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Abstract: In this paper, an efficient artificial neural network is proposed for solving a generalized
vertical complementarity problem. Based on the properties of log-exponential function, the generalized
vertical complementarity problem is reformulated in terms of the unconstrained minimization problem.
The existence and the convergence of the trajectory of the neural network are addressed in detail. In
addition, it is also proved that if the neural network problem has an equilibrium point under some
initial condition, the equilibrium point is asymptotically stable or exponentially stable under certain
conditions. At the end of this paper, the simulation results for the generalized bimatrix game are
illustrated to show the efficiency of the neural network.
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1. Introduction

In this paper, a generalized vertical complementarity problem is investigated as follows: find a
vector x ∈ Rn such that

min{Fi1(x), Fi2(x), · · · , Fil(x)} = 0, i = 1, 2, · · · , n, (1.1)

where Fi j : Rn → R, i = 1, 2, · · · , n, j = 1, 2, · · · , l are twice continuously differentiable functions.
Finite dimensional complementarity problem and its applications in engineering, economy, game

theory and networks have become a mature and fruitful discipline in mathematical programming.
When the involved functions Fi j(·), i = 1, 2, · · · , n, j = 1, 2, · · · , l in (1.1) are linear, the problem (1.1)
becomes a generalized vertical linear complementarity problem (GVLCP), which was first proposed
in [1]. If, in addition, Fi1(x) = xi, i = 1, 2, · · · , n, then (1.1) is a vertical linear complementarity
problem (VLCP). There are several methods for solving VLCP and GVLCP, like smoothing Newton
methods [2,3], continuation methods [4,5], projected splitting methods [6] or algorithms that are based
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on formulating equivalent complementarity problems [7–10]. And other relevant works are [1,11–16].
In the case when l = 2 and Fi1(x) = xi, i = 1, 2, · · · , n, (1.1) is a nonlinear complementarity problem
(NCP) in [17, 18]. In the introduction of [18], merit function approach, nonsmooth Newton method,
smoothing methods, regularization approach, interior-point method, and proximal point algorithm are
mentioned, which are well-known approaches to solve NCP. If, in addition, Fi2(x), i = 1, 2, · · · , n
are linear functions, problem (1.1) is a linear complementarity problem (LCP) in [19–21]. And
smoothing Newton method, projected method, many modulus-based algorithms are mentioned for
solving LCP [20, 21] and references therein. If an optimization problem contains the generalized
vertical complementarity problem as its constraint, it is called mathematical programming with general
vertical complementarity constraints (MPVCC) [22–25], which can be found in equilibrium systems,
engineering design, optimal control and game theory [26].

The traditional research of optimization was restricted by theoretical investigation and numerical
implementation. However, neural networks were used to solve optimization problems [27–29]
since 1980s. The LCP and the NCP were studied in [30] and [31] through neural networks, respectively.
Another new neural network was proposed in [19] for solving the LCP. In recent years, neural networks
are still popular among scholars, and many complex optimization problems were solved by using
neural networks [18,32–40]. As shown in [30], the significant and unique feature of neural network to
optimization is the realization of simple and real-time hardware implementation.

In this paper, we focus on solving the generalized vertical complementarity problem (1.1) through
neural networks. At first, based on the properties of log-exponential function, we reformulate the
problem (1.1) as an unconstrained minimization problem and the consistency is studied. Then the
neural network is used to solve the unconstrained minimization problem, and under certain conditions,
the equilibrium point is asymptotically stable or exponentially stable. The obtained results are finally
applied to an example of generalization of bimatrix game.

The main contributions of this paper are as follows: first, different from the neural networks in [30]
and [31], a neural network is constructed by a smoothing form of the nonsmooth problem (1.1), which
avoids computing subgradients in the nonsmooth case. Second, some conditions ensuring consistency
of the the equilibrium point in the neural network to the solution of (1.1) are provided. Moreover,
asymptotical stability and exponential stability of equilibrium point of the differential equation with
the initial condition are studied under certain conditions. Third, the neural network is finally used to
solve a generalized vertical complementarity problem in a generalization of bimatrix game.

The main difficulties of this paper are as follows: first, the proof of consistency is obtained by
combining the definition of convergence of sequence of set, the properties of log-exponential function,
and the properties of solution mapping, which requires more complex techniques in variational
analysis. Second, in the process of approximating the original problem, Φ is smooth when α > 0, and
not smooth when α = 0. Hence, in order to ensure the convergence of solutions, the above two cases
are investigated to complete the consistency analysis of the original problem (1.1), the approximated
problem (3.3) and the differential Eq (3.5). Third, in the study of the stability of the neural network
in the Lyapunov sense, many definitions and theorems on stability are mentioned, which need some
differential equation techniques to combine them to get the desired conclusion.

