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1. Introduction

The classical Hardy-Hilbert’s inequality asserted that

S RN S P 1A SN
ZZ?THH < sin( z/ p) (Zarﬁ)p(zbg)q' (1)
m=1 n=1 m=1 n=1

where p>1i+i=1a b >00<) " a’<wand 0<) ~ bi<w, = is the best possible

constant factor (cf. [1], Theorem 315).
A sharpened inequality of (1) was included in [1] by Theorem 323, as follows:

33 e < xS al) (Dbl @)
m=1 n=1

m=1 n=1

In 2006, Krni¢ and J. Pecari¢ [2] provided an extension of (1) by introducing parameters
4 e(02] (i=12),4+4,=1<(04],i.e,

1

ii(mm)ﬂ <B(4,4 )[Zmp(l )y a’]r [anu 20)= lbq i )

m=1 n=1

where, the constant factor B(A4,,4,) is the best possible, and

B(u,v):j #dt (u,v>0)
is the beta function. For A =1, 4, = ;, Ay, = %, inequality (3) reduces to (1); for p=qg=2,
A =4, =%, (3)reduces to a generalization of Hilbert’s inequality which was proved by Yang in [3].

Recently, by the use of inequality (3), Adiyasuren et al. [4] gave a Hardy-Hilbert’s inequality

involving partial sums, as follows:
If 2; € (0,1]n(0,4) (A€ (0,2]; i =1,2), 14 + 1, =4, then

* 1

3> e < 2 4,B(, @(Zm AR (Zn vapa)t, (4

m=1 n=1

where the constant factor A,4,B(4,,4,) is the best possible, and the partial sums A, = Zim:lai and
B,=>, b (mneN={12,A}) satisfy

O<Zm PATAP < o0 and O<an‘218q<oo (5)
=1 n=1

Inequalities (1), (2) and the integral analogues play an important role in analysis and
applications (cf. [5-18]).

In 2016, by means of the techniques of real analysis, Hong et al. [19] considered some
equivalent statements of the extensions of (1) with the best possible constant factor related to a few
parameters.

Motivated by the inequalities (2) and (4), in this paper, we establish a new Hardy-Hilbert-type
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inequality, which contains modified weight coefficients and partial sums. The main technical
approaches are the constructing of weight coefficients and the use of Hermite-Hadamard’s inequality,
Euler-Maclaurin summation formula and Abel’s partial summation formula. Moreover, the
equivalent conditions of the best possible constant factor related to several parameters are discussed.
As applications, we deal with some equivalent forms, the operator expressions and some special
cases about the inequality obtained in the main result.

2. Some lemmas

In what follows, we suppose that p > 1, %+ g =1, 1<(0,2],

40,300,441, 4 (0,510 (0.4),

Y e A4 M F A, A
A=A A=

’7i G[O,%] (I =1’2)1 77:: 771+772'

We also assume that for a,,b, >0 (m,neN:={1,2,A}), the partial sums B, = Zizlbk
satisfy B =o(e'™ ")) (t>0;n— ), and
0<> (M-7)"* a2 <o, 0< S (N—1,) =B < o0,
m=1 n=1
Lemma 1. (cf. [5], (2.2.3)) (i) If (-1)' - g(t)>0, te[m,) (meN) with g¥()=0 (i=0123),

dt'
P;(t), B;(i € N) are the Bernoulli functions and the Bernoulli numbers of i-order, then
Byq

[ P Mg®)dt=—¢, 3 g(m) (0<z, <La=12,A). (6)

In particular, for q=1, inviewof B, =%, we have

-5 09(m)< I:Fi(t)g (t)dt<O0; )

for =2, inviewof B,=-%, we have

0< j:P3(t)g(t)dt < Z=-g(m). (8)

(i) (cf. [5], (2.3.2)) If f()(> 0) € C3[m,»), fPD(0) =0 (i = 0,1,2,3), then we have the
following Euler-Maclaurin summation formula:

S (k)= [ fdt+1f )+ [ R fE)dt, (9)
[ROF@dt=—3f(m)+L[ RE) f()dt (10)

Lemma 2. Let s€(0,3], s, €(0,2]n(0,s), k,(s;) =B(s;,s—s;) (i=12), we define the following
weight coefficient:

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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(s, m) = (M=) 3 (me ). (1)
=1

Then we have the following inequalities:

0<k,(5,)A-0,(252)) <@ (s, m) <K,(s;) (meN). (12)

Where

m- 771 us2t
k(sz)j du>0.

