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Abstract: In this paper, we formulate a stochastic predator-prey model with Holling III type functional
response and infectious predator. By constructing Lyapunov functions, we prove the global existence
and uniqueness of the positive solution of the model, and establish the ergodic stationary distribution
of the positive solution, which indicates that both the prey and predator will coexist for a long time.
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provide numerical simulations to demonstrate our main results.
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1. Introduction

In ecological systems, the interaction between predator and prey is the most important to maintain
ecosystem balance. The predator-prey model plays an important role in studying the relationship
between two populations. Since Lotka [1] and Volterra [2] proposed the classical Lotka-Volterra
predator-prey model, the predator-prey models have attracted much attention. Among them, many
authors [3-6] proposed the predator-prey model with epidemic and considered the impact of epidemic
on population.

As a matter of fact, the real ecosystem is inevitably affected by environmental noise. From the
biological and mathematical point of view, the stochastic predator-prey model can predict future
dynamics more accurately than the deterministic model. Therefore, many stochastic predator-prey
models have been proposed. For example, Shi et al. [7] considered a stochastic Holling-Type II
predator-prey model with stage structure and refuge for prey. Liu et al. [8] studied dynamics of
stochastic predator-prey models with distributed delay and stage structure for prey. Ma et al. [9]
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proposed a stochastic one-predator-two-prey time-delay system with jumps. Liu and Jiang [10] studied
the influence of the fear factor on the dynamics of a stochastic predator-prey model. Qi and Meng [11]
proposed a stochastic predator-prey system with prey refuge and fear effect. These pieces of literature
consider the influence of linear disturbance on the model.

Inspired by the above literatures, in this paper, we consider the epidemic disease and nonlinear
perturbations into the model to accurately predict the future dynamics. The prey population is denoted
by X(¢) at time ¢. In the presence of disease, the predator population N(t) is divided into two classes,
namely the susceptible predator Ys(¢) and the infected predator Y;(¢) at time ¢. The random perturbation
may be dependent on the square of the state variables X(7), Y(#), and Y;(?), respectively. The Holling
type III response functions C;f ;5 and ’fXYZ’ represent the functional response of the predator to the prey.

Therefore, we propose the following stochastic predator-prey model:

X CXZYS nX2Y1
aX = |rX(1 =)~ i ~ g [ X+ cnXdBy(O),
hX?Y YiY
dYs = [d+XS2 —'8;, ! —#Ys]dt+ Ys(021 + 022Ys)dBy(1), (L.1)
kX2Y, YsY,
dy, = [d ~ X12 + '8;/ L+ 5)Y1]df + Yi(031 + 032Y)dBs(1),

where r and K are respectively the intrinsic growth rate and the environmental carrying capacity for
prey. d is the half-saturation constant, u relates to the predators natural mortality rate, v is the death
rate of the predator due to disease. ¢, n is the maximum value which per capita reduction rate can X(¢)
attain. A, k has a similar meaning to c,n. 8 is a disease standard incidence disease-induced mortality
rate of infected predators. B;(¢)(i = 1,2, 3) are mutually independent standard Brownian motions, and
oq(i =1,2,3;1 = 1,2) are nonnegative and referred as their intensities of stochastic noises which are
used to describe the volatility of perturbation.

This paper is organized as follows. In Section 2, we investigate the existence and uniqueness of the
global positive solution for the stochastic predator-prey model. In Section 3, we establish sufficient
conditions for the existence of an ergodic stationary distribution of the positive solutions to the model.
In Section 4, we prove the extinction of the predator and prey populations under certain parametric
restrictions. In Section 5, we give a summary of the main results and a series of numerical simulations
to illustrate the theoretical results. Finally, concluding remarks are presented in Section 6.

2. Existence and uniqueness of the global positive solution

In order to prove the existence and uniqueness of the solution, we first introduce some preliminaries
that will be used in the rest of the paper.

We set (Q, F, {F:}=0, P) to stand for a complete probability space with a filtration {F;},»( satisfying
the usual conditions (i.e., it is increasing and right continuous while ¥, contains all P-null sets).