This paper is organized as follows: in Section 2, some preliminary knowledge are provided. In
Section 3, we reformulate the complementarity problem as an unconstrained minimization problem
and construct a neural network. The consistency and stability results are discussed in Section 4
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and Section 5, respectively. Simulation results are presented in Section 6. Finally, some concluding
remarks are drawn in Section 7.

2. Preliminaries

In this section, some background material are provided.
Let ‖·‖ denote the Euclidean norm of a vector or the Frobenius norm of a matrix. Let B denote the

closed unit ball and B(x, δ) denote the closed ball around x of radius δ > 0. Let ∇φ(x) denote the
gradient of φ: Rn → R at x. For a mapping ϕ : Rn → Rm, Jϕ(x) denotes the Jacobian of ϕ at x. The
notation of Clarke generalized Jacobian [41] is as follows.

Definition 2.1. Let F: Rn → Rm be locally Lipschitz at x̄ ∈ Rn, by Redemacher’s theorem, F is
differentiable almost everywhere. Let ωF denote the set where F is differentiable. We can define the
B-subdifferential of F at x̄ as

∂BF(x̄) =

{
lim
i→∞

JF(xi) | xi → x̄, xi ∈ ωF

}
,

and the Clarke subdifferential of F at x̄ as

∂cF(x̄) = co ∂BF(x̄),

where co denotes the convex hull of a set.

The log-exponential function is a smoothing function for max-type functions. Let V : Rn → R be
defined by

V(x) = max {v1(x), v2(x), · · · , vm(x)} ,

where vi, i = 1, 2, · · · ,m, are continuously differentiable functions. Notice that, V(x) is continuous
in Rn, but V(x) is not differentiable everywhere. The log-exponential function is defined as follows.

Definition 2.2. [42, 43] For any α >0, the log-exponential function of V(x), denoted as Ṽ(α, x) :
Rn+1 → R, is defined by

Ṽ(α, x) = α ln(
m∑

i=1

exp(vi(x)/α)), (2.1)

Notice that,
0 ≤ Ṽ(α, x) − V(x) ≤ α ln m, (2.2)

which implies lim
α→0

Ṽ(α, x) = V(x) and the convergence is uniformly with respect to x. From the
definition, we know that V(α, x) is a smoothing function with respect to x for any α > 0.

Definition 2.3. [43] For sets Xn and X in Rn, X is closed, the sequence {Xn}n∈N is called convergence
to X if

lim sup
n→∞

Xn ⊆ X ⊆ lim inf
n→∞

Xn

with
lim sup

n→∞
Xn :=

{
x | ∃ N ∈ N#

∞, ∃ xn ∈ Xn, n ∈ N, such that xn N
−→ x

}
,
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lim inf
n→∞

Xn :=
{
x | ∃ N ∈ N∞, ∃ xn ∈ Xn, n ∈ N, such that xn N

−→ x
}
,

where N∞ = {N ⊆ N | N\N finite } ,N#
∞ = {N ⊆ N | N infinite } and N denotes the set of all positive

integer numbers.

Definition 2.4. [44] Let h : Rn → R be locally Lipschitz. We call h̃ : Rn × (0,+∞) → R a smoothing
function of h , if h̃ satisfies the following conditions:
1) For any fixed µ ∈ (0,+∞), h̃(·, µ) is continuously differentiable in Rn, and for any fixed x ∈ Rn, h̃(x, ·)
is differentiable in (0,+∞).
2) For any fixed x ∈ Rn, lim

µ→0
h̃(x, µ) = h(x).

3) {limz→x,µ→0 ∇z̃h(z, µ)} ⊆ ∂h(x).
4) There is a positive constant κ > 0 such that

∣∣∣∇µh(x, µ)
∣∣∣ ≤ κ, ∀x ∈ Rn, µ ∈ (0,+∞).

Some fundamental definitions about differential equation in the [45] are reviewed. Consider the
following differential equation

d(x(t))
dt

= H(x(t)), x(t0) = x0 ∈ R
n. (2.3)

Definition 2.5. We said x∗ = x(t∗) is an equilibrium point or the stable state of the dynamical
system (2.3) if H(x∗) = 0. And x∗ is called an isolated equilibrium point if there exists a
neighbourhood Ω of x∗, Ω ⊆ Rn , such that H(x∗) = 0 but H(x) , 0 for x ∈ Ω\{x∗}.

Definition 2.6. An isolated equilibrium point x∗ of (2.3) is asymptotically stable if it is stable in the
sense Lyapunov stable and there exists a δ > 0 , such that for any maximal solution x(t), t ∈ [t0, t1), if
‖x0 − x∗‖ < δ, then one has t1 = +∞ and lim

t→∞
x(t) = x∗.

Definition 2.7. An isolated equilibrium point x∗ of (2.3) is said to be exponentially stable if there
exist ω < 0, κ > 0 , δ > 0 such that arbitrary solution x(t) , with the initial condition x(t0) = x0,
‖x0 − x∗‖ < δ, is defined on [t0,+∞) and satisfies

‖x(t) − x∗‖ ≤ κeωt ‖x0 − x∗‖ , t ≥ t0.