(m m )SZ (+u)®

Proof. For estimating the series (11), we set the following real function: For fixed me N,

g(m, 1) =L (0> 7)),

(m—n+t)®
In the following we divide two cases of s, € (0,1)"(0,s) and s, €[1,3](0,s) to prove (12).

(i) For s, €(0,1)n(0,s), since

(-D'g®(m,t)>0 (t>n,;i=012),

by Hermite-Hadamard’s inequality (cf. [20]), setting u—
@ (s,,m) = (M—1,)" Szzg(m n) < (m-7,)"* [ g(m,t)dt

S—S. 0 sp-1 b szl
=(m-7,) QL e sdt—jnwdu

(m—n,+t-1,)

Cu qu=B(s,,s-5,) =K, (S,).

0 (+u)®

On the other hand, in view of the decreasingness property of series, setting u=

@(S,,m) = (M-7)"* > g(m,n) > (m—n,)** [ g(m,tyt

n=1

= [0 2 du=B(s,,5-5,)- J'”“S“ u

1 vz (1+u)® (1+u)°®

=k, (s,)1-0,(—-)) >0,

where

1 oy
O (™) = _[ wayrdu>0,

satisfying

-2

O<r”£3du<r“ u*du=2(52)* (meN).

(1+u)®

Hence, we obtain (12).
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(ii) For s, e[1,2]N(0,s), by (9), we have
> g(mm= [ g(mhat+a(m)+ RO (.t
=] g(m.tydt—h(m)
where, h(m) is indicated as
h(m)= ] g(m.dt—3 g(m) - [ REG'(m .

We obtain —1g(m)) = “@m)* and integrating by parts, it follows that

2(m-n+1)° '

E g(m,tydt=[ £ gr_a [ dn

n, (M-n+t) 2 Jy, (m-n+t)*
1 m? g s .[1 (t=n)?dt _ 1 (@) s [* dnpt
S (m-p+t)* 2 S ) (menat)t S (mopa1)®  S2(SpH) [ (mepat)ot
1 (1-17,)

[ (t-7,)%2" 11 ]
S (m—p+1)°  S2(S2+D) L(m—p+t)stdn

s(s+1) _ J.nz (t _772)52+1dt

Sy (Sp+1)(m—n+1)

_ 1 ()% s (@) s(s+1)(1-77,)*"?
TSy (mepl)® 0 S2(SatD) (mop+)Sh T s, (s, +0)(Sp+2)(m—p+1)%2

We find
_q' (s ()P s(tony)
g (m!t) - (m-p+t)° + (m—p+t)**?
= (:L*Sz)(t*’?z)sr2 S(t*’h)5272[(m’77+t)’(m7’71)]
(m—y+t)° (m—p+t)*
_ Ws) ()2 () s(men)(trgp)
(m=-n+t)° (m=p+t)° (m-p+t)s*
_ (5sp)(t=np)? 7 s(monmy)(t=nm,)
(m-y+t)° (m-p+t)*t 7

and for s, €[1,3]n(0,s), it follows that

(- L 2" 750, (1) L2215 0 (> 7,1 =01,2,3).

(m=n+t)® dt' b(m-n+t)s?

By (8)—(10), for a:=1-7,(<[3, 1]), we obtain

(s+1- s)j HO=n "2’2 dt > — g2

12(m-n+1)° !

AIMS Mathematics
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22 (m-my)s [ (t-n,)2" 1.

(t- 772)22 (m—n)sa
—(m-m)s[ P () > s (e Lo
(m-n+l)s—as ~s,-2
12(m-np+1)5*
(m-n+1)s  (s+1)(s+2) 2(s+l)(2 Sy) (2-5,)(3-5;) 55,4
~ T 720 [(m 7415 a (m I a + (m-n+1)*7 a ]
_ sa%? sa%2t
T 2(ml)° 12(m-p+D)E
_ [ (s+1)(s+2) 2(s+1)(2-s;) - (2-5,)(3-5;) 8274]
720 L (m—p+1)5+2 (m-n+1) (m-n+1)° !

s(s+l)a%2?

and then we have
sa®2®
h(m) (m— +1)S h1 + (m—p+1)* "2 " (m—p+1)s+2

3

1,2,3) are indicated as

where, h (i=12,
h1 _at_ ad (msp)a®  s(2-5,)(3-5,)
TS, 2 12 720 ,
— at a? (s+1)(2-s;)
hz T s,(s,+) 12 360 #, and
a’ _s+2
720 *

hs = 5, (5, +1)(5,+2)

For se(0,3],s, €[12]n(0,s),ae[3 1], we find
h, > -[s? - (6a+1)s, +12a°] - ;.

