
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 5634–5661.
DOI:10.3934/math.2022312
Received: 18 December 2019
Revised: 12 July 2021
Accepted: 18 July 2021
Published: 10 January 2022

Research article

Superconvergent interpolants for Gaussian collocation solutions of mixed
order BVODE systems

M. Adams, J. Finden, P. Phoncharon and P. H. Muir∗

Mathematics and Computing Science, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3,
Canada

* Correspondence: Email: muir@smu.ca.

Abstract: The high quality COLSYS/COLNEW collocation software package is widely used for
the numerical solution of boundary value ODEs (BVODEs), often through interfaces to computing
environments such as Scilab, R, and Python. The continuous collocation solution returned by the
code is much more accurate at a set of mesh points that partition the problem domain than it is
elsewhere; the mesh point values are said to be superconvergent. In order to improve the accuracy
of the continuous solution approximation at non-mesh points, when the BVODE is expressed in first
order system form, an approach based on continuous Runge-Kutta (CRK) methods has been used to
obtain a superconvergent interpolant (SCI) across the problem domain. Based on this approach, recent
work has seen the development of a new, more efficient version of COLSYS/COLNEW that returns an
error controlled SCI.
However, most systems of BVODEs include higher derivatives and a feature of COLSYS/COLNEW is
that it can directly treat such mixed order BVODE systems, resulting in improved efficiency, continuity
of the approximate solution, and user convenience. In this paper we generalize the approach mentioned
above for first order systems to obtain SCIs for collocation solutions of mixed order BVODE systems.
The main contribution of this paper is the derivation of generalizations of continuous Runge-Kutta-
Nyström methods that form the basis for SCIs for this more general problem class. We provide
numerical results that (i) show that the SCIs are much more accurate than the collocation solutions
at non-mesh points, (ii) verify the order of accuracy of these SCIs, and (iii) show that the cost of
utilizing the SCIs is a small fraction of the cost of computing the collocation solution upon which they
are based.

Keywords: collocation; Runge-Kutta methods; Runge-Kutta-Nyström methods; boundary value
ordinary differential equations; interpolation
Mathematics Subject Classification: 65L05, 65L10

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022312

5635

1. Introduction

The numerical solution of boundary value ODEs (BVODEs) arises as a key task in a wide variety
of applications such as the modelling of optimal control of electric vehicles [31], tropical fruit heat
treatment [16], black holes [24], enzyme kinetics [30], and metal uptake in biointerphases [9].

The general form for a BVODE system with separated boundary conditions, written in first order
form is,

y′(t) = f (t, y(t)),
ga

(y(a))
g

b
(y(b))

 = 0. (1.1)

However, most BVODEs do not arise naturally in this form. It is common for higher derivatives to
be present and in fact almost all of the problems considered in the applications cited above and in
the well known BVODE collection in [4] include equations in which higher derivatives appear. These
are referred to as mixed order systems. A standard form for a mixed order system consisting of n
differential equations of orders m1,m2, . . . ,mn, respectively, is

y(m1)
1 (t) = f1

(
t, z(t)

)
. . .

y(mn)
n (t) = fn

(
t, z(t)

)
 ,

ga
(z(a))

g
b
(z(b))

 = 0, (1.2)

where
z(t) =

[
y1(t), y(1)

1 (t), . . . , y(m1−1)
1 (t), . . . , yn(t), y(1)

n (t), . . . , y(mn−1)
n (t)

]T
, (1.3)

where y(`)
j (t) is the `th derivative of the jth solution component, y j(t).

The high quality Fortran COLSYS/COLNEW collocation software package, [2, 3, 6] has been
widely used for the numerical solution of BVODEs for several decades. More recently, interfaces to
the package have been developed for several computing platforms such as Scilab, R, and Python. The
papers cited at the beginning of this section are examples of investigations where COLSYS/COLNEW
is used directly or through one of these platforms.

COLSYS/COLNEW is able to directly handle BVODEs having the more general mixed order form
(1.2). While it is straightforward to convert a BVODE system of the form (1.2) to the form (1.1), there
are advantages to treating the mixed order form directly; these include user convenience, efficiency
improvements, and higher continuity for some of the approximate solution components; see, e.g., [4]
and [26], for further discussion. See, in particular, [4], Page 252, where the authors comment that,
for the application of collocation directly to the BVODE mixed order system form rather than the
corresponding first order system form, “the saving in computation and storage is substantial”. See
also, Table 7.3.1 of [12], where the computation times for COLSYS/COLNEW applied to a standard
test problem are presented; the costs for the solution of the mixed order system form are approximately
one third of those associated with the first order system form.

COLSYS/COLNEW employs an iterative, adaptive error control strategy in order to obtain a
continuous solution approximation with an associated error estimate that satisfies a user-specified
tolerance. The solver assumes that the solution components, {y j(t)}nj=1, are approximated by piecewise
polynomials of degree k + m j, which are determined by imposing boundary and continuity conditions
(the approximation to y j(t) will be required to have C(m j−1)-continuity), and by imposing collocation
conditions that require the approximate solution to satisfy the BVODE at a set of k collocation points

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5636

on each subinterval of a mesh that partitions the problem domain. The derivatives of the {y j(t)}nj=1
solution components are approximated by the corresponding derivatives of the piecewise polynomials
that approximate {y j(t)}nj=1.

On each subinterval, the collocation points are the images of the set of k Gauss points mapped onto
[0, 1]. It can be shown - see, e.g., [4] - that the z(t) values at the mesh points are substantially more

accurate than elsewhere. Let h =
N

max
i=1

hi, where hi = ti+1 − ti, and where {ti}
N
i=0 are the mesh points that

partition the problem interval. Then, under appropriate assumptions [4], the global error associated
with z j(ti) is O(h2k), for all components of z(ti). On the other hand, at a non-mesh point, t, the global
error associated with the component of z(t) equal to y(`)

j (t), j = 1, . . . , n, ` = 0, . . . ,m j−1, is O(hk+m j−`),
provided that k+m j−` ≤ 2k. Therefore, when 2k > k+m j−`, the mesh point values are more accurate
than the approximations at non-mesh points, and the former are said to be superconvergent.

An essential point is that COLSYS/COLNEW controls an error estimate for the continuous
collocation solution rather than an error estimate for the mesh point solution values. Due to the
lower accuracy of the collocation solution at non-mesh point values, it takes substantially more
computational time and memory for COLSYS/COLNEW to obtain a satisfactory solution than it would
if the continuous approximate solution had the same high accuracy that the mesh point values have.
More mesh iterations are required to obtain a satisfactory continuous collocation solution and the
meshes upon which the solution is constructed have to be much finer, which implies more subintervals,
which implies higher computational and storage costs.

