.
(2) For Caputo and RL derivative,

Dαt ( f (t)g(t)) , f (t)Dαt g(t) + g(t) Dαt f (t).

(3) For Caputo and RL derivative,
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Dαt f (t)
g(t)

,
g(t)Dαt f (t) − f (t)Dαt g(t)

g(t)2 .

Definition 2.1: [56] The FD of a function k = k(t) : [0,∞) −→ ℜ of order ς > 0 is described as

Dςt k(t) = lim
ϵ→0

k(ϵt1−ς + t) − k(t)
ϵ

, 0 < ς ≤ 1. (2.1)

At ς = 1, the fractional-order derivative converted to integer-order derivative.

Theorem 2.2: We have the following properties when ς ∈ (0, 1] and k, k1 are conformable functions
as follows:

•Dςt k(t) = t1−ς dk(t)
dt .

•Dςt th = htn−ς,∀h ∈ R.
•Dςt c = 0, ∀ constant functions k(t) = 0.
•Dςt (p1 ∗ k(t) + p2 ∗ k1(t)) = p1 ∗ Dςt k(t) + p2 ∗ Dςt k1(t), ∀p1, p2 ∈ R.
•Dςt (k(t)k1(t)) = k(t)Dςt k1(t) + k1(t)Dςt h(t).
•

Dςt k(t)
k1(t) =

k1(t)Dςt −k(t)Dςt k1(t)
k1(t)2 .

•Dςt (k o k1)(t) = t1−ςk′1(t)k′(k1(t)).

3. Analysis of the methods

In this section, we have analyzed two methods that are applied to construct novel solitons solutions
of the given model.

3.1. Sardar-subequation method

In this section, we describe the offered methods to solve the fractional model, we assume the
proposed model as

H(u,
∂αu
∂tα
,
∂αu
∂xα
,
∂αu
∂yα
,
∂αu
∂zα
,
∂αu
∂wα
,
∂2αu
∂t2α ,

∂2αu
∂x2α ,

∂2αu
∂y2α , ....) = 0,

where u is a function. Using following wave transformations in (3.1)

u(x, y, z,w, t) = U(η), η = β1
xα

α
+ β2

yα

α
+ β3

zα

α
+ β4

wα

α
− v

tα

α
,

here v is frequency while β1, β2, β3, β4 are wave lengths, respectively. Using (3.2) into (3.1), we yield
an ODE as follows

P(U,U′,U′′, ...) = 0. (3.1)

Where U′, U′′ and U′′′ are the first, second and the third derivatives of U, respectively w. r. t η and
so on.

U(η) =
M∑
j=0

F jΦ
i(η), (3.2)
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where F j are constants and Φ(η) accept the (3.7) as follows

(Φ′(η))2 = ϵ + δΦ2(η) + Φ4(η), (3.3)

here ϵ and δ are constants.

Case 1: When δ > 0 and ϵ = 0, then

Φ±1 (η) = ±
√
−δpq sechpq(

√
δη),

Φ±2 (η) = ±
√
δpq cschpq(

√
δη),

where, sechpq(η) = 2
peη+qe−η , cschpq(η) = 2

peη−qe−η .

Case 2: When δ < 0 and ϵ = 0, then
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√
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√
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−δη),
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Case 3: When δ < 0 and ϵ = δ
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where, tanhpq(η) = peη−qe−η

peη+qe−η , cothpq(η) = peη+qe−η

peη−qe−η .

Case 4: When δ > 0 and ϵ = δ
2

4 , then

Φ±10(η) = ±
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δ

2
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2
η),
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Φ±11(η) = ±

√
δ
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where, tanpq(η) = −ι peιη−qe−ιη

peιη+qe−ιη , cotpq(η) = ι peιη+qe−ιη

peιη−qe−ιη .

3.2. New EHFM

The new EHFM has two phases as follows.
Form 1: Consider FPDE is taken in (3.1) and using the wave transformations in (3.2) to obtain (3.3).