Generally speaking, an n-dimensional stochastic differential equation is given by:

dX(t) = F(t, X(1))dt + G(t, X(1))dB(1), 2.1

where F(t, X) represents a function in [0, +00) X R", and G(t, X) is a n X m matrix, F(¢, X) and G(t, X)
satisfy the locally Lipschitz conditions in X. B(#) is m-dimensional standard Brownian motion defined
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on the complete probability space. C>'(R" x [0, +o0),R,) is a family of all nonnegative functions
V(x,t) which are defined on R” X [0, +00), such that this family of functions are continuously twice
differentiable on X and continuously once differentiable on ¢. The differential operator £ for the
stochastic differential Eq (2.1)

2

0 - 9 1+ )
=— F(X,)— + = G'(X,HG(X, 1)) i—.
L aﬁ; ( )axi+2;[ (X, 06X, Dl —

Applying £ to a function V(X, ) € C>'(R" x [0, +o0), R,), we get

1
LV =V(X, )+ VX, DF(X, 1) + Etrace[GT(X, NV (X, HG(X, 1], 2.2)
where 5 . ; .
v oav % v
ViX,t) = —,V.(X,0) = (—, —, - ,—), V.(X, 1) = e
(X0 = = VX, 1) ((9x1 o (9x,,) X, 1) (6x,~xj) x

by It6 formula, when X(¢) € R", we have
dV(X,1) = LV(X, t)dt + V. (X, )G(X, t)dB(t).

Next, by using the Lyapunov function method [12], we shall show that the system (1.1) has a unique
local positive solution, then we show that this solution is global. And the main results are as follows.
Theorem 1. For any initial value (X(0), ¥5(0), Y;(0)) € R3, then system (1.1) has a unique positive
solution (X (1), Ys(2), Y;(2)) for all ¢ > 0 almost surely, and the solution remains in R? with probability 1.
Proof. 1t is obvious that the coeflicients of the system (1.1) satisfy the local Lipschitz condition, then
for any given initial value (X(0), Y5(0), Y;(0)) € R3, there is a unique local solution (X(¢), Y5 (%), Y;(£))
for ¢t € [0, 7,), where 7, is the explosion time [13]. Then 7, = +oco demonstrates that the solution of
the system (1.1) is global. At first, we prove that X(7), Ys(¢) and Y;(#) do not explode to infinity at a
finite time. Let ko > 1 be sufficiently large constant so that X(0), Ys(0) and Y;(0) lie within the interval
[kl—o, ko]. For each integer k > k¢, we define the stopping time as follows:

T, = inf{t € [0,7,) : min{X(¥), Y5 (1), Y;()} < %, ormax{X(), Ys(t), Y;(t)} > k}.

It is easy to see that 7y is increasing as k — +oco. We set 7, = lim 7, whence, 7, < 7.. If we can

k—+00

show that 7., = +00 a.s., then we can obtain that 7, = +o0 a.s., and (X(1), Y5 (1), Y;(2)) € R? a.s.. If this
statement is false, then there exists a pair of constants 7 > 0 and € € (0, 1) such that P{r, < T} > ¢.
Thus there exists an integer k; > k( such that

Pltw < T} > &,Vk > k. (2.3)
Consider the C?>-function V : R? — R as follows:
1 1 1 1 1 1
VX, Y5, ¥) = (=X = = =InX) + (=¥§ - = = In¥5) + (=¥f - = = InY,), (2.4)
a a (04 a [04 a