1.1. Superconvergent interpolants for collocation solutions

As explained above, a primary issue that impacts substantially on the efficiency of the computation
performed by COLSYS/COLNEW is that the continuous collocation solution has substantially lower
accuracy than that of the mesh point collocation solution values. A key idea in efforts to address this
issue have focused on developing interpolants for all components of z(t) that have an error that is
O(h2k) (the mesh point error) for any t in the problem domain. Such interpolants are referred to as
superconvergent interpolants (SCIs).

There have been a number of papers that have investigated the development of SCIs for collocation
solutions. To our knowledge, the first such effort was [33], which considered the development of SCIs
based on superconvergent mesh point values from several adjacent subintervals; difficulties are reported
for highly non-uniform meshes. Subsequently, [34] and [20] considered SCIs based on secondary
collocation; this involves performing an additional collocation computation, similar in cost to the
original collocation computation, and efficiency is therefore a concern.

The paper, [13], describes how to develop SCIs for first order BVODE systems, (1.1), based on
the use of continuous Runge-Kutta (CRK) methods - see, e.g., [28, 29, 36]. The key idea is to embed
information from the collocation solution within a CRK method which is constructed to have the same
superconvergent accuracy as the mesh point collocation values have. The primary contribution of that
paper is the derivation of CRK methods that provide the basis for SCIs for collocation solutions for
k, the number of collocation points, equal to 1, 2, 3, and 4, leading to SCIs of orders 2,4, 6, and 8,
respectively.

In [13], the SCI is computed in a post-processing step to augment the collocation solution computed
by COLSYS/COLNEW. That is, COLSYS/COLNEW is first called with a given user tolerance and the

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5637

code returns with a continuous collocation solution that has an error estimate that satisfies the tolerance.
Then the routine that implements the SCI is called to obtain a continuous approximate solution that has
an error that is of the same order of accuracy as that of the mesh point values. This means that the SCI
is substantially more accurate than the user tolerance. What of course is more desirable is to have the
code return an SCI with a corresponding error estimate that meets the requested tolerance. This would
mean that COLSYS/COLNEW would compute a continuous collocation solution with an intermediate
level of accuracy and then the SCI would be used to augment this solution to obtain a continuous
approximate whose accuracy would meet the requested tolerance. This would lead to a more efficient
computation because COLSYS/COLNEW would only be required to compute a collocation solution
of intermediate accuracy.

This idea has been pursued in recent work, [1], which has involved the development of
COLNEWSC, a modification of COLSYS/COLNEW that employs the SCI within the code, as the
primary numerical solution that is returned to the user. On a given mesh, COLNEWSC first computes
the collocation solution, and then from this collocation solution, an SCI is constructed. An error
estimate for this SCI is also computed and used within an adaptive error control algorithm to refine the
mesh if necessary. The goal of this solver is to obtain an SCI for which the associated error estimate
satisfies the user tolerance. In [1], COLNEWSC has been shown to be substantially more efficient than
COLSYS/COLNEW since it is able to obtain a sufficiently accurate numerical solution using much
coarser meshes than those employed by COLSYS/COLNEW due to the additional accuracy delivered
by the SCI on a given mesh.

However, the algorithm upon which COLNEWSC is based requires that the BVODE be expressed
as a first order system. Thus, when COLSYS/COLNEW is applied directly to a mixed order BVODE
system, the advantages associated with the introduction of an SCI are not available. And, as mentioned
above, in a majority of cases, BVODEs arise in their natural form as mixed order systems, which means
that they can be treated directly by COLSYS/COLNEW, but not by COLNEWSC.

1.2. SCIs for mixed first/second order BVODE systems

In order to address this issue, the goal of this paper is to present a derivation of generalizations of
CRK methods that can serve as the basis for SCIs for the most common subclass of (1.2) known as
mixed first and second order BVODE systems. These systems have the form,

y′
1
(t) = f

1

(
t, y

1
(t), y

2
(t), y′

2
(t)

)
, y′′

2
(t) = f

2

(
t, y

1
(t), y

2
(t), y′

2
(t)

)
, (1.4)

with boundary conditions ga

(
y

1
(a), y

2
(a), y′

2
(a)

)
g

b

(
y

1
(b), y

2
(b), y′

2
(b)

) = 0,

In this paper, we will derive schemes based on either Hermite interpolants or extensions of
continuous Runge-Kutta-Nyström (CRKN) methods - see, e.g., [18, 23]. These schemes can provide
the basis for SCIs for continuous approximations of y

1
(t), y

2
(t), and y′

2
(t), that will have the same

superconvergent order of accuracy as the mesh point values. We will also consider preliminary
implementations of these SCIs that are used in a post-processing step, similar to what was done in [13].

The computational costs associated with the construction and evaluation of an SCI for either a first
or mixed order BVODE system are quite small compared to the costs associated with obtaining the

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5638

collocation solution upon which the SCI is based. The primary costs associated with the computation
of the collocation solution involve the setup and solution of a sequence of almost block diagonal
linear systems performed within the context of a Newton type iteration. On the other hand, the costs
associated with constructing an SCI involve only a few function evaluations per subinterval. Later in
this paper, we provide numerical results similar to those given in [13], where it was shown that the cost
of constructing an SCI is only a small fraction of the cost of the computation associated with obtaining
the collocation solution upon which the SCI is based.

The significance of the work described in this paper is that it will provide the basis for an extension
of COLNEWSC to allow for the direct treatment of mixed first and second order BVODE systems.
This will mean that this new version of COLNEWSC will return an SCI for which the corresponding
error estimate satisfies the user tolerance. Because the SCI is substantially more accurate than the
collocation solution, this will mean that COLNEWSC will be able to terminate more quickly using a
coarser mesh than that which is used by COLSYS/COLNEW. This new version of COLNEWSC will be
able to directly handle mixed first and second order systems just as COLSYS/COLNEW can, thereby
taking advantage of the user convenience and efficiency that is achieved by COLSYS/COLNEW for
such systems. As well, the approach described in this paper suggests how the treatment of (1.4) can be
generalized to allow for the treatment of general mixed order systems (1.2).