In view of
41s? —(6a+1)s, +12a°]=6(4a—-s,) > 6(4-2-32) >0,
and
a-[s; —(6a+Ds, +12a°]=2s, - (a+1) <2-3-(6-3+1) =3-4 <0,
we obtain
h1—1(23(/3f1/)2)[( ) _(6 3+1)3+12( ) ] 120 ﬁ_lgo >0,
s =5—3>0,

%)% 2 ()[15()_ ~% 80 90

2 (42?
h2>a‘(l 12 90 —

1 _2r _ 1
( 144 — 1120 144 > O

and then h(m) > 0.
On the other hand, we also have
> g(m,n)= fg(m,t)dt+%g(m,1)+f P.(t)g’(m, t)dt
= [ g(m,tydt+H (m),
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where, H(m) is indicated as

H(m):=%g(mD)+ [ R (mt)dt
We have obtained that
z9(m1)= ﬁ

and

' _ (sHl=sy)(t=mp) 22 s(mepy)(t-rp) 2
g'(mt)= (m—n+t)° + (m—p+)*

For s, € [1%] N (0,s),0 < s < 3, by (7), we obtain

—(s+1-s,)[ RO EEdt >0,

(m 771)3.[ P(t) (t— 772)t)51d > —(m-7,)s asz—z _ —(m-p+l)s+as asz—z

12(m-n+1)**? 12(m-n+1)*"
—_ s g% 4 s ;-1 —s $,—2
12(m-n+1)° 12(m-p+1)* 12(m—y+1)°
Hence, we have
a%? -1 saszfz _/a s a52’2
H(m)> a =G5 (m-7y+1)°

2(m-p+)°  12(m-n+1)°

1.3_3 a%2?

_ g_ 52 2
= (2 4 12 (m7;7+l) - (8 12) (m— 77+1)

Therefore, we obtain the following inequalities:
jlg(m,t)dt<nz_;g(m,n)<jn2g(m,t)dt.
In view of the the results in case (i), we have
@ (s,,m) > (M-n,)"" [ g(mt)dt = k,(s,)1- 0, (7)) >0,
ZD-(SZ, m) < (m _771)5*52 .[: g(m,t)dt < B(SZ’S_SZ) = kﬂ (SZ)'

Hence, we obtain (12). The Lemma 2 is proved.
Lemma 3. Let se(03], s; € (0, %] N (0,s)(i=1,2). Then we have the following
Hardy-Hilbert-type inequality:

=3P < (5,) (K, ()

n=1 m=1

. L-(2+2)-1_pad e -2+ 2)-1 gqd
Do (m=1,)" ary{>.(n-7,)" by} (13)
m=1 n=1

Proof. In the same way as the proof of inequality (12) along with the symmetry of the parameters

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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s;,n,m, and s,, m, n,, we obtain the following inequalities for the next weight coefficient:

0<k, ()0, (1))

(m+n n)°

<w(s,n) = (n—nz)s’sl )™ i (s,) (neN),

where

n— r;g ust
= (Sl)'[ du > 0.

(n 7 )Sl o (+u)®

By Holder’s inequality (cf. [20]), we obtain

1 pmopy)® ][(n —p) %' b ]
men-ny L (ao) @7 AL 07 On

1]
LN

T
NgE
M

n

[

0

0
1 (m- ,h)(l sD(p-1) ap ] [Z Z (n_”z)(l—sz)(q—l) by ]%
(m+n-n)* (n=7,)"2 (m+n n)° (M)

n=1 m=1

IN

s
s

Il
LN

=ln

= a(s, m)(m—n)" M gy
2 Ui m
m=1

3

N Q-G+ ek
X{Zw(spn)(n—ﬂz) TP}
n=1

Then by (12) and (14), we obtain (13). The proof Lemma 3 is complete.
Remark 1. In particular, for