Definition 2.8. [46] Let L = {1, 2, · · · , n}. The function F : Rn → Rn is said to be a P0 function if for
all x, y ∈ Rn with x , y

max
xi,yi

(xi − yi)
[
Fi(x) − Fi(y)

]
≥ 0.

Let F i(x) = (F1i(x), F2i(x), · · · , Fni(x))T , i = 1, 2, · · · , l. If for each x ∈ Rn and i ∈ L,
Fi(x) ∈ {F1

i (x), F2
i (x), · · · , F l

i(x)}, then F is a row representative of {F1, F2, · · · , F l}. And we say
{F1, F2, · · · , F l} has P0 property if every representative of {F1, F2, · · · , F l} is a P0 function.

3. Neural network

In this section, (1.1) is approximated as an unconstrained minimization problem by using the log-
exponential function. Then, the neural network in the forms of differential equation is proposed for
solving the unconstrained minimization problem.
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For convenience, in this paper, we only consider (1.1) for l = 3, that is finding a vector x ∈ Rn such
that

min{Fk1(x), Fk2(x), Fk3(x)} = 0, k = 1, 2, · · · , n. (3.1)

Notice that for each k, min{Fk1(x), Fk2(x), Fk3(x)} = 0 can be approximated by the following equation:

φα(Fk1(x), Fk2(x), Fk3(x)) = 0,

in the sense that
lim
α→0+

φα(Fk1(x), Fk2(x), Fk3(x)) = φ0(Fk1(x), Fk2(x), Fk3(x)), (3.2)

where

φα(a1, a2, a3) =

−α ln(
∑3

i=1 exp(−ai/α)), α > 0,
min{a1, a2, a3}, α = 0,

for numbers ai ∈ R, i = 1, 2, 3.
Then we obtain the following approximation of problem (3.1):

Φ(x, α) =


φα(F11(x), F12(x), F13(x))
φα(F21(x), F22(x), F23(x))

...

φα(Fn1(x), Fn2(x), Fn3(x))

 = 0. (3.3)

Suppose that xα satisfies Φ(xα, α) = 0 for some α > 0. Then one has that φα(Fk1(x), Fk2(x), Fk3(x)),
k = 1, 2, · · · , n is twice continuously differentiable at xα and

∇xφα(Fk1(xα), Fk2(xα), Fk3(xα)) =

3∑
i=1

ηki(xα, α)∇xFki(xα),

where
ηki(x, α) =

exp(−Fki(x)/α)∑3
i=1 exp(−Fki(x)/α)

∈ (0, 1), i = 1, 2, 3,

with
∑3

i=1 ηki(x, α) = 1.
Notice that (3.3) has a solution if and only if the following least square problem has the zero

minimum:
min
x∈Rn

f (x, α) =
1
2
‖Φ(x, α)‖2 . (3.4)

It is clear that f (x, α) is continuously differentiable.
Next, the frame structure of neural network is given for solving problem (3.1), which is based on

the steepest descent method for the reformulated problem (3.4):

d(x(t))
dt

= −τ∇x f (x(t), α), α > 0, τ > 0, (3.5)

τ is a scale factor. τ > 1 indicates that a longer step could be taken in simulation. And to simplify our
analysis, let τ = 1. A block diagram of the model is shown in the following Figure 1.
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Figure 1. Block diagram of neural network.

We know from Fermat’s theorem that for a fixed α > 0 if x(α) is an optimal solution of (3.4),
then ∇x f (x(α), α) = 0, which means that x(α) is an equilibrium point of (3.5).

The existence of equilibrium of (3.5) is illustrated by the next theorem.

Theorem 3.1. Suppose {F1, F2, · · · , F l} has P0 property, where F i(x) = (F1i(x), F2i(x),· · · , Fni(x))T ,

i = 1, 2, · · · , l, then for each α > 0, (3.5) has an equilibrium point.

Proof. By [46, Theorem 3.4], if {F1, F2, · · · , F l} has P0 property, then for each α > 0, Φ(x, α) = 0 has
a unique solution x(α), which means that ∇x f (x(α), α) = 0. The proof is completed. �

4. Consistency analysis

In this section, the relationship between the solutions of problem (3.1) and the solutions of
problem (3.3), the relationship between the solutions of problem (3.1) and the equilibrium point of
problem (3.5) are investigated.

Consider the following sets

X1α = {x ∈ Rn | ∇x f (x, α) = 0, α > 0},
Xα = {x ∈ Rn | φα(Fk1(x), Fk2(x), Fk3(x)) = 0, k = 1, 2, · · · , n},

X0 = {x ∈ Rn | min{Fk1(x), Fk2(x), Fk3(x)} = 0, k = 1, 2, · · · , n} .