The schemes described in this paper may also be relevant for Gaussian collocation software for
boundary value differential-algebraic systems [5], where the challenge will be to construct SCIs for the
algebraic solution components. The schemes from this paper may also be applicable to software where
Gaussian collocation is employed for the spatial descritization of PDEs - see, e.g., [1, 17, 22, 32] - that
involve the second spatial derivative of the solution; it may be possible to adapt the schemes developed
in this paper to obtain SCIs for the collocation solutions computed by these solvers.

Work that is related to the investigation discussed in this paper includes an alternative approach to
developing SCIs based on boot-strapping [10]. The paper [14] describes the extension of this boot-
strapping approach to general mixed order BVODE systems (1.2). Hermite-Birkhoff interpolants -
see, e.g., [21] - are employed to provide SCIs for components of z(t) that approximate the solution
components, y j(t), j = 1, . . . , n. Continuous approximations for the derivatives of y j(t), j = 1, . . . , n,
are obtained by differentiating these SCIs; however, each differentiation leads to a decrease by one
in the order of accuracy and therefore the approximation for a component of z(t) of the form y(`)

j (t)
will have a global error that is only O(h2k−`). Thus, in this approach, only the approximations to the
y j(t) components will have the full superconvergent accuracy of the mesh point collocation solution
values. As well, in [13] the boot-strapping approach is shown to require more evaluations of the right
hand side of (1.1) than does the approach based on the use of CRK methods described in [13], which
impacts negatively on the efficiency of these schemes. In more recent work, [35], the boot-strapping
algorithm considered in [10] and [14] is extended to obtain SCIs for collocation solutions of Volterra
integro-differential equations with delay.

This paper is organized as follows. We show, in Section 2, that it is possible to reformulate
collocation methods, applied to (1.4), in a form that will allow us to show that they fit within the
framework of Runge-Kutta (RK) and Runge-Kutta-Nyström (RKN) methods. This is followed, in
Section 3, by a review of RKN and CRKN methods, Hermite interpolants, and a generalization of
the CRKN methods, known as continuous parameterized implicit Runge-Kutta-Nyström (CPIRKN)
methods. In Section 4, the main section of the paper, we derive specific CPIRKN methods that can

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5639

provide the basis for SCIs of orders 2, 4, 6, and 8, for collocation solutions of (1.4). In Section 5,
numerical results are provided to demonstrate the improved accuracy, orders of convergence, and low
computational costs of the SCIs. Our summary, conclusions, and suggestions for future work are
provided in Section 6.

2. Collocation methods in RK/RKN form

For the numerical solution of (1.4), and for the mesh, {ti}
N
i=0, assume piecewise polynomials, i.e.,

collocation polynomials, û1(t) and û2(t), of degrees k + 1 and k + 2, respectively, which approximate
y

1
(t) and y

2
(t), respectively. These collocation solutions must satisfy collocation conditions at k Gauss

points per subinterval; on the ith subinterval, [ti, ti+1], these conditions have the form,

û′1(t̂r) = f
1

(
t̂r, û1(t̂r), û2(t̂r), û′2(t̂r)

)
, û′′2 (t̂r) = f

2

(
t̂r, û1(t̂r), û2(t̂r), û′2(t̂r)

)
, (2.1)

where r = 1, . . . , k, t̂r = ti + ρrhi, and ρr is the image of the rth Gauss point mapped onto [0, 1]. It is
also required that û1(t) have C0 continuity and that û2(t) have C1 continuity.

The mesh point superconvergence results [4] imply that,∣∣∣∣y1
(ti) − û1(ti)

∣∣∣∣ = O(h2k),
∣∣∣∣y2

(ti) − û2(ti)
∣∣∣∣ = O(h2k),

∣∣∣∣y′2(ti) − û′2(ti)
∣∣∣∣ = O(h2k), (2.2)

and the non-mesh point convergence results [4] imply that,∣∣∣∣y1
(ti + θhi) − û1(ti + θhi)

∣∣∣∣ = O(hk+1),
∣∣∣∣y2

(ti + θhi) − û2(ti + θhi)
∣∣∣∣ = O(hk+2),∣∣∣∣y′2(ti + θhi) − û′2(ti + θhi)

∣∣∣∣ = O(hk+1), (2.3)

for θ ∈ (0, 1). Therefore, for k > 1, the û1(t) and û′2(t) approximations at the mesh points will have
a higher order of accuracy than elsewhere, and, for k > 2, all three of the û1(t), û2(t), and û′2(t)
approximations at the mesh points will have a higher order of accuracy than elsewhere.

Let y
1,i

= û1(ti), y
2,i

= û2(ti), and y′
2,i

= û′2(t̂i), and let û1r = û1(t̂r), û2r = û2(t̂r), and û′2r = û′2(t̂r).
Then, following from the collocation and continuity conditions, it can be shown that (see [27]), on the
ith subinterval,

û1r = y
1,i

+ hi

(
â1,r1 f̂

11
+ · · · + â1,rk f̂

1k

)
, (2.4)

û′2r = y′
2,i

+ hi

(
â′2,r1 f̂

21
+ · · · + â′2,rk f̂

2k

)
, (2.5)

and
û2r = y

2,i
+ ρrhiy′2,i + h2

i

(
â2,r1 f̂

21
+ · · · + â2,rk f̂

2k

)
, (2.6)

where,
f̂

1r
= f

1

(
t̂r, û1r, û2r, û

′

2r

)
, f̂

2r
= f

2

(
t̂r, û1r, û2r, û

′

2r

)
, (2.7)

for r = 1, . . . , k, and,

â1,r j = â′2,r j =

∫ θ=ρr

θ=0
b̂ j(θ)dθ, and â2,r j =

∫ τ=ρr

τ=0

(∫ θ=τ

θ=0
b̂ j(θ)dθ

)
dτ,

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5640

for r, j = 1, . . . , k, where {b̂ j(θ)}kj=1 are the Lagrange interpolating polynomials for the abscissa set
{ρr}

k
r=1.
Similarly, it can be shown that,

y
1,i+1

= y
1,i

+ hi

(
b̂11 f̂

11
+ · · · + b̂1k f̂

1k

)
, (2.8)

y′
2,i+1

= y′
2,i

+ hi

(
b̂′21 f̂

21
+ · · · + b̂′2k f

2k

)
, (2.9)

and
y

2,i+1
= y

2,i
+ hiy′2,i + h2

i

(
b̂21 f̂

21
+ · · · + b̂2k f̂

2k

)
, (2.10)

where

b̂1 j = b̂′2 j =

∫ θ=1

θ=0
b̂ j(θ)dθ, and b̂2 j =

∫ τ=1

τ=0

(∫ θ=τ

θ=0
b̂ j(θ)dθ

)
dτ,

for j = 1, . . . , k. We note that the same collocation method is used for the approximation of y
1
(t) and

y′
2
(t).