where 0 < @ < 1. Applying It6 formula leads to

dVv =LVdt + (Xa - 1)(0'11 + 0'12X)dBl(t) + (Yg - 1)(0’21 + O'ZQYS)de(Z)
+ (Y] = D(o31 + 0032Y)dB5(1), (2.5)
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where
1 X cX?Y nX%Y (a—DX*+1
_(ya-1 _ AN s ! 2
==X - %) - we ~ avxed y Tt ond)
o 1 \(hX%Ys BYsY; (a-1DY¢ +1
+(Ys I_Y_S)[d+X2_ N —ﬂYS] f((3'21+0'221/s)2
o 1\ kX%Y;,  BYsY; (a-1DY*+1
+(Yl I_E)[d+X2+ N —(/J+5)Y5]+—21 (O'31+O'32Y])2
o2 (1 —a o2 o2 XY XY,
S—%Xﬂi‘zﬁ'712X2+VX[2+(%+0'110'12)X+%+(;+;2 + dn+)([2
2 2 2 2
op(l-—a) ., 03 , @ 0731
—TYS-'— +7YS+O'210'22YS+mYS+,U+ﬁ+T
2 2 5 2
op(l-a) ., 05 , kX ” 03
—TYI +7YI+0'310'32Y[+(m+ﬁ)Y1 +,Ll+5+7
o (1 —a) o? r
S;?Bng{ - IZTX"” + %XZ + (} + o0 + rXf’)X} +2u+6+p
2 2 2 2
op(l—a) ., 03 , c T
+ - Y&+ =Y+ —— + Yo +hYd + — + —
pup (= R (g et e} 5
2 2 2
op(-a)_ ., 05, n 03
+ —V" =Y+ (—=+ Yi+k+p)Y; |+ —
Ysllellgr 2 I 5 11 (2\/67 0'310'32) 1+ (k+p) 1} D)
=Ko,

where K| is a positive constant.
Therefore, we can have

dV(X,Ys,Y)) <Kodt + (X" = 1)(011 + 012X)dB,(t) + (Y§ — 1)(021 + 022Ys)d B (1)

+ (Y;Y - 1)(0'31 + O'32Y1)dB3(t). (26)

Integrating (2.6) from O to T A 7y, set V(T A 1) = V(X(T A 1), Ys(T A 10), Yi(T A 1)), and taking
expectation on both sides yields

EV(T A7) < V(X(0), Ys(0), Y;(0)) + K, T. 2.7
Set QO = {r;, < T}. By (2.4), we have P(Q;) > & for k > k;, we obtain
E[V(T A1)l =E[1Q V(T A 1)) + E[1Q V(T A 1)] 2.8

2E[1Q V(T ATyl

where 1€} is the indicator function of €. For every w € €, there exists at least one of
X(t, w), Ys (11, w) and Y;(7y, w), which equals either k or % Thus we get

VX(T A1), Ys (T A1), Yi(T A1) 2 A(k), (2.9)

where 1 1 1
A(k) = min{g(1,k),g(1, )}, g@.x) = —x* -~ —Inx.
k a a
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Combining (2.7)—(2.9), we can have

V(X(0), Ys(0), Y(0)) + KoT ZE[1V(X(T A 14), Ys (T A 11), YI(T A 11))]
>A(k)P(y) > A(k)e.

When k — +o0, we obtain
+00 > V(X(0), Y5(0), Y;(0)) + KoT = +oo,

which is a contradiction. Thus, we must have 7, = +c0 a.s. Consequently, X(7), Ys(¢), and Y;(¢) are
positive and global. Then the proof is complete.

3. Stationary distribution

In this section, we give a sufficient condition for the existence of a stationary distribution of the
positive solution of the system (1.1).

Let X(¢) be a regular time-homogeneous Markov process in R, and X(f) is described by the
following stochastic differential equation

k
dXU)leX)+2§hAXﬁHLU)
r=1

The diffusion matrix of the process X(¢) is defined as follows
k . .
AX) = (@ij(x)), ai(x) = ) hihl.
r=1

Lemma 1. [15] If there exists a bounded open domain D C E, with regular boundary I', having the
following properties
d
(1) There is a normal number, such that >} a;;(x)&:§; > M|&?, x € D, & € RY;

i,j=1
(ii) There exists a non-negative C? function V such that LV is negative to any x € E;\D;
then the Markov process X(¢) has a unique ergodic stationary distribution 7(-).
Theorem 2. Let (X(¢), Ys(?), Y;(t)) be a solution of the model (1.1) for any given initial value
(X(0), Y5(0), Y,(0)) € R, if

r+ Koq1012 > KZO'%Z,

1 2d(h+ kK h+k
pL> 242 [ 2\2 + ]’
r+ Koo, — K?o3,' (d + K?) d
such that
(h+ k)K? K
:W _’OIK%-%Z —p1K20'110-12 —plTo'% _2ﬂ—ﬁ—5—0'§1 —0%1 > 0,
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then the system (1.1) has an ergodic stationary distribution 7(-).
Proof. In order to prove Theorem 2, it suffices to verify conditions (i) and (ii) in Lemma 1 hold. Now
we verify the condition (ii). For convenience defining the notations

_2d(h+ K> piKonon, _ 8 [490-%2 ]g
P2 = T Ky 0 T aCee+lper2)l
e Tl
T a-00+2)lp6+2)]

Define C? functions V; : R? — R:
X
Vi(X.Y5.Y) = pi(X - K - Kln E) —pX-InYs —InY,.

