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1. Introduction 

The classical Hardy-Hilbert’s inequality asserted that 
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constant factor (cf. [1], Theorem 315). 

A sharpened inequality of (1) was included in [1] by Theorem 323, as follows: 
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In 2006, Krnić and J. Pečarić [2] provided an extension of (1) by introducing parameters 

],4,0(),2,1(]2,0( 21 =+=  ii
i.e., 

qpnm

n

q

n

q

m

p

m

p

m n
nm

ba
bnamB

1

2

1

1 ][])[,(
1

1)1(

1

1)1(

21

1 1
)( 



=

−−


=

−−


=



=
+


 ,    (3) 

where, the constant factor ),( 21 B  is the best possible, and 
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is the beta function. For 𝜆 = 1,  𝜆1 =
1

𝑞
,  𝜆2 =

1

𝑝
,  inequality (3) reduces to (1); for ,2== qp  

,
221
 ==  (3) reduces to a generalization of Hilbert’s inequality which was proved by Yang in [3]. 

Recently, by the use of inequality (3), Adiyasuren et al. [4] gave a Hardy-Hilbert’s inequality 

involving partial sums, as follows: 

If 𝜆𝑖 ∈ (0,1] ∩ (0, 𝜆) (𝜆 ∈ (0,2];  𝑖 = 1,2),  𝜆1 + 𝜆2 = 𝜆, then 
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where the constant factor ),( 2121  B  is the best possible, and the partial sums  =
=
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Inequalities (1), (2) and the integral analogues play an important role in analysis and 

applications (cf. [5–18]). 

In 2016, by means of the techniques of real analysis, Hong et al. [19] considered some 

equivalent statements of the extensions of (1) with the best possible constant factor related to a few 

parameters. 

Motivated by the inequalities (2) and (4), in this paper, we establish a new Hardy-Hilbert-type 
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inequality, which contains modified weight coefficients and partial sums. The main technical 

approaches are the constructing of weight coefficients and the use of Hermite-Hadamard’s inequality, 

Euler-Maclaurin summation formula and Abel’s partial summation formula. Moreover, the 

equivalent conditions of the best possible constant factor related to several parameters are discussed. 

As applications, we deal with some equivalent forms, the operator expressions and some special 

cases about the inequality obtained in the main result. 

2. Some lemmas 

In what follows, we suppose that 𝑝 > 1,
1

𝑝
+

1

𝑞
= 1, ],2,0(  

),1,0(],0(
2
3

1 +   ),,0(],0(
2
1

2    

,:ˆ 12

1 qp


 +=

−
,:ˆ 21

2 pq


 +=

−
 

),2,1(],0[
4
1 = ii .: 21  +=  

We also assume that for 0, nm ba }),{1,2,:N,( =nm  the partial sums  =
=

n

k kn bB
1

:  

satisfy )(
)( 2−=

nt

n eoB ),;0( → nt  and 

.)(0,)(0
1

1ˆ

2

1

1)ˆ1(

1
21 −− 



=

−−


=

−− q

n

n

qp

m

m

p
Bnam

   

Lemma 1. (cf. [5], (2.2.3)) (i) If ,0)()1( − tgi

i

dt

di
N)(),[  mmt  with 0)()( =ig  ),3,2,1,0( =i

𝑃𝑖(𝑡),  𝐵𝑖(𝑖 ∈ 𝑁) are the Bernoulli functions and the Bernoulli numbers of i-order, then 

).,2,1;10()()()(
212

2 =−=


− qmgdttgtP qq

B

q
m

q

q      (6) 

In particular, for ,1=q  in view of 
6
1

2 =B , we have 

;0)()()( 112
1 − 



dttgtPmg
m

         (7) 

for ,2=q  in view of 
30
1

4 −=B , we have 

).()()(0
120

1
3 mgdttgtP

m
 



         (8) 

(ii) (cf. [5], (2.3.2)) If 𝑓(𝑡)(> 0) ∈ 𝐶3[𝑚,∞),  𝑓(𝑖)(∞) = 0 (𝑖 = 0,1,2,3), then we have the 

following Euler-Maclaurin summation formula: 
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weight coefficient: 
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Then we have the following inequalities: 
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Proof. For estimating the series (11), we set the following real function: For fixed Nm , 
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(ii) For ),0(],1[
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𝑠1, 𝑛, 𝜂2 and 𝑠2, 𝑚,  𝜂1, we obtain the following inequalities for the next weight coefficient: 
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Remark 1. In particular, for 

𝑠 = 𝜆 + 1 ∈ (1,3], 𝑠1 = 𝜆1 ∈ (0,
3

2
] ∩ (0, 𝜆 + 1), 𝑠2 = 𝜆2 + 1 ∈ (1,

3

2
] ∩ (1, 𝜆 + 1), 

in (13), then 

𝜆 ∈ (0,2], 𝜆1 ∈ (0,
3

2
] ∩ (0, 𝜆 + 1), 𝜆2 ∈ (0,

1

2
] ∩ (0, 𝜆), 

replacing nb  by nB , in view of the assumptions of 𝑎𝑚 𝑎𝑛𝑑 𝐵𝑛, we have 
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Lemma 4. If 0t , then the following inequality holds 

.
1
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1

)( 22

n

n
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n
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Betbe 
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         (16) 

Proof. In view of )()1(
)( 2 →=

−−
noeB

nt

n

 , by Abel’s summation by parts formula, we find 
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Since )0(1 − − tte t , by (17), we have inequality 
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namely, (16) follows. The Lemma 4 is proved. 