3. CRKN methods, Hermite interpolants, and CPIRKN methods

3.1. Discrete and continuous RK and RKN methods

Assuming a first order ODE system, (1.1), and given solution approximations, y
i
, at the point ti, and

y
i+1

, at the point ti+1 = ti + hi, an s-stage RK method relates these solution approximations through the
equation,

y
i+1

= y
i
+ hi

(
b1 f (t̂1, ŷ1

) + · · · + bs f (t̂s, ŷs
)
)
, (3.1)

where t̂r = ti + crhi and where

ŷ
r

= y
i
+ hi

(
ar1 f (t̂1, ŷ1

) + · · · + ars f (t̂s, ŷs
)
)
, (3.2)

for r = 1, . . . , s. The f (t̂1, ŷ1
), . . . , f (t̂s, ŷs

) values are called the stages of the RK method. An RK
method of a desired order of accuracy is determined by requiring that the coefficients of the method,
{cr, br, ar, j}

s
r, j=1, satisfy a set of RK order conditions.

For the second order ODE system, y′′(t) = f (t, y(t), y′(t)), an s-stage RKN method relates solution
and derivative approximations, y

i+1
and y′

i+1
, at ti+1, to solution and derivative approximations, y

i
and

y′
i
, at ti, through the formulas,

y′
i+1

= y′
i
+ hi

(
b′1 f (t̂1, ŷ1

, ŷ′
1
) + · · · + b′s f (t̂s, ŷs

, ŷ′
s
)
)
, (3.3)

and
y

i+1
= y

i
+ hiy′i + h2

i

(
b1 f (t̂1, ŷ1

, ŷ′
1
) + · · · + bs f (t̂s, ŷs

, ŷ′
s
)
)
, (3.4)

where
ŷ′

r
= y′

i
+ hi

(
a′r1 f (t̂1, ŷ1

, ŷ′
1
) + · · · + a′rs f (t̂s, ŷs

, ŷ′
s
)
)
, (3.5)

and
ŷ

r
= y

i
+ crhiy′i + h2

i

(
ar1 f (t̂1, ŷ1

, ŷ′
1
) + · · · + ars f (t̂s, ŷs

, ŷ′
s
)
)
, (3.6)

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5641

for r = 1, . . . , s. The f (t̂1, ŷ1
, ŷ′

1
), . . . , f (t̂s, ŷs

, ŷ′
s
) values are called the stages of the RKN method. An

RKN method of a desired order of accuracy is determined by requiring that the coefficients of the
method, {cr, br, b′r, ar, j, a′r j}

s
r, j=1, satisfy a set of RKN order conditions.

A comparison of the expressions for the collocation approximations given in the previous section
with the general forms for the RK and RKN methods given above shows that the collocation methods
are special cases of the RK and RKN methods. In particular, we note that the collocation formula, (2.8),
(2.4), is a special case of the RK formula, (3.1), (3.2), and that the collocation formulas, (2.9),(2.5),
(2.10), (2.6), are special cases of the RKN formulas, (3.3), (3.5), (3.4), (3.6).

A CRK method extends an RK method to provide a solution approximation at any point within the
current subinterval. An s-stage CRK method approximates the solution, y(t), on the ith subinterval,
[ti, ti+1], by u(t) where, for t ∈ [ti, ti+1], and t = ti + θhi,

u(ti + θhi) = y
i
+ hi

(
b1(θ) f (t̂1, ŷ1

) + · · · + bs(θ) f (t̂s, ŷs
)
)
, (3.7)

where ŷ
r

is defined as in (3.2) and br(θ) is a (weight) polynomial in θ. A CRK method of a desired order
of accuracy is determined by requiring that the coefficients of the method, {cr, br(θ), ar, j}

s
r, j=1, satisfy a

set of continuous RK order conditions.

Similarly, CRKN methods, - see, e.g., [15, 23, 26], and references within - extend RKN methods to
provide solution and derivative approximations at any point within the current subinterval. An s-stage
CRKN method approximates the solution, y(t), on the ith step by u(t), where,

u(ti + θhi) = y
i
+ θhiy′i + h2

i

(
b1(θ) f (t̂1, ŷ1

, ŷ′
1
) + · · · + bs(θ) f (t̂s, ŷs

, ŷ′
s
)
)
, (3.8)

and approximates the derivative, y′(t), by ū(t), where,

ū(ti + θhi) = y′
i
+ hi

(
b̄1(θ) f (t̂1, ŷ1

, ŷ′
1
) + · · · + b̄s(θ) f (t̂s, ŷs

, ŷ′
s
)
)
, (3.9)

with ŷ
r

and ŷ′
r

defined as in (3.6) and (3.5), and where br(θ) and b̄r(θ) are (weight) polynomials in θ.
A CRKN method of a desired order of accuracy is determined by requiring that the coefficients of the
method, {cr, br(θ), b′r(θ), ar, j, a′r j}

s
r, j=1, satisfy a set of continuous RKN order conditions.

In this paper, we will employ CRK and CRKN methods in order to obtain SCIs for the collocation
solutions of mixed first and second order systems (1.4). We will use a CRK method to handle the first
order part of the system and a CRKN method to handle the second order part of the system.

In order to simplify the derivation of these methods, we will require that the CRK and CRKN
methods have the same abscissa, {cr}

s
r=1, that the {ar j}

s
r, j=1 coefficients of the CRK method be equal

to the {a′r j}
s
r, j=1 coefficients of the CRKN method, and that the {br(θ)}sr=1 weight polynomials of the

CRK methods be equal to the {b̄r(θ)}sr=1 weight polynomials of the CRKN method. We note that the
collocation methods of the previous section are of this type.

Then, since the coefficients and weight polynomials used in the y
1
(t) approximations will be the

same as those used in the y′
2
(t) approximations, there will be no need to provide the coefficients for the

y
1
(t) approximations separately; rather we can simply present the coefficients of the CRKN method

with the understanding that the part of the CRKN formula that is used for the y′
2
(t) approximation will

also be used for the y
1
(t) approximation.

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5642

Since COLSYS/COLNEW allows the user convenient access to the (already computed) collocation
function evaluations, (2.7), the efficiency of the computation is improved when we embed these
function evaluations within the CRKN methods we derive; i.e., the collocation function evaluations
will be employed as stages of the CRKN methods. This is possible because, as we have seen, it is
possible to represent a collocation method for a mixed first and second order system in terms of an RK
method and an RKN method.