3 3
S=/1+1E(1,3],51=/11€< 2]0(0/1+1)sz—/12+1e< ]n(1/1+1)
in (13), then
1€ (0214 € (021N 0,2+ 1),4, € (0,51 n (0, 1),

replacing b, by B,, in view of the assumptions of a,, and B,, we have

ii(m+n n)*H < (kl+1(/1 +l)) (ki+l(ﬂi))%

X[ (m=n)P " ar [ (n—1,) " "B]T".
m=1 n=1

Lemma 4. If t>0, then the following inequality holds

Z e—t(n—ﬂz)bn < tz e—t(n—ﬂz) Bn .
n=1 n=1

Proof. In view of B, e (") =0o(1) (n — o), by Abel’s summation by parts formula, we find

(14)

(15)

(16)

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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Zeft(n 772)b =lim B e —t(n-7,) +ZB [e t(n-7,) —e t(”*’lz”-)]
=1 nN—o0 =1

0

— Z Bn [e—t(n—nz) _ e—t(n—772+1)] — (1_ eft)i e—t(n—nz) Bn'
n=1

n=1

Since 1-e™' <t (t>0), by (17), we have inequality

N ety <t N e tmp |
namely, (16) follows. The Lemma 4 is proved.

3. Main results

Theorem 1. Letp > 1, %+$=1,le(0,2], 4 (021N 0,2+, 4, e(0,4]N(0,A), A=r+s

A

0< > (m—7,)"*" 4P <0, 0< D (N—1,) B < oo,

m=1 n=1

Then, we have the following Hardy-Hilbert-type inequality:

1
q

= DT> e < T (e (7, +1) (K0 (4)

m=1 n=1

<[ (M=) LY (n-n,) BT
m=1 n=1

In particular, for 4, +4, =4 (4, €(0,2]1n(0,4), 4, €(0,2]n (0, 1)), then we have

ii(m-f-n )’1 < ﬂ B(Al 2’2) [Z(m 771)')(1 A p] [Z(n 772) q/?,z—qu]q

m=1 n=1

Proof. In view of the formula that

1 A-1 —(m+n it
Hmj t dt,

(m+n-n)*

by (16), it follows that

o 0

I =522 ab, I: t4 e (Mgt

m=1 n=1

F(A)J‘ A= lze—(m mltg Ze—(n ﬂz)tb dt

n=1

1 [P —(m-p)t —(n-n,)t
SWL t Ze S amZe 2'B dt
m=1 n=1

(17)

M

A=+  pe[0,4] (i=12), n=m+mn,, BH:ZE:Ibk, B, =0(e"™™) (t>0;n—o0), and let

(18)

(19)

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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o0 0

_ 1 ® L (A+1)=1 4 —(M+n-n)t
—W_)ZZamBn_fot e dt

m=1 n=1

o0 0

_ T(A+1) a,B,
T T ZZ (m+n-n)**

m=1 n=1

Then by (15), we have (18).
For ,+2,=2(€(0,2]) (4 €(0,41n(0,4),4, (0,41 (0, 1)), we have

kﬂ+1(/12 +1) = k/1+1(ﬂ1) = B(ﬂy 12 +1)

_ N (Ap+]) _ HI(AWT(4) _ AI(4)
- l"(/1+1§ == r(+y) F2(/1+1) B(/’i’l’ 1’2)’

inequality (18) reduces to (19). The Theorem 1 is proved.
Theorem 2. Suppose that 1€(0,2],4 €(0,2]n(0,4),4, €(0,4]n(0,4). If 4, +4, =4, then the
constant factor

D (K, (A +D) (K, (A))°

in (18) is the best possible. On the other hand, if the same constant factor in (18) is the best possible,
thenfor A-4, <1, 1-4,<3, wehave 4 +4,=A1

Proof. We now prove that the constant factor A4,B(4,,4,) in (19) is the best possible. For any
0<¢e<min{p4,qi,}, we set

£

. P N
=m"* b =n"°" (mneN).

SO

m

Since for 4,1, g(t) =t s strictly decreasing with respect to t >0, by the decreasingness
property of series, we have

k=1 k=1

If there exists a positive constant M < 4,B(4;,4,), such that (19) is valid when we replace
4LB(A4,4,) by M, then in particular, for n,=7=0 (i=12), substitution of a,6=a,, bn=5n
and B, = I§n in (19), we have

—~ o0

| = ii (m+1n)l ambn <M [z m p(l—ﬂi)—la‘n?]% (2 n—qﬂz—lgnq)% . (20)

n=1 m=1 m=1

In the following, we obtain that M > 4,B(4,,4,), which follows that M =4,B(4,,4,) is the best

possible constant factor in (19).
By (20) and the decreasingness property of series, we obtain

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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T <M (impa—m—lm Diy-p-e % 2 (zn—qzz—lnqﬂz )%

m=1

—g—l)

< [ ) = e+ D).