3. Main results 

Theorem 1. Let 𝑝 > 1,
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Then, we have the following Hardy-Hilbert-type inequality: 
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Proof. In view of the formula that 
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Then by (15), we have (18). 
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inequality (18) reduces to (19). The Theorem 1 is proved. 

Theorem 2. Suppose that ).,0(],0(),,0(],0(],2,0(
2
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in (18) is the best possible. On the other hand, if the same constant factor in (18) is the best possible, 
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If there exists a positive constant ),( 212  BM  , such that (19) is valid when we replace

),( 212  B  by M , then in particular, for )2,1(0 === ii  , substitution of ,~
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In the following, we obtain that ),( 212  BM  , which follows that ),( 212  BM =  is the best 

possible constant factor in (19). 

By (20) and the decreasingness property of series, we obtain 
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By (20) and the above results, we have 
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Setting 0 +→ , in view
 
of the continuity of the beta function, we find MB ),( 212  . Hence,

),( 212  BM =  is the best possible constant factor in (19). 

On the other hand, for ,ˆ,ˆ 2112

21 pqqp


 +=+=

−−
 and ,,

2
1

12
3

2 −−   we find 

,ˆˆ 2112

21 

=+++=+

−−

pqqp  

2
1

22
3

2
3

2
3

121
ˆ,ˆ,ˆ,ˆ0 =+ 

qp , 

and ),0(R)ˆ,ˆ(ˆ
212 = + B . By (19), we still have 
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If the constant factor qp kk
11

))(())1(( 1121)(

)1(  



++

+
+  in (18) is the best possible, then for any 

M , when we replace qp kk
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+
+  by M , we have 
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and then by (21), we have the following inequality: 
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It follows that 



6305 

AIMS Mathematics  Volume 7, Issue 4, 6294–6310. 

+ )ˆ( 11 k qp kk
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By using Hӧlder’s inequality (cf. [20]), we obtain 
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Then we have 

=+ )ˆ( 11 k qp kk
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))(())1(( 1121   ++ + , 

namely, (22) keeps the form of equality. 

We observe that (22) keeps the form of equality if and only if there exist constants A  and B , 

such that they are not both zero satisfying (cf. [20]) 

..
11 12 eaBuAu
−−−

=
  in +R . 

Assuming that 0A  , we have ..12 eau
A
B=

−− 
 in +R , and then 012 =−−  , namely, 

 =+ 21 . This completes the proof of Theorem 2. 

4. Equivalent forms and operator expressions 

Theorem 3. We have the following inequality equivalent to (18): 
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In particular, for 𝜆1 + 𝜆2 = 𝜆 (𝜆1 ∈ (0,
3

2
] ∩ (0, 𝜆),  𝜆2 ∈ (0,

1

2
] ∩ (0, 𝜆)), we have the following 

inequality equivalent to (19): 
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Proof. Suppose that (23) is valid. By using Hӧlder’s inequality (cf. [20]), we have 
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Then by (23), we have (18). On the other hand, assuming that (18) is valid, we set 
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If ,0=J  then (23) is naturally valid; if ,=J  then it is impossible that makes (23) valid, 
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namely, (23) follows, which is equivalent to (18). The Theorem 3 is proved. 

Theorem 4. Suppose that ).,0(],0(),,0(],0(],2,0(
2
1

22
3

1    If  =+ 21 , then the 

constant factor 
)(

)1(







+ qp kk
11

))(())1(( 1121   ++ +  in (23) is the best possible; On the other hand, if the 

same constant factor in (23) is the best possible, then for 
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2 , −−  , we have .21  =+  

Proof. If  =+ 21 , then by Theorem 2, the constant factor 

)(

)1(







+ qp kk
11

))(())1(( 1121   ++ +  

in (18) is the best possible. Then by (25), the constant factor in (23) is the best possible. 

On the other hand, if the same constant factor in (23) is the best possible, then by the 

equivalency of (23) and (18), in view of IJ q =  (in the proof of Theorem 3), it follows that the 

same constant factor in (18) is the best possible. By Theorem 2, in view of ,
2
3

2 −  
2
1

1 − , 

we have .21  =+  The theorem is proved. 
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where from, 
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we define the following normed linear spaces: 
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. The proof of Theorem 4 is complete. 

Definition 1. Define a more accurate Hardy-Hilbert’s operator qqq llT −→ 1,,:
  as follows: For any

,,qlb  there exists a unique representation qq
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, such that for any N,m  mcmTb =)( . 
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By Theorems 2–4, we have 

Theorem 5. Suppose that 
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Moreover, for  =+ 21 , the constant factor qp kk
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))(())1(( 1121)(

)1(  



++

+
+  in (26) and (27) is the 
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best possible, namely 

),(|||| 212  BT = . 

On the other hand, if the same constant factor in (26) (or (27)) is the best possible, then for 
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Remark 3. Taking 
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In particular, putting 021 ===   in (28) and (29), we get 
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5. Conclusions 

In this paper, by means of the weight coefficients, the idea of introduced parameters and the 

techniques of real analysis, using Hermite-Hadamard’s inequality, the Euler-Maclaurin summation 

formula and Abel’s summation by parts formula, a more accurate Hardy-Hilbert-type inequality 

involving one partial sums is given in Theorem 1. The equivalent conditions of the best possible 

constant factor related to several parameters are provided in Theorem 2. We also consider the 

equivalent forms, the operator expressions and some particular inequalities in Theorem 3, Theorem 4, 

Theorem 5 and Remark 3. The lemmas and theorems provide an extensive account of this type of 

inequalities. 
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