3.2. Hermite interpolants

For k = 1 and 2, it is possible to employ Hermite interpolants as the basis for SCIs of the desired
orders of accuracy.

Once a collocation solution for (1.4) is obtained, we will have, for the ith subinterval, [ti, ti+1], the
six superconvergent data values,

y
1,i
, y

2,i
, y′

2,i
, y

1,i+1
, y

2,i+1
, y′

2,i+1
. (3.10)

We can then compute the corresponding endpoint stages,

f
1,i
≡ f

1

(
ti, y1,i

, y
2,i
, y′

2,i

)
, f

1,i+1
≡ f

1

(
ti+1, y1,i+1

, y
2,i+1

, y′
2,i+1

)
, (3.11)

and then construct a Hermite interpolant, u1(t) ≈ y
1
(t), having the form

u1(ti + θhi) = d10(θ)y
1,i

+ d11(θ)y
1,i+1

+ hi

(
d12(θ) f

1,i
+ d13(θ) f

1,i+1

)
, (3.12)

where d10(θ), d11(θ), d12(θ), and d13(θ) are the Hermite cubic polynomials. They are defined to give
u1(ti) = y

1,i
, u1(ti+1) = y

1,i+1
, u′1(ti) = f

1,i
, u′1(ti+1) = f

1,i+1
. The polynomials, d10(θ) and d11(θ), satisfy

the condition that, d10(θ) = 1− d11(θ). This Hermite interpolant has an interpolation error that is O(h4).
Similarly, we can compute the endpoint stages,

f
2,i
≡ f

2

(
ti, y1,i

, y
2,i
, y′

2,i

)
, f

2,i+1
≡ f

2

(
ti+1, y1,i+1

, y
2,i+1

, y′
2,i+1

)
, (3.13)

and form a Hermite interpolant, u2(t) ≈ y
2
(t), having the form,

u2(ti + θhi) = d20(θ)y
2,i

+ d21(θ)y
2,i+1

+

hi

(
d22(θ)y′

2,i
+ d23(θ)y′

2,i+1

)
+ h2

i

(
d24(θ) f

2,i
+ d25(θ) f

2,i+1

)
, (3.14)

where d20(θ), . . . , d25(θ) are the Hermite quintic polynomials. They are defined to give u2(ti) = y
2,i

,
u2(ti+1) = y

2,i+1
, u′2(ti) = y′

2,i
, u′2(ti+1) = y′

2,i+1
, u′′2 (ti) = f

2,i
, u′′2 (ti+1) = f

2,i+1
. The polynomials, d10(θ),

d11(θ), d22(θ), and d23(θ), satisfy the conditions that, d20(θ) = 1 − d21(θ) and that d22(θ) = 1 − d23(θ).
We can also form a Hermite interpolant, ū2(t) ≈ y′

2
(t), of the form,

ū2(ti + θhi) = d̄20(θ)y′
2,i

+ d̄21(θ)y′
2,i+1

+ hi

(
d̄22(θ) f

2,i
+ d̄23(θ) f

2,i+1

)
, (3.15)

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5643

where d̄20(θ), d̄21(θ), d̄22(θ), and d̄23(θ) are the Hermite cubic polynomials. They are defined to give
u2(ti) = y

2,i
, u2(ti+1) = y

2,i+1
, u′2(ti) = f

2,i
, u′2(ti+1) = f

2,i+1
. The polynomials, d̄20(θ) and d̄21(θ), satisfy

the condition that, d̄20(θ) = 1 − d̄21(θ). The Hermite interpolant, (3.14), has an interpolation error of
O(h6) and the Hermite interpolant, (3.15), has an interpolation error that is O(h4).

We note that the interpolation conditions will imply that u1(t) and ū2(t) will have C1-continuity and
that u2(t) will have C2-continuity.

When k = 1 or 2, the superconvergent collocation mesh point approximations have errors that are
O(h2) and O(h4), respectively, and therefore the Hermite interpolants, (3.12), (3.14), (3.15), can be
used to provide SCIs. For k = 3, the superconvergent collocation mesh point approximations have
errors that are O(h6), and thus (3.14) can be used to provide an SCI for the y

2
(t) approximation but

(3.12) is not accurate enough to provide an SCI for y
1
(t) nor is (3.15) accurate enough to provide one

for y′
2
(t). For k = 4, none of the Hermite interpolants are accurate enough to provide SCIs. We will

consider these points further in the next section.

3.3. CPIRKN methods

For first order BVODE systems, (1.1), we have solution information associated with both endpoints
of the ith subinterval, i.e., y

i
, y

i+1
. It is therefore useful to rewrite an RK method so that the stages have

explicit dependence on the solution information from both endpoints. This leads to the methods known
as parameterized implicit RK (PIRK) methods [11]; with the additional restriction that the each stage
depend only on previously computed stages, we get the mono-implicit RK (MIRK) methods [7, 8].
By introducing weight polynomials, one can obtain continuous PIRK (CPIRK) methods; a subclass of
these, the continuous MIRK methods, have been considered in [25].

For second order BVODE systems, y′′(t) = f (t, y(t), y′(t)), we have solution and derivative
information associated with the endpoints of the ith subinterval, i.e., y

i
, y′

i
, y

i+1
, y′

i+1
. It is possible

to rewrite the well-known RKN methods so that the stages have explicit dependence on solution and
derivative information at both endpoints of each subinterval; this gives the parameterized implicit
RKN (PIRKN) methods. With the further restriction that each stage must depend only on previously
computed stages, we get the mono-implicit RKN (MIRKN) methods; see, e.g., [26] and references
within. By introducing weight polynomials, one can obtain the continuous PIRKN (CPIRKN)
methods; a subclass of these, the continuous MIRKN methods, have been considered in [26].

The general form of a CPIRKN method is the same as that of a CRKN method, (3.8), and the
definition of t̂r is the same as in (3.2), but the ŷ

1
, . . . , ŷ

s
values and the ŷ′

1
, . . . , ŷ′

s
values are defined

differently. Instead of the expressions for ŷ
r

and ŷ′
r

given in (3.6) and (3.5), we have

ŷ
r

= (1 − vr)yi
+ vryi+1

+ hi

(
(cr − vr − wr) y′

i
+ wry′i+1

)
+

h2
i

(
xr1 f (t̂1, ŷ1

, ŷ′
1
) + · · · + xrs f (t̂s, ŷs

, ŷ′
s
)
)
,

and
ŷ′

r
= (1 − v′r)y

′

i
+ v′ry

′

i+1
+ hi

(
x′r1 f (t̂1, ŷ1

, ŷ′
1
) + · · · + x′rs f (t̂s, ŷs

, ŷ′
s
)
)
.