By It6 formula to V(X, Ys, ¥;) and system (1.1), we obtain

K X cX?Y. nX?Y, K
LVi(@) :pl(l - })[}"X(l - E) - d+)(52 - d+X12] + 12 (o011 +0'12X)2
X CXZYS nX2Y1 1 hX2YS ﬁYSYI

—pa|rx(1-2) - - - — - —puy

palrX(1- %) - e ~ T vl Ys[d+X2 N ks

1 kXY, PYsY (021 + 0nYs)* (031 + oY)
- = + - (u+0)Y; |+

Y,[d+X2 N Wro) ’] 2 2

r r
<- %(X — K+ pIKoH(X = K)? + piKorno (X - K) = prX(K = X)

(h+kX> (h+kK*> (h+kK? K(CYS +nY)X

3 2
- - Pk =+ Pk,

d+ X2 d+ K? d+ K?

2 piK 2 2 2 2 2 2

(h+ HK? (c¥s +nYX s ) oK
:H(X)—W leW +p1K (o) +p1K 0'110'12+70'11
+2U+B+8+ 05 +03, +035,Ye + 03,17, (3.1
where
H(X) = - 7()( - K) +p1Ko,(X = K)” + p1Konop(X - K) —P2EX(K -X) - T x?
N (h+ k)K?
d+ K>’
then
2011 Par 2d(h + k)X
v _ 2
H (X) —(2p1K0'12 - T)CX - K) +p1K0'110'12 - 7(1{ - 2X) - m
2011 ,  2por 2d(h+k) 6d(h+ kX?
H'(X)=-— 420, Ko7, + - +
K==t kot S G er T a0y
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2011 ,  2p0r N 2(h+ k)
K d =

According to the expressions of p; and p,, we can obtain that H(K) = 0, H'(K) = 0 and H"(X) < 0,
thus, for all X € (0, +o0), H(X) < H(K) = 0. Then
(h+ kK> (cYs +nY)X K
LV](I)S—W'F[)]KW p1K3O'12+p1KO'110'12+ > 0'11+2,Ll+ﬁ+(5+0'21
+ 0'%1 + o’%ng + 0'§1Y12
(cYg + nYDX

=—-p+pK e o3, Y: + 03, Y7, (3.2)
where
(h + k)K? K
=T p1 Kol — p1K2oy0py — 1012 o1 =2u-B—-06-03 — 03,

Define C? function V, : R? — R,

VaYs, Yy = Dyt + 2yt 0<o<1.

By It6 formula to V,(Ys, Y;) and system (1.1), we get

. 1hX?Y. YsY, (1-90)
LVo(1) =, Y? 1[d+X$2 —ﬁ]f/ L p¥s| - ’”Tyg'ml +onYs)
i kX2Y, YsY, (1-6)
Y;) 1[d+X12+ﬁ S 1—(/.1 5)Y]] ]DTYIG(O'31+O'32Y1)2
nthQYg 771(1 - 9)0-22 0+2 772(1 - 0)0-32 0+2 nZﬁYS Y]e UszZYIG
< 5~ Yo' - —Y,/"" + + >
d+ X 2 2 N d+ X
<771hX2Yg 3 m(l = 6)o, Y2 _ (1 = 6)o3, o2 | AXCY]
T d+ X2 4 § 4 ! d+X?

+ 2mB [ 46p ]g .