Assume (3.3) admits the solution as follows:

U(η) =
M∑
j=0

F jΦ
i(η), (3.4)

where F j are constants and Φ(η) accept the (3.7)

dΦ
dη
= Φ
√
Λ + ∆Φ2, Λ,Θ ∈ R. (3.5)

On balancing in (3.3) the value of N is obtained. Inserting (3.6) into (3.3) along with (3.7), yields a
set of equations. By resolving the equations, we get the solutions that accepts (3.5), as

Set 1: When Λ > 0 and ∆ > 0,

Φ(η) = −

√
Λ

∆
csch(

√
Λ(η + η0)). (3.6)

Set 2: When Λ < 0 and ∆ > 0,

Φ(η) =

√
−Λ

∆
sec(
√
−Λ(η + η0)). (3.7)

Set 3: When Λ > 0 and ∆ < 0,

Φ(η) =

√
Λ

−∆
sech(

√
Λ(η + η0)). (3.8)
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Set 4: When Λ < 0 and ∆ > 0,

Φ(η) =

√
−Λ

∆
csc(
√
−Λ(η + η0)). (3.9)

Set 5: When Λ > 0 and ∆ = 0,

Φ(η) = exp (
√
Λ(η + η0)). (3.10)

Set 6: When Λ < 0 and ∆ = 0,

Φ(η) = cos(
√
−Λ(η + η0)) + ιsin(

√
−Λ(η + η0)). (3.11)

Set 7: When Λ = 0 and ∆ > 0,

Φ(η) = ±
1

(
√
∆(η + η0))

. (3.12)

Set 8: When Λ = 0 and ∆ < 0,

Φ(η) = ±
ι

(
√
−∆(η + η0))

. (3.13)

Form 2: Adopting the procedure as earlier, consider that Φ(η) accept the following ODE as

dΦ
dη
= Λ + ∆Φ2, Λ,∆ ∈ R. (3.14)

Substituting (3.6) into (3.3) along with (3.16), gets a set of equations with the values of
F j ( j = 1, 2, 3, ...M) . We assume that (3.5) has solutions as

Set 1: When Λ∆ > 0,

Φ(η) = sn(Λ)

√
Λ

∆
tan(
√
Λ∆(η + η0)). (3.15)

Set 2: When Λ∆ > 0,

Φ(η) = −sn(Λ)

√
Λ

∆
cot(
√
Λ∆(η + η0)). (3.16)

Set 3: When Λ∆ < 0,

Φ(η) = sn(Λ)

√
Λ

−∆
tanh(

√
−Λ∆(η + η0)). (3.17)

Set 4: When Λ∆ < 0,

Φ(η) = sn(Λ)

√
Λ

−∆
coth(

√
−Λ∆(η + η0)). (3.18)

Set 5: When Λ = 0 and ∆ > 0,

Φ(η) = −
1

∆(η + η0)
. (3.19)

Set 6: When Λ ∈ R and ∆ = 0,

Φ(η) = Λ(η + η0). (3.20)

Note: sn is well-known sign function.
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4. Application

Here, we construct the solitons solutions of fractional-order Fokas equation. The Eq (1.1) with
Eq (3.2) becomes

β1β2(β2
1 − β

2
2)U′′ + (4β1v + 6β3β4)U − 6β1β2U2 = 0. (4.1)

4.1. Application of the SSM

Now, we apply the SSM to solve the (4+1)-dimensional FE. Using balance method on (4.1), gets
M = 2, so (3.6) decreases to

U(η) = F0 + F1Φ(η) + F2Φ(η)2, (4.2)

where F0, F1 and F2 are constants. Inserting (4.2) into (4.1) and comparing the coefficients of Φ(η) to
zero, we get a set of equations in F0, F1, F2, ϵ and v.