A CPRIKN method of a desired order of accuracy is determined by requiring that the coefficients
of the method, {cr, vr,wr, v′r, br(θ), b′r(θ), xr, j, x′r j}

s
r, j=1, satisfy a set of continuous order conditions. We

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5644

represent the CPIRKN methods using a tableau of the form,

c1 v1 w1 x11 x12 . . . x1s v′1 x′11 x′12 . . . x′1s
c2 v2 w2 x21 x22 . . . x2s v′2 x′21 x′22 . . . x′2s
...

...
...

...
...

...
...

...
...

...
...

...

cs vs ws xs1 xs2 . . . xss v′s x′s1 x′s2 . . . x′ss

b1(θ) b2(θ) . . . bs(θ) b̄1(θ) b̄2(θ) . . . b̄s(θ)

. (3.16)

It is possible to rewrite the Hermite interpolants, (3.12), (3.14), and (3.15), in terms of CPIRK and
CPIRKN schemes. To see this, first recall that,

y
1,i
, y

2,i
, y′

2,i
, y

1,i+1
, y

2,i+1
, y′

2,i+1
,

satisfy (2.8), (2.9), and (2.10). We can therefore use these expressions to substitute for y
1,i+1

, y
2,i+1

,
y′

2,i+1
in (3.12), (3.14), and (3.15). These equations can then be rewritten, respectively, as

u1(ti + θhi) = y
1,i

+ hi

(
d12(θ) f

1,i
+ d13(θ) f

1,i+1
+ d̂11(θ) f̂

11
+ · · · + d̂1k(θ) f̂

1k

)
, (3.17)

where d̂1 j(θ) = b̂1 jd11(θ),

ū2(ti + θhi) = y′
2,i

+ hi

(
d̄22(θ) f

2,i
+ d̄23(θ) f

2,i+1
+ d̃21(θ) f̂

21
+ · · · + d̃2k(θ) f̂

2k

)
, (3.18)

where d̃2 j(θ) = b̂′2 jd̄21(θ), and

u2(ti + θhi) = y
2,i

+ θhiy′2,i + h2
i

(
d24(θ) f

2,i
+ d25(θ) f

2,i+1
+ d̂21(θ) f̂

21
+ · · · + d̂2k(θ) f̂

2k

)
, (3.19)

where d̂2 j(θ) = b̂2 jd21(θ) + b̂′2 jd23(θ). These new forms for the Hermite interpolants, i.e., (3.17), (3.18),
(3.19), now fit into the standard forms for CPIRK and CPIRKN schemes.

3.4. CPIRKN methods for SCIs

In this subsection, we discuss the CPIRKN methods that we will use in order to develop SCIs for
mixed first and second order systems when k ≥ 3. (For k = 1 or 2, recall that the Hermite interpolants
can be employed as the basis for the SCIs.)

On each subinterval, these CPIRKN methods will employ three types of stages:
(i) the first two stages will be the endpoint stages, (3.11), (3.13), which are easily computed from the
corresponding collocation solution and derivative values,
(ii) the next k stages will be the collocation stages, (2.7), which are already available from the
collocation computation, and,
(iii) the rest of the stages will be MIRKN stages; each such stage can depend on stages of types (i) and
(ii), as well as on previously computed MIRKN stages. These new MIRKN stages will have the form,

f̂
1r
≡ f

1

(
t̂r, ŷ1r

, ŷ
2r
, ŷ′

2r

)
, f̂

2r
≡ f

2

(
t̂r, ŷ1r

, ŷ
2r
, ŷ′

2r

)
, r = k + 1, . . . , s,

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5645

where t̂r = ti + crhi, and where

ŷ
1r

= (1 − v′r)y1,i
+ v′ry1,i+1

+ hi

x′r1 f
1,i

+ x′r2 f
1,i+1

+

r−1∑
j=1

x′r, j+2 f̂
1 j

 ,
ŷ

2r
= (1 − vr)y2,i

+ vry2,i+1
+ hi

(
(cr − vr − wr)y′2,i + wry′2,i+1

)
+

h2
i

xr1 f
2,i

+ xr2 f
2,i+1

+

r−1∑
j=1

xr, j+2 f̂
2 j

 ,
and

ŷ′
2r

= (1 − v′r)y2,i
+ v′ry2,i+1

+ hi

x′r1 f
2,i

+ x′r2 f
2,i+1

+

r−1∑
j=1

x′r, j+2 f̂
2 j

 .
4. Derivation of CPIRKN methods for SCIs

4.1. Collocation with k = 1

When k = 1, the collocation mesh point values have errors that are O(h2). For this value of k,
the continuous collocation solutions also have errors that are O(h2). We can therefore improve upon
the continuous collocation solutions only in terms of achieving higher continuity, which we can do by
employing the Hermite interpolants (3.12), (3.14), (3.15). Representing these interpolants in the form
of a CPIRKN method, we get a CPIRKN method with the tableau:

0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0
1
2 0 0 0 0 1

8 0 0 0 1
2

b1(θ) b2(θ) b3(θ) b̄1(θ) b̄2(θ) b̄3(θ)

, (4.1)

where
r br(θ) b̄r(θ)
1 −1

2 θ
2(θ − 1)3 θ(θ − 1)2

2 1
2 θ

3(θ − 1)2 θ2(θ − 1)
3 −1

2 θ
3(θ − 2) −θ2(2 θ − 3)

. (4.2)

This scheme, in addition to having the same order as the collocation approximations at the mesh
points, provides approximations for y

1
(t) and y′

2
(t) that are C1-continuous, and an approximation for

y
2
(t) that is C2-continuous (whereas the corresponding collocation polynomials have one order of

continuity less in each case).

4.2. Collocation with k = 2

In this case, the mesh point collocation values have errors that are O(h4). The continuous collocation
solution approximating y

2
(t) will also have an error that is O(h4) but the continuous collocation

solutions approximating y
1
(t) and y′

2
(t) will have errors that are only O(h3). The use of the Hermite

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5646

interpolant, (3.14), allows us to improve the continuity of the y
2
(t) approximation and we can use the

Hermite interpolants, (3.12) and (3.15), to improve the order of accuracy and the continuity of the
continuous approximations for y

1
(t) and y′

2
(t).

Expressing the Hermite interpolants in CPIRKN form gives a method with the tableau:

0 0 0 0 0 0 0 . . .