6+2(1-6)0+2)02, G-

=

We set f(x) = —@x"” + x%, x € [0, +00), then f(x) = —@(9 + 2)x" 4 2x, as xp = [

n(1- 0)(9+2)

f/(x0) = 0, and " (x) = —Z2(1 + 6)(@ + 2)x + 2 = =26 < 0. Thus f(x) < f(xo) =

8 H
[77(1—9)(9+2)] ﬁOZ'
Combining (3.2) and (3.3), we can have

(cYs +n¥Y)X  hX?YS 2pB 46 ¢ mkX2Y?
Vi) + Vo) < —p+p1K + + +
L@+ V) <=pr o K= r e ke 9+2[(1—9)(9+2)a§2] d+X?
1 -6)c2 1 - 0)o?
_ 771( 7 ) 22 Yg+2 n O'%ZYSZ 772( 7 ) 32 Y;Hz " O'%lYIZ
(cYs +nY)X hX?Y!  mBYsY?  mkX*Y?
<-p+pK + + +
=TereR T x TTMasxe T TN d+ X2
1 - 0)o? 1 -6)2
+ sup { _md - oy 1 )T Yo 4+ a'%sz} + sup {- Ml = )7, 1 )3 Yo+ 0'§1Y,2}
Y5 €[0,+00) Y;€[0,+00)
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<—pp (cYs +nYDX | . hX?Y} .\ 2n2ﬁ[ 468 ]g .\ mkX2Y?
d+ X2 '+ x2 7 g+2L(1-0)0+2)0 d+ X2
sl 753 * lroara) 1
m1-00+2)! 6+2 lpd-00+2)! 6+2
Yo +nY)X hX*Y?¢ kX?Y?
:_g+p1K(0s n¥pX mhA7Ys el
2 d+ X? d+ X? d+ X?
2772,3[ 40B ]§ (3.4)
6+2L(1 - 6)(0 +2)0%,
Define C? functions V3 : R3 — R:
1 0 ) 0
Vs(X, Ys, Y)) = E(X + Y] +Y),
where 0 < 6 < 1. By Itd formula to V5(X, Yy, Y;) and system (1.1), we obtain
_ X cX?Ys  nX%Y, 1-6
LVs(t) =X 1[rX(l—§)—d+XS2 —d+X’2]— S X'+ onX)?
1 hX?Y. YsY 1-6
+Y§ 1[d+XSZ —'8;/ ! _ﬂYS] - TYé’(crz] +0onYs)
L kXPY YsY 1-6
+ Y l[d " X’2 B ]f] L (oY) - — V(o3 + oY)
(1-601, , r cXlys  nXx®ly, (1 -6)03
_—X+2__Xl9+l+ X@_ _ _ 22Y9+2
= 2 K T Ivxr T A xe 2 S
hX*Y? (1 -6)o? BYsY? kX2Y?
S 0 32 042 ST 0 I
+ - - — Y+ —— - (u+ oY, +
d+x2 His 2 ! W+ oY d + X?
r u u+as (1- 49)6‘1‘2 (1- 9)(7%2 (1- 9)0‘%2
<B__X9+l__Y9_— 0_—X9+2_—Y9+2_—Y9+2, 3.5
- 2K 2°5 2 2 4 5 4 1 33)
where
(X Y5, ¥p)er? 4 2K d+Xx> d+x* 29
SR (=00 ey (=00 BEY] s, KOV
d+ X2 4 § 2 ! N 2 g+ x2l

Define a C? function Q : R - R
OX,Ys,Y)) = M[VI(X’ Ys,Yr) + Vo(¥s, YI)] + Vi(X, Ys, ¥)),

where M > 0 is sufficiently large, such that

P m 2772,8[ 40 |
(1-6)©6+2)7?,

NI

=2. (3.6)

2 0+2
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Furthermore, Q(X, Y5, ¥;) is continuous, and (X*, Y¢, ¥;) is a minimum value point of Q(X, Y5, Y;) in
R3. Therefore, a non-negative C? function is defined as follows

VX, Ys,Y) = O(X, Y5, Y)) - O(X", Y5, Y)),

by It6 formula and combining (3.4) and (3.5), we get,

hX2Y? 0
e Mo, Mle(CYS +a¥DX . S, 2;723[ 468 I
2 d+ X2 d+Xx2 " T o+2L1-0)0+2)0

nszzYIH r e u u+o (1-6)c]
+M +B——X+1 Y@ Y@_ 12X€+2
d+X? 2K 275 2 4
1 — 6)02 1 - 0)o?
— ( 4) 22 Yg+2 ( 4) 32 Y]9+2- (37)
Structure compact set
1 1 1
{(X Ys,Y)ER) 16/ <X < —,6< Y5 < —, 83<Y1<—}
&l & &3