Working on the set of equations, yields

F0 = F0, F1 = 0, F2 = (β2
1 − β

2
2),

ϵ =
2δβ2

1F0 − 2δβ2
2F0 − 3F2

0

(β2
1 − β

2
2)2

,

v =
−2δβ3

1β2 + 2δβ1β
3
2 − 3β3β4 + 6β1β2F0

2β1
. (4.3)

Case 1: When δ > 0 and ϵ = 0, then

u±1,1(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±
√
−pqδ sechpq(

√
δ (η))

)2
, (4.4)

u±1,2(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±
√

pqδ cschpq(
√
δ (η))

)2
. (4.5)

Case 2: When δ < 0 and ϵ = 0, then

u±1,3(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±
√
−pqδ secpq(

√
−δ (η))

)2
, (4.6)

u±1,4(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±
√
−pqδ cscpq(

√
−δ (η))

)2
. (4.7)

Case 3: When δ < 0 and ϵ = δ
2

4b , then

u±1,5(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
−
δ

2
tanhpq(

√
−
δ

2
(η)
)2
, (4.8)

AIMS Mathematics Volume 7, Issue 5, 7421–7440.



7429

u±1,6(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
−
δ

2
cothpq(

√
−
δ

2
(η)
)2
, (4.9)

u±1,7(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
−
δ

2

(
tanhpq(

√
−2δ (η))

±ι
√

pq sechpq(
√
−2δ (η))

))2
, (4.10)

u±1,8(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
−
δ

2

(
cothpq(

√
−2δ (η))

±
√

pq cschpq(
√
−2δ (η))

))2
, (4.11)

u±1,9(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
−
δ

8

(
tanhpq(

√
−
δ

8
(η))

+cothpq(

√
−
δ

8
(η))
))2
. (4.12)

Case 4: When δ > 0 and ϵ = δ
2

4 , then

u±1,10(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
δ

2
tanpq(

√
δ

2
(η))
)2
, (4.13)

u±1,11(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
δ

2
cotpq(

√
δ

2
(η))
)2
, (4.14)

u±1,12(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
δ

2

(
tanpq(

√
2δ (η))

±
√

pq secpq(
√

2δ (η))
))2
, (4.15)

u±1,13(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
δ

2

(
cotpq(

√
2δ (η))

±
√

pq cscpq(
√

2δ (η))
))2
, (4.16)

u±1,14(x, y, z,w, t) = F0 + (β2
1 − β

2
2)
(
±

√
δ

8

(
tanpq(

√
δ

8
(η))

+cotpq(

√
δ

8
(η))
))2
. (4.17)
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4.2. Application of the new EHFM

Form 1: Now, we apply the new EHFM to solve the (4+1)-dimensional FE. Using balance method
in (4.1), yields M = 2, so (3.6) changes to

U(η) = F0 + F1Φ(η) + F2Φ(η)2, (4.18)

where F0, F1 and F2 are constants. Inserting (4.18) into (4.1) and associating the constants of Φ(η)
with zero, we yield the equations in F0, F1, F2, Λ and ∆.

On working set of equations, we achieve

F0 =
2vβ1 + 3β3β4

3β1β2
, F1 = 0,

F2 = F2, Λ =
2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)
.

∆ =
F2

(β2
1 − β

2
2)
. (4.19)

Set 1: When Λ > 0 and ∆ > 0,

u1(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(√2vβ1 + 3β3β4

2F2β1β2

csch(

√
2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))
)2
. (4.20)

Set 2: When Λ < 0 and ∆ > 0,

u2(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(√2vβ1 + 3β3β4

2F2β1β2

sec(

√
−

2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))
)2
. (4.21)

Set 3: When Λ > 0 and ∆ < 0,

u3(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(√2vβ1 + 3β3β4

2F2β1β2

sech(

√
−

2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))
)2
. (4.22)

Set 4: When Λ < 0 and ∆ < 0,

u4(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(√2vβ1 + 3β3β4

2F2β1β2
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csc(

√
−

2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))
)2
. (4.23)

Set 5: When Λ > 0 and ∆ = 0,

u5(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(
exp(

√
2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))
)2
.