1 1 0 0 0 0 0 . . .
1
2 −

√
3

6 0 0 0 0 1
36

5
36 −

√
3

12 . . .
1
2 +

√
3

6 0 0 0 0 5
36 +

√
3

12
1
36 . . .

b1(θ) b2(θ) b3(θ) b4(θ) . . .

(4.3)

. . . 0 0 0 0 0

. . . 1 0 0 0 0

. . . 0 0 0 1
4

1
4 −

√
3

6

. . . 0 0 0 1
4 +

√
3

6
1
4

. . . b̄1(θ) b̄2(θ) b̄3(θ) b̄4(θ)

, (4.4)

where
r br(θ) b̄r(θ)
1 −1

2 θ
2 (θ − 1)3 θ(θ − 1)2

2 1
2 θ

3 (θ − 1)2 θ2 (θ − 1)

3 1
12

√
3
(
6 θ2 − 15 θ − θ

√
3 + 10 + 2

√
3
)
θ3 −1

2 θ
2 (2θ − 3)

4 − 1
12

√
3
(
6 θ2 − 15 θ + θ

√
3 + 10 − 2

√
3
)
θ3 −1

2 θ
2 (2θ − 3)

. (4.5)

4.3. Collocation with k = 3

In this case, the mesh point collocation values have errors that are O(h6), while the continuous
collocation solution approximating y

2
(t) has an error that is only O(h5) and the errors for the continuous

collocation solutions approximating y
1
(t) and y′

2
(t) are only O(h4). While the use of the Hermite

interpolant (3.14) can provide an SCI of the appropriate order for y
2
(t), we cannot use the Hermite

interpolants, (3.12) and (3.15), to obtain SCIs for y
1
(t) and y′

2
(t). We therefore consider the derivation

of a CPIRKN scheme that will provide SCIs for y
1
(t) and y′

2
(t), with C1-continuity, for which the errors

are O(h6). Using the terminology associated with RK methods, this means that the CPIRKN must be
of fifth order. (The definition of order for RK methods says that a pth order RK method has a local
error that is O(hp+1).)

As indicated earlier in this paper, the CPIRKN scheme will employ the two endpoint stages and the
three collocation stages. For these five stages we observe that, for q = 3, the coefficients satisfy,

X′c j +
v′

j + 1
=

c j+1

j + 1
for j = 0, 1, . . . , q, (4.6)

and

Xc j−1 +
v

j + 1
+

w
j

=
c j+1

j(j + 1)
for j = 1, 2, . . . , q, (4.7)

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5647

where X′ is the s by s matrix whose r, jth element is x′r j, X is the s by s matrix whose r, jth element
is xr j, v′ = [v′1, . . . , v

′
s]

T , v = [v1, . . . , vs]T , w = [w1, . . . ,ws]T , c0 is an s vector of 1’s, and c j =

[c j
1, . . . , c

j
s]T , for j > 0. The above conditions, (4.6), (4.7), are called the stage order conditions up to

order q - see [26].
A fifth order CPIRKN scheme satisfying these stage order conditions will have to satisfy the

following order conditions involving the b̄(θ) polynomials:

b̄(θ)T c j =
θ j+1

j + 1
, for j = 0, 1, 2, 3, 4,

and the single condition,

b̄(θ)T

(
X′c3 +

v′

4
−

c4

4

)
= 0,

where b̄(θ) = [b̄1(θ), . . . , b̄s(θ)]T . Since there are six independent order conditions involving the b̄(θ)
polynomials, this CPIRKN scheme will require a total of six stages. Since the scheme will use the two
endpoint stages and the three collocation stages, one extra MIRKN stage will be required.

We will require that the new sixth stage have the maximum possible stage order, which turns out to
be stage order six - that is, (4.6), (4.7), with q = 6. This forces c6 = 1

2 ±
√

10
10 , with v6,w6, and v′6 left

free. We choose, arbitrarily, c6 = 1
2 −

√
10

10 , v6 = c6, w6 = −c6, and v′6 = c6. We can then solve the above
order conditions to obtain the b̄(θ) weight polynomials.

As mentioned earlier, the approximation for y
2
(t) can be determined using Hermite interpolation,

with the Hermite interpolant converted to CPIRKN form, using the approach described in the previous
section.

The resultant scheme has the tableau:

0 0 0 0 0 0 0 0 0 . . .

1 1 0 0 0 0 0 0 0 . . .
1
2 −

√
15

10 0 0 0 0 1
120

1
12 −

√
15

45
13

120 −
√

15
36 0 . . .

1
2 0 0 0 0 5

96 +
√

15
72

1
48

5
96 −

√
15

72 0 . . .
1
2 +

√
15

10 0 0 0 0 13
120 +

√
15

36
1

12 +
√

15
45

1
120 0 . . .

1
2 −

√
10

10 v6 w6 x61 x62 x63 x64 x65 0 . . .

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) 0 . . .

. . . 0 0 0 0 0 0 0

. . . 1 0 0 0 0 0 0

. . . 0 0 5
36

2
9 −

√
15

15
5
36 −

√
15

30 0 0
. . . 0 0 5

36 +
√

15
24

2
9

5
36 −

√
15

24 0 0
. . . 0 0 5

36 +
√

15
30

2
9 +

√
15

15
5
36 0 0

. . . 1
2 −

√
10

10 x′61 x′62 x′63 x′64 x′65 0

. . . b̄1(θ) b̄2(θ) b̄3(θ) b̄4(θ) b̄5(θ) b̄6(θ)

, (4.8)

where v6 = 1
2 −

√
10

10 , w6 = −1
2 +

√
10

10 , and the values for x6r and x′6r for r = 1, . . . , 5, the expressions for

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5648

br(θ), for r = 1, . . . , 5, and the expressions for b̄r(θ), for r = 1, . . . , 6, are given by,

r x6r x′6r

1 27
8000 + 9

8000

√
10 3

160 + 3
500

√
10

2 27
8000 −

9
8000

√
10 − 3

160 + 3
500

√
10

3 − 29
4800

√
6 + 1709

14400 − 1/36
√

10 1
150

√
10 + 3

160

√
15

4 407
2250 −

2
45

√
10 − 19

750

√
10

5 29
4800

√
6 + 1709

14400 − 1/36
√

10 1
150

√
10 − 3

160

√
15

, (4.9)

r br(θ)
1 −1

2 θ
2 (θ − 1)3

2 1
2 θ

3 (θ − 1)2

3 − 1
108

√
15

(
−18 θ2 + 45 θ + θ

√
15 − 30 − 2

√
15

)
θ3

4 −2
9 θ

3 (θ − 2)