where €;(0 < g; < 1,i = 1,2, 3) is a sufficiently small constant and satisfying

(ces + ney)e; het mke;
Mo K————+ Mn—+ M < 1. 3.8
P d6283 n dé‘g d{;‘z ( )
(n + cer€3) hgz mk
Mo K————+ M + M < 1. 3.9
P d8183 M2y 2d d8%8§ ( )
Mo EEnEE) e B ke (3.10)
p1 de &, n dsfsg ds% ’ '
~2k G <-1. G.11)
_ 2 LG <-1. (3.12)
232
+0
Gl (3.13)

3

For the sake of discussion, we’re going to break R?\D down into six areas:

1 1
D ={(X.¥s.Y) €R}: 0< X <&, ¥s < —. ¥, < —},
& &3
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1 1
D, ={(X,Ys,Y) €R} :0< Y <82,X<—,Y1<—},
&1 &3

€1 &

1 1
X.Ys.¥peRI: X > —) Ds={X Y5, ¥)eR]: ¥s > —},

{

{(X Ys,Y)eR::0< Y, <e3,X < l,YS < l},
{ &1 &3
{

1
Do ={(X,Ys,Y) eR} : ¥, > —}.
&
Next, we will prove that LV(X, Yy, Y;) < —1 for any (X, Ys,Y;) € D¢ = Ri\D, we can discuss under

SIX cases:
Case 1. For any (X, Y5, Y;) € Dy,by (3.6)—(3.8), we obtain

Mp (cYs +nY)X hX*Y? 20, 468 g
Ve =Ly pp kST +M
L 2 TP T xe i x? e+2[(1—9)(9+2)o-§2]
kX*Y?
+ M L +B
d+X?
M + he? 2 46 g
s——p+Mp1K(cg3 neE Mm—é M nzﬁ[ B : ]2
2 dee; de 0+2L(1 - 6)6+2)03,
ke?
+ M L +B
de;
<-1

Case 2. For any (X, Y5, Y;) € D;, by (3.6), (3.7) and (3.9), we have

Mp (cYs + n¥)X hX*Y? 2m8 468 g
V<-4 MpK————" + +M
LV <=5+ Mp K== i x? e+2[(1—9)(9+2)a§2]
ngXZY?
M
- d+ X?
M, he$ 2 44 g
S——p+Mp1K(n+C8283) + M, 22 M 772,3[ B L
2 de&; d 0+24(1 - 6)6+2)03,
M "2k +B
ds
<-1.

Case 3. For any (X, Y5, Y;) € D3, by (3.6), (3.7) and (3.10), we get

Mp (cYs +nY)X hX*Y? 2n. 468 0
V- 2L oy mp gESTD2 M
L 2 TP T xe i+ x2 e+2[(1 —9)(9+2)a§2]
kX?Y?
Sl
d+X?
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M + h 2 46 0
s——£+MmKE—£§22+Mm — + nﬁ[ ) -
de &, de|g, 0+24(1 - 6)6+2)03,
kel
+ M 24+ B
de;
<-1
Set
Ys +nY)X hX?Y? 2 40
G= sup {MleM+ T S M Uzﬁ[ B :
(X.Ys, YRS d+ X d+X 6+2L(1 - 0)0+2)02,
mkX*Y? (1-00t, .., (1-00, (1-6)03,
M B _ —X +2 _ Y9+2 _ Y9+2 .
e T 4 4 5 4 1 }
We get
(cYs +nY)X hX*Y! 2m.8 468 '
LV <Mp K= Tavx 9+2[(1—9)(9+2)a§2]
mkX?Y] P Hoe A6, (=00
+M +B- —=X" -yl - YY - X042
d+ X2 2K 275 2 4
(- 0)o2, o (1 02, (1 -6)0% pr
4 $ 4 1
r H H+0
__X0+1__Y9 Y9+G
- 2K 275 2

Case 4. For any (X, Y5, Y;) € Dy, by (3.11) and (3.14), we have

LV<——X"*1G<-

+G < -1.
2K 2st+1

Case 5. For any (X, Y5, Y;) € Ds, by (3.12) and (3.14), we obtain

£V<—’%Y9+G<—L+G< ~1.