(4.24)

Set 6: When Λ < 0 and ∆ = 0,

u6(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(
cos(

√
−

2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))

+ιsin(

√
−

2vβ1 + 3β3β4

2β1β2(β2
1 − β

2
2)

(η + η0))
)2
. (4.25)

Set 7: When Λ = 0 and ∆ > 0,

u7(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(
±

1

(
√

F2
(β2

1−β
2
2) (η + η0)

)2
.

(4.26)

Set 8: When Λ = 0 and ∆ < 0,

u8(x, y, z,w, t) =
2vβ1 + 3β3β4

3β1β2
+ F2

(
±

ι

(
√
−

F2
(β2

1−β
2
2) (η + η0)

)2
,

(4.27)

where η = β1
xα
α
+ β2

yα

α
+ β3

zα
α
+ β4

wα
α
− v tα

α
.

Form 2: Utilizing balance method in (4.1), gives M = 2, so (3.6) converts to

u(η) = F0 + F1Φ(η) + F2Φ(η)2, (4.28)

where F0, F1 and F2 are numbers. Inserting (4.28) into (4.1) and associating the constants of Φ(η) with
zero, we attain set of equations in F0, F1, F2, Λ, and ∆.

On working the set of equations, we achieve

F0 =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2
, F1 = 0,

F2 =
(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)
, Λ = Λ,
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∆ =

√
(2vβ1 + 3β3β4)2

2Λβ3
1β2 − 2Λβ1β

3
2

. (4.29)

Set 1: When Λ∆ > 0,

u9(x, y, z,w, t) =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2
+

(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)(

χ

√
2Λ2β1β2(β2

1 − β
2
2)√

(2vβ1 + 3β3β4)2
tan(

√
(2vβ1 + 3β3β4)2

2β3
1β2 − 2β1 − β

3
2)

(η + η0))
)2
. (4.30)

Set 2: When Λ∆ > 0,

u10(x, y, z,w, t) =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2
+

(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)(

− χ

√
2Λ2β1β2(β2

1 − β
2
2)√

(2vβ1 + 3β3β4)2
cot(

√
(2vβ1 + 3β3β4)2

2β3
1β2 − 2β1 − β

3
2)

(η + η0))
)2
. (4.31)

Set 3: When Λ∆ < 0,

u11(x, y, z,w, t) =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2
+

(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)(

χ

√
2Λ2β1β2(β2

1 − β
2
2)√

(2vβ1 + 3β3β4)2
tanh(

√
(2vβ1 + 3β3β4)2

2β3
1β2 − 2β1 − β

3
2)

(η + η0))
)2
. (4.32)

Set 4: When Λ∆ < 0,

u12(x, y, z,w, t) =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2
+

(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)(

χ

√
2Λ2β1β2(β2

1 − β
2
2)√

(2vβ1 + 3β3β4)2
coth(

√
(2vβ1 + 3β3β4)2

2β3
1β2 − 2β1 − β

3
2)

(η + η0))
)2
. (4.33)

Set 5: When Λ = 0 and ∆ > 0,

u13(x, y, z,w, t) =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2
+

(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)(

−
1

√
(2vβ1+3β3β4)2

2Λβ3
1β2−2Λβ1β

3
2

(η + η0)

)2
. (4.34)
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Set 6: When Λ ∈ R and ∆ = 0,

u14(x, y, z,w, t) =
2vβ1 + 3β3β4 − 2

√
(2vβ1 + 3β3β4)2

6β1β2

+
(2vβ1 + 3β3β4)2

4Λ2β2
1β

2
2(β2

1 − β
2
2)

(
Λ(η + η0)

)2
, (4.35)

where χ = sgn(Λ), η = β1
xα
α
+ β2

yα

α
+ β3

zα
α
+ β4

wα
α
− v tα

α
.