Lemma 4.1. [24, Lemma 4.1] For a solution mapping Σ: Rn1 → Rn2 defined by

Σ(p) = {x ∈ Rn2 | Ψ(x, p) ∈ K } ,

where Ψ : Rn2 × Rn1 → Rn3 is continuous at (x0, p0), the function Ψ(·, p) is locally Lipschitz on Rn2 for
every p ∈ Rn1 , K is a closed convex set inRn3 and the map (x, p) 7−→ ∂c

1Ψ(x, p), where ∂c
1Ψ(x, p) denotes

the generalized Jacobian of Ψ(·, p) at x, is upper semicontinuous at (x0, p0). Let Ψ0(x) = Ψ(x, p0) for
x ∈ Rn2 . If the following regularity condition

0 ∈ int {Ψ0(x0) + ARn2 − K }
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holds for every A ∈ ∂cΨ0(x0), then there exist constants µ > 0, ε > 0 and δ > 0 such that

d(x,Σ(p)) ≤ µd(0,Ψ(x, p) − K), ∀x ∈ B(x0, ε), p ∈ B(p0, δ).

For x̄ ∈ X0, let index sets

K(x̄) =
{
k ∈ {1, 2, · · · , n} : ∃ i, j, i , j, such that Fki(x̄) = Fk j(x̄) = 0, i, j = 1, 2, 3

}
,

I(x̄) = {(k, i) ∈ K(x̄)c × {1, 2, 3} : Fki(x̄) = 0 } .

Next inspired by [24], a theorem is summarized about the convergence of the set Xα as α tends to
zero.

Theorem 4.2. Suppose the regularity condition

0 ∈ int {Ξ(x̄, a)Rn − {0}n } (4.1)

holds for any x̄ ∈ X0 and any a ∈ R3 satisfying
∑3

i=1 ai = 1 and ai ≥ 0 for each i, where Ξ(x̄, a) ∈ Rn×n

and the k-th row of Ξ(x̄, a) is

Ξ(x̄, a)k =

∇xFkik(x̄)T , if k ∈ K(x̄)c,∑3
i=1 ai∇xFki(x̄)T , if k ∈ K(x̄)

with ik is the index satisfying (k, ik) ∈ I(x̄), then

lim
α→0+

Xα = X0.

Proof. At first, we show that lim sup
α→0+

Xα ⊆ X0. It suffices to prove that if there exist a number sequence

{αn} → 0 and a sequence {xn} converging to x̄ as n → ∞ such that xn ∈ Xαn for each n, then x̄ ∈ X0.
Indeed, by (2.2), we have for each k,

0 ≤ φαn(Fk1(xn), Fk2(xn), Fk3(xn)) − φ0(Fk1(xn), Fk2(xn), Fk3(xn)) ≤ αn ln 3,

which means that x̄ ∈ X0.
Next we show that for any x̄ ∈ X0, x̄ ∈ lim inf

α→0+
Xα. It suffices to show that for any αn → 0, there

exists a sequence {xn} satisfying xn ∈ Xαn for each n such that xn → x̄. According to Lemma 4.1, if the
following condition

0 ∈ int{A(x̄)Rn − {0}n} (4.2)

holds for any A(x̄) ∈ ∂c[Φ(·, 0)](x̄), where Φ is defined as in (3.3), then there exist numbers µ > 0, ε > 0
and δ > 0 such that

d(x, Xα) ≤ µd(0,Φ(x, α)), ∀x ∈ B(x̄, ε), α ∈ B(0, δ).

Especially, we have

d(x̄, Xαn) ≤ µd(0,Φ(x̄, αn)) ≤ µ ‖Φ(x̄, 0) − Φ(x̄, αn)‖ ≤ µαn
√

n ln 3,
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which means for each n, Xαn , ∅. Therefore, there exists a sequence {xn} satisfying xn ∈ Xαn for each n
and xn → x̄ as n→ ∞. Then under condition (4.2), x̄ ∈ lim inf

α→0
Xα. As a result, to obtain the conclusion,

we only need to show condition (4.1) is the sufficient condition for (4.2). Consider the index

K(x̄) =
{
k ∈ {1, 2, · · · , n} : ∃ i, j, i , j, such that Fki(x̄) = Fk j(x̄) = 0, i, j = 1, 2, 3

}
.

Since for the index k ∈ {1, 2, · · · , n}\K(x̄), there exists only one index i ∈ {1, 2, 3} such that Fki(x̄) = 0,
we obtain

∂cφ0(Fk1(x̄), Fk2(x̄), Fk3(x̄)) = { ∇xFki(x̄) } .