282

Case 6. For any (X, Y5, Y;) € D¢, by (3.13) and (3.14), we have

+0
H 7 +G < -1.
E

3

+0
LVs—’“‘TY,MGs—

For sufficiently small positive numbers &;(i = 1, 2, 3), we obtain
LV <-1, (X, Y5,Y)eR\D.
In order to verify conditions (i) in Lemma 1 hold we set

Y= min (X0 +01X)4 Yi(o + 012Ys): Yo + oY),
(X,Ys,Yz)eD{ Cat 12X)", Y (o 12Ys)", Yi(on 12 1)}

]

[SIES

(3.14)
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then, for all (X, Yy, Y;) € D, the diffusion matrix of model (1.1) is given as follows:

3

Z @ (0EE =X (01 + 0pX)E + Y5(oa + 00 Ys )& + Yi(oa + onY)’E
i=l

>,

where é: = (‘fl’ 52’ 63) € R3‘
From the Lemma 1, the conclusion of the Theorem 2 holds. We complete the proof of Theorem 2.

4. Extinction

In this section, we shall prove the extinction of the predator and the prey populations under certain
assumptions.

2
Theorem 3. For any given initial value (X(0), Y5(0), Y;(0)) € R3, if r — % < 0, then

+

lim X(#) =0, Ilim Ys() =0, lim Y;(¢)=0,a.s.
t—+00 [—+00

t—+00

That is to say that (X(z), Ys(¢), Y;(¢)) exponentially converges to (0,0, 0) a.s.
Proof. By It6 formula, and system (1.1), we obtain

X CXZYS nX2Y1 ] (0'11 + 0'12X)2

dInX :{%[rxu -2) Jdi + (11 + 12X)d By (1)

K d+X2 d+X° 2
r cYs nY; (011 + 012X)?
=lr——=X- - - dt + + X)dB(t
[r X 1+ X2 1+ X2 ) ] (0'11 012 ) 1()
2
g
S[r— 7“]dt+ (011 + 012 X)d B, (1). 4.1

Integral (4.1) from O to ¢, and divide by 7, we get

InX(1) ~InX(0) _ [r Kt

1 !
: )2 fo (011 + 1 X())dBy(s). 42)

Using the strong law of large numbers and (4.2), and taking the upper bound and the limit, we have

In X(¢) — In X(0) - o1

Jm sup == w3 <0 “
the upper formula indicates that
lim X(¢) = 0,a.s. (4.4)

t—+00
Therefore, for any € > 0, there are a constant 7 and a set 2, C Q satisfying P(Q,) > 1 — &, and

% < di; fort > T and w € Q. Therefore, by 1t6 formula, and system (1.1), we obtain

1 [hXZYS . kXY,
Ys + Y, ld+X? d+X?
1
(Y + Y))?

dln(YS + Y[) =

— uYs = (u+8)Y, |t

Y + Y
[V2(as + s P + Ve + ol + 2T T2YS)
Yo + Y,
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Yi(o31 + 03:2Y))

dB;(t
Yo+ 7, 3(0)
h + k)X> 1 Y Y, Y Y
<[( + )2 - : ] N s(021 + 022 S)de(t)+ (031 + 03 I)dB3(t)
d+X 20057+ 03}) Ys +Y; Ys +Y;
(h + k)’ Ys(021 + 022Ys)
< _ t+ dB,(t
[d+82 M= 2( _2+ 2] YS+Y[ 2()
Yi(031 + 032Y))
dB;(1). 4.5
Yo+ 7, 3(0) (4.5)
Taking the superior limit on both side of (4.5) and noting
) In(Ys(t) + Y (1)) _ (h+k)e? 1
1 < e e T 4.
i, SUP t d+e ! 20057 + 03}) (4.6)
Letting € — 0 leads to
In(Ys(2) + Y, (¢ 1
lim sup n( S( ) 1( )) < —[ + ﬁ] < 0, a.s.
t=+00 t 2051 +037)

which implies that
lim Ys() =0, lim Y;(t) =0,a.s.
t—+00 t—+00

We complete the proof of Theorem 3.