5. Results and discussion

Herein study, we have successfully built various solitons solutions for the (4+1)-dimensional Fokas
equation applying SSM and new EHFM. The proposed methods are measured most efficient techniques
in this field and that are not applied to this model previous. To analyze physically, 3D and 2D graphs
of some selected results are added with suitable parameters. These obtained solutions determine their
applications in propagation to carry information since solitons have the competency to mobile long
spaces without drop and shifting their systems. In this study, we added only certain figures (see Figures
1–7) to dodge overloading the document. Absolutely the achieved results are fresh and different from
that reported results.
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Figure 1. (a) 3D graph of (4.4) with F0 = 1.75, β1 = 1.65, β2 = 1.74, β3 = 1.91, β4 =

1.65, p = 0.98, q = 0.95, α = 0.99, δ = 0.8, v = 1.2. (a-1) 2D plot of (4.4) with t = 1.
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Figure 2. (b) 3D graph of (4.8) with F0 = 1.5, β1 = 1.5, β2 = 1.64, β3 = 1.81, β4 =

1.55, p = 0.98, q = 0.95, α = 0.99, δ = −0.8, v = 1.1. (b-1) 2D plot of (4.8) with t = 1.
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Figure 3. (c) 3D graph of (4.10) with F0 = 1.77, β1 = 1.95, β2 = 1.24, β3 = 1.51, β4 =

1.65, p = 0.98, q = 0.95, α = 0.99, δ = −0.65, v = 1.4. (c-1) 2D plot of (4.10) with t = 1.
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Figure 4. (d) 3D graph of (4.17) with F0 = 1.37, β1 = 1.75, β2 = 2.44, β3 = 1.71, β4 =

1.55, p = 0.98, q = 0.95, α = 0.99, δ = −0.75, v = 1.6. (d-1) 2D graph of (4.17) with
t = 1.
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Figure 5. (e) 3D graph of (4.22) with F0 = 1.4, β2 = 0.45, β2 = 2.54, β3 = 1.91, β4 =

1.15, p = 0.98, q = 0.95, α = 0.99, δ = −0.65, v = 0.6. (e-1) 2D plot of (4.22) with t = 1.
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Figure 6. (f) 3D plot of (4.30) with F0 = 1.2, β1 = 1.79, β2 = 1.47, β3 = 1.74, β4 =

1.65, p = 0.98, q = 0.95, α = 0.99, χ = 1.2, δ = −0.7, v = 1.2. (f-1) 2D plot of (4.30) as
t = 1.
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Figure 7. (g) 3D graph of (4.32) with F0 = 1.5, β1 = 1.25, β2 = 1.34, β3 = 2.85, β4 =

1.95, p = 0.98, q = 0.95, α = 0.99, δ = −0.45, χ = 1.2, v = 0.77. (g-1) 2D plot of (4.32)
with t = 1.
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6. Conclusions

We have constructed novel multi solitons solutions for the nonlinear fractional-order Fokas
equation by applying the SSM and new EHFM. From results we obtained multi solitons solutions
such as dark, singular, bright and periodic solitons. By the purpose of describe the behavior of
achieved solutions of the model, we plotted some particular solutions by assigning the suitable values
to the parameters involved. The obtained results may have much inspiration in various fields of
physical sciences. From obtained results, we can know that the under study techniques are proficient,
consistent and beneficial for rescuing the exact solutions of nonlinear FPDEs in a wide range. Also,
these results are supportive to learn the dynamics of nonlinear waves in optics, hydrodynamics, solid
state physics, and plasma. In future, we anticipate that this study is a step towards the solutions of
such kinds of higher dimensional problems by using the proposed methods in this study. This work
may be extended for a novel fractional order Fokas dynamical model in future.
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