For index k ∈ K(x̄), by Definition 2.1, we have

∂cφ0(Fk1(x̄), Fk2(x̄), Fk3(x̄))

= co
{

lim
n→∞
∇xφ0(Fk1(xn), Fk2(xn), Fk3(xn) : xn → x̄ s.t. for i , j, i, j ∈ Jk(x̄), Fki(xn) , Fk j(xn)

}
= co {∇xFki(x̄), i ∈ Jk(x̄) }

=

|Jk(x̄)|∑
i=1

ai∇xFki(x̄) :
|Jk(x̄)|∑

i=1

ai = 1, ai ≥ 0

 ,
where Jk(x̄) =

{
i ∈ {1, 2, 3} : ∃ j , i such that Fki(x̄) = Fk j(x̄) = 0

}
. So the condition (4.1) implies

conidtion (4.2). �

According to the Theorem 4.2, under some conditions, we have lim
α→0+

Xα = X0. Now a natural
question is the relationship between X1α and X0.

At the beginning, let us consider the following problem:

g(x) = min
x∈Rn

1
2
‖g1(x)‖2 ,

where

g1(x) =


min{F11(x), F12(x), F13(x)}
min{F21(x), F22(x), F23(x)}

...

min{Fn1(x), Fn2(x), Fn3(x)}

 .
It is clear that g1(x) is not differentiable, although the squared norm is differentiable, we cannot say
the composition g(x) is differentiable by the chain rule in Mathematical Analysis. In fact, g(x) is
continuously differentiable.

Lemma 4.3. [47, 48] The function g(x) is continuously differentiable with the gradient ∇g(x) =

VTg1(x) for any arbitrary element V ∈ ∂cg1(x).

Theorem 4.4. Suppose x(α) ∈ X1α, lim
α→0+

x(α) = x̄, if any V ∈ ∂cg1(x̄) is nonsingular, then x̄ ∈ X0.

Proof. We know that
∇x f (x, α) = JxΦ(x, α)TΦ(x, α).
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Then
∇x f (x(α), α) = JxΦ(x(α), α)TΦ(x(α), α) = 0.

Notice that
∇g(x) = VTg1(x), V ∈ ∂cg1(x).

According to the Definition 2.4, we have{
lim
α→0+

JxΦ(x(α), α)
}
⊂ ∂cg1(x̄),

that is, there exists V0 ∈ ∂
cg1(x̄) such that

lim
α→0+

‖JxΦ(x(α), α) − V0‖ = 0.

We know from proof of Theorem 4.2 that as α→ 0+,

Φ(x(α), α)→ g1(x̄).

Therefore we have as α→ 0+,

JxΦ(x(α), α)TΦ(x(α), α)→ VT
0 g1(x̄).

That is, VT
0 g1(x̄) = 0. Since V0 is nonsingular, then g1(x̄) = 0, i.e., x̄ ∈ X0. �

We know from the Theorem 4.4 that every cluster point of {x(α)} is a solution of generalized vertical
complementarity problem (3.1) under conditions in Theorem 4.4, where x(α) is an equilibrium point
of the neural network (3.5) for α > 0.

In Section 3 and Section 4, for the sake of illustration, consistency analysis is made for problem (1.1)
when l = 3. In fact, the consistency analysis in this paper can be extended to (1.1) for an arbitrary
choice of l, just replace the relevant 3 with l in the corresponding theorems and proofs.

5. Stability analysis

In this section, asymptotic stability and exponential stability for differential Eq (3.5) are studied.
Let α > 0, suppose that x∗ is an isolated equilibrium point of (3.5), and Ω∗ ⊆ R

n is a neighbourhood
of x∗ such that

∇x f (x∗, α) = 0, ∇x f (x, α) , 0, ∀x ∈ Ω∗ \ {x∗}.

First, we give a theorem to show the global convergence of solutions of differential Eq (3.5).

Theorem 5.1. (i) For an arbitrary initial state x0, there exists exactly one maximal solution x(t), t ∈
[t0, τ(x0)). (ii) If the level set Ω(x0) = {x ∈ Rn | f (x, α) ≤ f (x0, α)} is bounded or Fki(x) are Lipschitz
continuous, k = 1, 2, · · · , n, i = 1, 2, 3, then τ(x0) = +∞.

Proof. (i) It is obvious that ∇x f (x(t), α) is continuous, according to the [31, Theorem 2.5], we can get
the conclusion easily. (ii) First, we start with the first case, the level set Ω(x0) is bounded. If otherwise,
τ(x0) < +∞. Based on [31, Theorem 2.6], we have lim

t→τ(x0)
‖x(t)‖ = +∞. Let

τ0 = inf{s ≥ t0 | s < τ(x0), x(s) ∈ Ωc(x0)} < ∞,
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where Ωc(x0) = Rn\Ω(x0). Because of the continuity of f , Ω(x0) is a closed set, and Ω(x0) is bounded
by the condition. Consequently, Ω(x0) is a compact set. Hence, we can obtain x(τ0) ∈ Ω(x0) and
τ0 < τ(x0), this implies there exists a s ∈ [t0, τ(x0)), such that

f (x(s), α) > f (x(τ0), α)).