5. Numerical simulations

To conform the analytical results above, we use Milsteins higher order method [16, 17] to find the
strong solutions of system (1.1). The discrete equations of system (1.1) are described by

. . X/ c(XHY! nXx))2Y!
K™ d+X/)?> d+ (X))
Xj(O'%l + 30’110'12Xj + ZO'%Z(X])Z)

2

+Xj(0'11 +O'12Xj)flj\/Kl+

(& - DA,
nX)?Y]  BYLY]
d+ Xy vl +v]

vt =y +(

/ —ng)At+ Yj(0a1 + 00 Y))éw VAL

YS(O-%l + 30’210’22Y; + Zng(Y;)z)
+
2
k(XH?y!  gYly! y ;
o0 vl (+ O)Y))AL + Y](o31 + oY) VAT
Y/(02, + 303103 Y] + 202,(Y))?)
2
where &;,&;, and &;(j = 1,2,---) are independent Gaussian random variables N(0,1), o(i =
1,2,3;1 =1,2) are intensities of white noises.

&, - DA,

v/t =y] 4+ (

(&; - DA,
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The parameter values are chosen as follows: r = 0.5, K = %,ﬂ = 0.128,¢c = 052,n = 04,h =
0.32,k =0.13,d = 0.5, = 0.1,6 = 0.046, and the step size At = 0.01.

We give some numerical simulations to illustrate our theoretical results of Theorem 2. Figure 1 is
the model of stochastic system (1.1) with o; = 0.02,0 1, = 0.01, 05 = 0.02,05, = 0.045, 03, =
0.02,03 = 0.3, p; = 1.9404. By computation, we get that r + Ko ;02 — K*0}, = 0.5001 > 0,

_ 1 2d(h+0K | btk _ _ (h+bK? 3 2 2 pK 2
pr= 19404 > b | THREE + 1| = 19394, p = GRE - pi K30, - pi Koo = 0, -

2u—pB—-90-— 0'%1 — 0'%1 = 0.0041 > 0. The conditions of the Theorem 2 are satisfied. According to
Theorem 2, Figure 1 shows that there is a unique ergodic stationary distribution of the model (1.1).

X()

(a) (b)

Y0

(©) (d)

Figure 1. (a) Time sequence diagram of the stochastic system (1.1); (b) The density function
of X(¢); (c) The density function of Ys(#); (d) The density function of Y;(¢).

Figure 2 shows the stochastic system (1.1) with o1 = 1.02,071, = 0.01, 03; = 0.02, 05, = 0.045,
o3 = 0.02, 03, = 0.3, we get that 0'%1 = 1.0404 > 1 = 2r, which satisfies the conditions of Theorem 3,
this is consistent with our conclusion in Theorem 3, when the intensities of white noises are sufficiently
large, the populations of the predator and the prey of the stochastic system (1.1) are extinct.
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X®
Yo
Y0

AL

0 50 100 150 200 250 300 350 400
t

Figure 2. Time sequence diagram of the stochastic system (1.1).

6. Conclusions

In this paper, we construct and analyze a stochastic predator-prey model with Holling-type III
functional response and infectious predator. The effect of stochastic perturbations on the ergodic
stationary distribution and the possible extinction of the predator and the prey have been studied
in detail. By establishing a suitable Lyapunov function, the existence and uniqueness of the
global positive solution of the system are proved. Then, by establishing a series of suitable
Lyapunov functions, we established the conditions of the stationary distribution and the ergodic to
the system (1.1). In addition, we derived sufficient criteria for the extinction of the predator and the
prey populations. That is, if the environment disturbance is big enough, then the entire predator-prey
system (1.1) can die out. Our results show that predator and prey populations have the ability to adapt
to external environmental disturbances. If the intensity of environmental perturbation is small enough
such that the conditions in Theorem 2 are satisfied, then the predator-prey system is permanent in a
sense. Finally, by using Milstein’s scheme, we carry out a series of numerical simulations to illustrate
our results.

In the model, the combination of epidemic and white noise (Brownian motion) has a great impact
on the dynamics, complexity and extinction of the predator and the prey populations. The existence of
the ergodic stationary distribution of the positive solutions to the proposed model is a very important
problem for the predator-prey system and affects the survival of the species in the environment. Other
exciting research points deserve more investigation if we consider time-delays such as [18], which will
be considered in future work.
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