By (14),for n,=1=0(i=12), s=4, s,=4-% (€(0,3)n(0,4)), s,=4,+% (€(0,4)), we have

~ o (et e (4—5)1q o
=2 I

n=1 m=1

=Y 0§00 >k, (- Y L0, (2l

n=1

>k (=9I Yy - >10,(1)]
= 1B(h 4. + £ 0W)

By (20) and the above results, we have

B(4,-%,4, +5)(1- 50(1))<gl <M

Setting & — 07, in view of the continuity of the beta function, we find 1,B(4,,4,) <M . Hence,
M = 4,B(4,,4,) is the best possible constant factor in (19).
On the other hand, for 4 =*2+4 4, =%%4+% and 1-4,<3,2

htdy=tlsi b))

p
0< A, A, <4, ﬂi_ﬁ =9 <t

-4 <%, wefind

1/12

and 1,B(1,,4,) eR, =(0,). By (19), we still have

>t < ABULA) [ (m-n) T Y (-n) BT (2)

m=1 n=1

If the constant factor r}?j)l’ (k. (4, +1))%(kM(/11))% in (18) is the best possible, then for any

M , when we replace "2 (k.. (4, +1)* (K,.,(4))* by M ,we have

T(2)

MG (1 (A +1)7 (K, (4)" <

T(2)

and then by (21), we have the following inequality:

TR (K, (A + D)7 (K, (4))F < A,B( A, Ay) = o Ko ().
It follows that

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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Kin () 2 (K, (2 +D)° (K, 0 (A))"
By using Holder’s inequality (cf. [20]), we obtain

Kya () =k, 0 (2 +2)

o iy g

=| —Lt-u du= u '’ )(u )du

o (l+u)’M o (1+u)“1(

1
q

1yt -1
<[Io e du]’ [I @yt aul

1y 1 At 5
=[[ v [ u du)*

= (Ky1 (A +0) 7 (K0 (A)". (22)

Then we have

.Q\H

l+l (21) (kﬂ,+1 (ﬂ'z +1)) (ki+l (ﬂl))

namely, (22) keeps the form of equality.
We observe that (22) keeps the form of equality if and only if there exist constants A and B,

such that they are not both zero satisfying (cf. [20])
Au* %t =Bu*"ae in R

4t

Assuming that A=0, we have u*** =2 ae in R

A + A, = A . This completes the proof of Theorem 2.

and then A-4,-4,=0, namely,

+ 1

4. Equivalent forms and operator expressions

Theorem 3. We have the following inequality equivalent to (18):

{Z(m )" I{Z;ﬁ} }

<D (1, (A +D)° (K, (4)° [z(n 7,) BT (23)

In particular, for 4, +4, =1 (4, € (O, 2] N (0,1), 4, € (0, %] N (0,4)), we have the following
inequality equivalent to (19):

{Z(m ) {Zﬁ} } < %B(4, 4,) [é(n—nzr%*eﬁﬁ. (24)

Proof. Suppose that (23) is valid. By using Holder’s inequality (cf. [20]), we have

AIMS Mathematics Volume 7, Issue 4, 6294-6310.
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o0

= Z[(m ), }{(m —m)Mg - w}

m=1

1

{i(m—nm‘“%”a;}pa. (25)

m=1

Then by (23), we have (18). On the other hand, assuming that (18) is valid, we set

g-1
41 by
a,=(m-mn,) {Z;(mm”)} ,meN.

Then, it follows that J = [Z:zl(m—nl)"(l‘i“‘la,ﬁ]a.
If J=0, then (23) is naturally valid; if J =oo, then it is impossible that makes (23) valid,
namely, J <o. Supposethat 0<J <. By (18), we have

> (m—m)P el =30 = |

<D (1 (A +D)* (K, () 3 1[z(n —n,) BT,

1
q

3 <D (1 (4, +D)° (K, ()" [z(n 7,) = BAYY,

namely, (23) follows, which is equivalent to (18). The Theorem 3 is proved.
Theorem 4. Suppose that 1<(0,2],4, €(0,2]n(0,4),4, €(0,31n(0,2). If A4 +4,=A4, then the

constant factor S (k, (4, +1))%(k ( ))% in (23) is the best possible' On the other hand, if the
T(4) A+1 A+1

same constant factor in (23) is the best possible, then for 1 -1, <3,1-4 <1 ,wehave 4 +41,=A.
Proof. If A, +4, =4, then by Theorem 2, the constant factor

T (K, (A +D)° (K, 0 (4)°

in (18) is the best possible. Then by (25), the constant factor in (23) is the best possible.