However,
d f (x(t), α)

dt
= ∇x f (x(t), α)T d(x(t))

dt
= − ‖∇x f (x(t), α)‖2 ≤ 0,

so f (·, α) is not increasing in monotony, this is a contradiction, therefore τ(x0) = +∞. Then in the
second case, if Fki, k = 1, 2, · · · , n, i = 1, 2, 3 are Lipschitz continuous in Rn, then ∇x f (x, α) is Lipschitz
continuous in Rn. According to [31, Theorem 2.5], τ(x0) = +∞. �

Theorem 5.2. For an arbitrary initial state x0, if the level set Ω(x0) is bounded or Fki , k = 1, 2, · · · , n,
i = 1, 2, 3 are Lipschitz continuous in Rn, then the differential Eq (3.5) has a unique solution
on [t0,+∞).

Proof. The proof is the same as the proof of Theorem 5.1. In fact, the theorem is an intuitive statement
of Theorem 5.1. If the above conditions hold, then the differential Eq (3.5) has global convergence for
an arbitrary initial state x0. �

Lemma 5.3. [45, Theorem 2.6] An isolated equilibrium point x∗ is asymptotically stable if there exists
a Lyapunov function over some neighbourhood Ω∗ of x∗, satisfying

dW(x(t))
dt

< 0, ∀x(t) ∈ Ω∗, x(t) , x∗.

Next we show the asymptotic stability of differential Eq (3.5) under mild conditions.

Theorem 5.4. If x∗ is an isolated equilibrium point of differential Eq (3.5), then x∗ is asymptotically
stable for (3.5).

Proof. First, we need to prove that f (x, α) is a Lyapunov function over the set Ω∗ for Eq (3.5). From the
definition of f (x, α), we know that f (x, α) is nonnegative over Rn. Since x∗ is an isolated equilibrium
point f (x∗, α) = 0, for any x ∈ Ω∗ \ {x∗}, f (x, α) > 0. Now we check the second condition in the
definition of Lyapunov function [45]. Notice that

d f (x(t), α)
dt

= ∇x f (x(t), α)T d(x(t))
dt

= −
∥∥∥∇x f (x(t), α)T ∇x f (x(t), α)

∥∥∥ ≤ 0.

Hence, the function f (x, α) is a Lyapunov function for (3.5) over the set Ω∗. Because of x∗ being an

isolated equilibrium point, we know
d f (x(t), α)

dt
< 0, ∀x ∈ Ω∗ \ {x∗}. It follows from Lemma 5.3 that x∗

is asymptotically stable for (3.5). �

Theorem 5.5. If JxΦ(x∗, α) is nonsingular for α > 0, then x∗ is exponentially stable for (3.5).
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Proof. Since JxΦ(x∗, α) is nonsingular, x∗ satisfies Φ(x∗, α) = 0. Notice that x∗ is an isolated
equilibrium point of (3.5), therefore, x∗ is asymptotically stable by Theorem 5.4. Let δ > 0
be sufficiently small such that for any x(t) ∈ B(x∗, δ), x(t) → x∗ as t → +∞. Notice that,
JxΦ(x, α)JxΦ(x, α)T is an n × n nonsingular matrix, hence there exist κ1 > 0 and κ2 > 0 such that

κ1 ‖v‖2 ≤ vT JxΦ(x, α)JxΦ(x, α)T v ≤ κ2 ‖v‖2 ,∀x ∈ B(x∗, δ).

By the smoothness of the function Φ(x, α) , we have the following expansion

Φ(x, α) = Φ(x∗, α) + JxΦ(x, α)(x − x∗) + o (‖x − x∗‖) .

Suppose that δ is small enough, such that

|o (‖x − x∗‖)| ≤ ε ‖x − x∗‖ ,

for some 0 < ε < κ1 and ∀x ∈ B(x∗, δ). Now let

Γ(t) = ‖x(t) − x∗‖2 , t ∈ [t0,+∞) .

Then
dΓ(t)

dt
= 2 (x(t) − x∗)T dx(t)

dt
= −2 (x(t) − x∗)T

∇x f (x(t), α)

= −2 (x(t) − x∗)T
(
JxΦ(x(t), α)T Φ(x(t), α)

)
.

Let
τ̄ = inf{t ∈ [t0,+∞) | ‖x(t) − x∗‖ ≥ δ}

be the first exit time of the solution from the ball B(x∗, δ). Combine the above formulas, and
Φ(x∗, α) = 0, then for arbitrary t ∈ Ī = [t0, τ̄),

dΓ(t)
dt

= −2 (x(t) − x∗)T
(
∇xΦ(x(t), α)T Φ(x(t), α)

)
= −2 (x(t) − x∗)T

∇xΦ(x(t), α)T
[
Φ(x∗, α) + ∇xΦ(x(t), α)T (x(t) − x∗) + o (‖x(t) − x∗‖)

]
≤ −2 (x(t) − x∗)T

∇xΦ(x(t), α)T∇xΦ(x(t), α) (x(t) − x∗) + ε ‖x(t) − x∗‖

≤ (−2κ1 + ε) ‖x(t) − x∗‖

= (−2κ1 + ε)Γ(t).

According to [45, Corollary 2.1], the following inequality

Γ(t) ≤ e(−2κ1+ε)tΓ(t0), t ∈ Ī,

is equivalent to the definition of exponential stability

‖x(t) − x∗‖ ≤ eωt ‖x(t0) − x∗‖ , t ∈ Ī,

where ω = −κ1 + ε \ 2 < 0. If τ̄ < +∞, then

δ ≤ lim sup
t→τ̄

‖x(t) − x∗‖ ≤ eωτ̄ ‖x(t0) − x∗‖ < δ,

that is a contradiction. Thus τ̄ = +∞ and we complete the proof of exponential stability. �
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Theorem 5.6. Assume that the neural network (3.5) is Lyapunov stable, for arbitrary initial state x0, for
a fixed α ∈ (0,+∞), if the level set Ω(x0) is bounded or Fki(x), k = 1, 2, · · · , n, i = 1, 2, 3 are Lipschitz
continuous, then the solution trajectory xα(t) of neural network (3.5) is global convergence to the
stationary point of (3.4). Furthermore, if JxΦ(x∗, α) is nonsingular, then xα(t) is global convergence to
the solution of (3.4).

Proof. If the condition holds, then the solution interval can be extended to infinity through Theorem 5.1
and neural network (3.5) has a unique solution denoted as xα(t), which satisfies limt→+∞ xα(t) = x∗ with
∇x f (x∗, α) = JxΦ(x∗, α)Φ(x∗, α) = 0. Hence, the solution trajectory xα(t) of neural network (3.5) is
global convergence to the stationary point of (3.4). Furthermore, if JxΦ(x∗, α) is nonsingular, which
means that Φ(x∗, α) = 0, then xα(t) is global convergence to the solution of (3.4). �

6. Application to a generalized bimatrix game and simulation

In this section, an example in a generalized bimatrix game is illustrated to test our neural network.
At first, the generalized bimatrix game is described, which is based on a bimatrix game introduced

by [49] and a generalized SER-SIT stochastic games model in [50]. Let A and B be two nonempty
sets in Rm×n. If Ri ∈ {Ai : A ∈ A} for i = 1, 2, · · · ,m, then the m × n matrix R is said to be a row
representative of A, where the subscript denotes the corresponding row. In the same way, if S j ∈{
B j : B ∈ B

}
, j = 1, 2, · · · , n, then the m× n matrix S is said to be a column representative of B, where

the subscript denotes the corresponding column. SupposeA = {C,D}, B = {E, F}, where

C =

(
2 1
2 4

)
, D =

(
1 3
3 2

)
and

E =

(
1 2
3 1

)
, F =

(
5 1
2 4

)
.

Let x̄ ∈ Rm and ȳ ∈ Rn, if there exist a row representative G ofA, and a column representative H of B
such that

x̄TGȳ ≤ uT Rȳ and x̄T Hȳ ≤ x̄T S v (6.1)

for all probability vectors u and v, for all row representative matrices R of A, and for all column
representative matrices S of B, then the mixed strategies (x̄, ȳ) is said to be a generalized Nash
equilibrium pair for the generalized bimatrix game.

The game theoretic implication of the above generalized Nash equilibrium pair is as follows. In the
game denoted by Λ(A,B), player I deals with the rows of matrices inA while player II deals with the
columns of matrices in B. Player I chooses a row representative A ofA and a probability distribution x
on the set {1, 2}. Player II chooses a column representative B ofB and a probability distribution y on the
set {1, 2}. Then the first player’s cost is xTGy while the second player’s cost is xT Hy. The existence of
an equilibrium for Λ(A,B) describes the stage at which no player can decrease his cost by unilaterally
changing his row/column selection and probability distribution.

By [49, Proposition 1], the existence of a pair of probability vectors (x̄, ȳ) satisfying the (6.1) is
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equivalent to the existence of the solution (x̃, ỹ) to the equation

F(x, y) =



min
{
x1, ( inf

A∈A
(Ay − e))1

}
min

{
x2, ( inf

A∈A
(Ay − e))2

}
min

{
y1, (inf

B∈B
(BT x − e))1

}
min

{
y2, (inf

B∈B
(BT x − e))2

}


= 0, (6.2)

where e = (1,−1)T . Moreover, if F(x̃, ỹ) = 0 and ‖x̃‖ ‖̃y‖ , 0, then (x̃/ ‖x̃‖ , ỹ/ ‖̃y‖) is a generalized
Nash equilibrium pair for the generalized bimatrix game. Notice that (6.2) is just a generalized vertical
complementarity problem:

G(z) =


min {z1, (Q1z + q)1, (Q2z + q)1}

min {z2, (Q1z + q)2, (Q2z + q)2}

min {z3, (Q1z + q)3, (Q2z + q)3}

min {z4, (Q1z + q)4, (Q2z + q)4}

 = 0, (6.3)

where

Q1 =

(
0 C

DT 0

)
, Q2 =

(
0 E

FT 0

)
, q =

(
−e
−e

)
, z =

(
x1, x2, y1, y2

)T
.