On the other hand, if the same constant factor in (23) is the best possible, then by the
equivalency of (23) and (18), in view of J9=1 (in the proof of Theorem 3), it foIIows that the
same constant factor in (18) is the best possible. By Theorem 2, in view of A1-1,<2, A-4 <%,

we have 4 + 4, =A. The theorem is proved.
Setting

(D(m) = (m — 771) P(lqu)*l’ l//(n) — (n _UZ)Q(l—iz)fl’ “P(n) — (n _ nz)—qiz—l,
where from,

@) = (m—7,)"" (mneN),
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we define the following normed linear spaces:
. =la={a,Jullall,,= (mi o(m)|a, [*)* <o,
y = ={b}:llbll,, = (gl//(n) |b, V) <o,
={B={B.}uilIBllyv= Z‘P(H)IB )" <o},

ao- =c={Co}nusllcll,, (Z(Dl "(m)] ¢, [V)° <o}

For b={b};, el,,.setting c={c Y7 :c,=> " —>_ wecan rewrite (23) as follows:

=1 (m+n-n)*

gy’

c ||q,¢,1—q < % (Kpa (A + 1) (ks (A)) I B llg0 <0,

namely, ce quwl_q . The proof of Theorem 4 is complete.
Definition 1. Define a more accurate Hardy-Hilbert’s operator T :I, I o @S follows: For any
be Iq,w'

Define the formal inner product of Tb and ael | and the norm of T as follows:

there exists a unique representation ¢=Tb el ey such that forany meN, Th(m)=c,

]

(Tb’ a) Z an, Z (m+n mn?
=1

n

Imoi,
ITl= sup —gpe.
b(=0)ely,, '

By Theorems 2—-4, we have
Theorem 5. Suppose that

21€(0,2], 4, €(0,2]1n(0,4), 4, € (0,21 (0, 2).

b =0)€l,, Bel,y,a=0)el,,lbl,,>0lBl,+>0]al,,>0

then we have the following equivalent inequalities:

(Tb,a) < "D (k. (4, +2) (K, y () N1l 1 Bl (26)
17D, < "2 (K00 (A +2) (K 1 (22)° 1B g (27)

Moreover, for A4 + 4, =, the constant factor ~“2 (k, (4, +1))%(kﬂ+1(/11))% in (26) and (27) is the

T(2)
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best possible, namely
IT = 4,B(4.4,)

On the other hand, if the same constant factor in (26) (or (27)) is the best possible, then for
A-, <3 A-4 <% wehave 4, +4,=41.
Remark 3. Taking A=14, =4, =% in (19) and (24), we have the following equivalent inequalities

2
with the best possible constant factor  :

[Ms

Db <z [Y (m-n) a2 [Y. (n—n,) BT, (28)
m=1 n=1

1 n=1

3
I

n=1

{z (m—m)“{iﬁan} } <5 (-m) Bl (29)

In particular, putting 7, =7, =n7=0 in (28) and (29), we get

M

(30)

D <y (QmTan) (X on Bl
m=1 n=1

1 n=1

3
]

1

i N b ! LI
{me [Z—H <5 (CntEyt @y

m=1 n=1

Putting 7, =n,=1,n=1 in(28) and (29), we obtain

2

2>y <f [Xm-DT T BT (32)

m=1 n=1

1

= [ & | ! x ~$-lpaye
{Z(m—%)f {ZH FINCERE (39

5. Conclusions

In this paper, by means of the weight coefficients, the idea of introduced parameters and the
techniques of real analysis, using Hermite-Hadamard’s inequality, the Euler-Maclaurin summation
formula and Abel’s summation by parts formula, a more accurate Hardy-Hilbert-type inequality
involving one partial sums is given in Theorem 1. The equivalent conditions of the best possible
constant factor related to several parameters are provided in Theorem 2. We also consider the
equivalent forms, the operator expressions and some particular inequalities in Theorem 3, Theorem 4,
Theorem 5 and Remark 3. The lemmas and theorems provide an extensive account of this type of
inequalities.
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