To solve the above problem, by introducing the log-exponential function and α > 0, we obtain a least
square problem to approximate (6.3):

min
z∈R4

f (z, α) =
1
2
‖Φ(z, α)‖2 ,

where

Φ(z, α) =


φα(z1, (Q1z + q)1, (Q2z + q)1)
φα(z2, (Q1z + q)2, (Q2z + q)2)
φα(z3, (Q1z + q)3, (Q2z + q)3)
φα(z4, (Q1z + q)4, (Q2z + q)4)

 , α > 0.

The Eq (6.3) is

G(z) =


z1 2z3 + z4 − 1 z3 + 2z4 − 2
z2 2z3 + 4z4 + 1 3z3 + z4 + 2
z3 z1 + 3z2 − 1 5z1 + 2z2 − 2
z4 3z1 + 2z2 + 1 z1 + 4z2 + 2

 = 0. (6.4)

The following neural network is constructed for solving problem (6.4):

d(z(t))
dt

= −τ∇z f (z(t), α), α > 0, τ > 0. (6.5)

The simulation is based on Matlab version 9.5, and the package ode45 in Matlab is used to solve
differential equations. The starting point z0 is a uniformly distributed random four dimensional vector
in [0, 1] × [0, 1] × [0, 1] × [0, 1].
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Here are some detailed simulation results in the following tables.
Problem (6.4) has a unique solution z∗ = (1, 0, 2, 0)T . According to Table 1, where τ is set to be

equal to 1000 , α ≤ 0.3, the approximate solutions obtained by neural networks are almost as the same
as z∗, but as α gets bigger, the distance between the approximate solutions and z∗ become larger. From
Table 2, we know where α is set to be equal to 0.01 and τ = 1, 10, 100, 1000, the approximate solutions
are almost as the same as z∗, but only the length of the convergence has changed.

Table 1. Simulation results of neural network (6.5) as τ = 1000.

τ α t z f (z, α)
1000 0.01 0.0620 (1.0000 2.3230e-09 2.0000 2.3230e-09) 2.2694e-13
1000 0.05 0.0771 (1.0000 3.4470e-09 2.0000 3.4470e-09) 2.1864e-14
1000 0.1 0.0695 (1.0000 2.4990e-09 2.0000 2.4990e-09) 1.5218e-13
1000 0.3 0.0396 (1.0000 1.4090e-05 2.0110 1.4090e-05) 2.5289e-14
1000 0.5 0.0456 (1.0090 0.0013 2.0700 0.0013) 3.5818e-13
1000 0.7 0.0396 (1.0390 0.0111 2.1650 0.0111) 1.7911e-11
1000 0.9 0.0597 (1.0920 0.0160 2.0160 0.0373) 3.7420e-10

Table 2. Simulation results of neural network (6.5) as α = 0.01.

τ α t z f (z, α)
1 0.01 0.0510 (1.0000 7.6746e-10 2.0000 7.6746e-10) 1.6197e-13

10 0.01 0.0682 (1.0000 2.7560e-09 2.0000 2.7560e-09) 8.2078e-14
100 0.01 0.0841 (1.0000 9.5730e-09 2.0000 9.5730e-09) 5.2607e-14
1000 0.01 0.1000 (1.0000 1.6420e-07 2.0000 1.6420e-07) 1.7804e-12

Moreover, we give Figures 2 and 3 about the trajectories of z(t) when τ = 1000 and α = 0.01, 0.05.

Figure 2. Evolution of z(t) with α = 0.01 and τ = 1000.
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Figure 3. Evolution of z(t) with α = 0.05 and τ = 1000.

The following observations can be made through the above tables and figures: (i) All trajectories
converge to their corresponding static states, respectively. The convergence is faster when a larger
scaling factor is applied. (ii) The smaller α is, the solutions approximate to the solution of the true
problem (α ≥ 0.01). As α gets bigger, the distance between the approximate solutions and the solution
of the true problem become larger. These limited numerical experiments verified the stability of the
proposed neural network.

7. Conclusions

In this paper, a neural network is constructed to solve a generalized vertical complementarity
problem. The log-exponential function is introduced to reformulate the generalized vertical
complementarity problem in terms of an unconstrained minimization problem, and then we construct
a neural network based on the unconstrained minimization problem. Some conditions ensuring
consistency of equilibrium point of the neural network to the solution of generalized vertical
complementarity problem are provided. Moreover, the asymptotical stability and exponential stability
of equilibrium point of neural network are studied in detail. Finally, an example of generalized bimatrix
game is illustrated to test our neural network.
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