5 − 1
108

√
15

(
18 θ2 − 45 θ + θ

√
15 + 30 − 2

√
15

)
θ3

, (4.10)

r b̄r(θ)
1 − 1

18

(√
10 − 1

) (
24 θ2 − 7 θ + 5 θ

√
10 − 2 − 2

√
10

)
θ (θ − 1)2

2 1
18

(
1 +
√

10
) (

24 θ2 − 41 θ + 5 θ
√

10 − 3
√

10 + 15
)

(θ − 1) θ2

3 1
18

(√
6 + 1

)
(242 θ + 3

√
6 − 63 − 3 θ2

√
15 − 2 θ

√
6 + 6 θ

√
15 − 18 θ

√
10

+9
√

10 − 300 θ2 + 120 θ3 + 9 θ2
√

10 − 3
√

15)θ2

4 4
9 θ

2
(
−9 + 46 θ − 60 θ2 + 24 θ3

)
5 − 1

18

(√
6 − 1

)
(242 θ − 3

√
6 + 3 θ2

√
15 + 2 θ

√
6 − 6 θ

√
15 − 18 θ

√
10

+9
√

10 − 300 θ2 + 120 θ3 + 9 θ2
√

10 + 3
√

15 − 63)θ2

6 −40
3 θ

2 (2 θ − 1) (θ − 1)2

. (4.11)

4.4. Collocation with k = 4

When k = 4, the mesh point collocation values have errors that are O(h8). On the other hand, the
continuous collocation solution approximating y

2
(t) has an error that is only O(h6) and the errors for

the continuous collocation solutions approximating y
1
(t) and y′

2
(t) are only O(h5). Since none of the

Hermite interpolants can provide SCIs of the desired order, we will derive a CPIRKN scheme that
will provide an SCI approximating y

2
(t), with C2-continuity, for which the error is O(h8), and SCIs

approximating y
1
(t) and y′

2
(t), with C1-continuity, for which the errors are O(h8).

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5649

Since we want this CPIRKN scheme to have an error that is O(h8), the CPIRKN must be of seventh
order. This CPIRKN scheme will employ the two endpoint stages and the four collocation stages.
These six stages have coefficients that satisfy the stage order conditions, (4.6) and (4.7), for q = 4. The
additional MIRKN stages will be required to satisfy the stage order conditions for q = 6.

A CPIRKN scheme satisfying the above stage order conditions will have to satisfy the following
order conditions in order to achieve seventh order:

b̄(θ)T c j =
θ j+1

j + 1
, for j = 0, 1, . . . , 6, b(θ)T c j =

θ j+2

(j + 1)(j + 2)
, for j = 0, 1, . . . , 5,

the three conditions involving b̄(θ),

b̄(θ)T

(
X′

(
X′c4 +

v′

5
−

c5

5

))
= 0, b̄(θ)T

(
X′c5 +

v′

6
−

c6

6

)
= 0, b̄(θ)T

(
c
(
X′c4 +

v′

5
−

c5

5

))
= 0,

and the single condition involving b(θ),

b(θ)T

(
X′c4 +

v′

5
−

c5

5

)
= 0,

where b(θ) = [b1(θ), . . . , bs(θ)]T .

Since there are a total of ten order conditions involving the b̄(θ) polynomials, it would appear then
that this CPIRKN scheme will require a total of ten stages. However, it turns out that we can satisfy
the order condition,

b̄(θ)T

(
X′

(
X′c4 +

v′

5
−

c5

5

))
= 0, (4.12)

through a careful choice of the available free coefficients - see [27] for details. This allows us to reduce
the number of order conditions from ten to nine which implies that the scheme will require only nine
stages.

Since this scheme will include the two endpoint stages and four collocation stages, we will need
three extra MIRKN stages. Applying the stage order conditions, (4.6), (4.7), with q = 6, to the MIRKN
stages leads to the specification of most of the coefficients but there are several free coefficients that
remain; we arbitrarily set v7 = c7, v8 = c8, v9 = c9, w7 = w8 = w9 = 0, x76 = x86 = x87 = x96 = x97 =

x98 = 0. The final step is to solve the nine remaining order conditions involving the b̄(θ) polynomials
and the seven order conditions involving the b(θ) polynomials in order to obtain the b̄(θ) and b(θ)
polynomials. Since there are only seven order conditions involving the b(θ) polynomials, we can set
b8(θ) ≡ b9(θ) ≡ 0 and use the seven order conditions involving the b(θ) polynomials to determine
b1(θ), . . . , b7(θ).

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5650

The resultant scheme has the tableau:

0 0 0 0 0 0 0 0 0 0 0 0 . . .

1 1 0 0 0 0 0 0 0 0 0 0 . . .

c3 0 0 0 0 x33 x34 x35 x36 0 0 0 . . .

c4 0 0 0 0 x43 x44 x45 x46 0 0 0 . . .

c5 0 0 0 0 x53 x54 x55 x56 0 0 0 . . .

c6 0 0 0 0 x63 x64 x65 x66 0 0 0 . . .

c7 v7 0 x71 x72 x73 x74 x75 0 0 0 0 . . .
1
5

1
5 0 x81 x82 x83 x84 x85 0 0 0 0 . . .

4
5

4
5 0 x91 x92 x93 x94 x95 0 0 0 0 . . .

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) 0 0 . . .

. . . 0 0 0 0 0 0 0 0 0 0

. . . 1 0 0 0 0 0 0 0 0 0

. . . 0 0 x′33 x′34 x′35 x′36 0 0 0 0

. . . 0 0 x′43 x′44 x′45 x′46 0 0 0 0

. . . 0 0 x′53 x′54 x′55 x′56 0 0 0 0

. . . 0 0 x′63 x′64 x′65 x′66 0 0 0 0

. . . v′7 x′71 x′72 x′73 x′74 x′75 x′76 0 0 0

. . . 1
5 x′81 x′82 x′83 x′84 x′85 x′86 x′87 0 0

. . . 4
5 x′91 x′92 x′93 x′94 x′95 x′96 x′97 0 0

. . . b̄1(θ) b̄2(θ) b̄3(θ) b̄4(θ) b̄5(θ) b̄6(θ) b̄7(θ) b̄8(θ) b̄9(θ)

, (4.13)

where c3 = 1
2 −

1
70

√
525 + 70

√
30, c4 = 1

2 −
1

70

√
525 − 70

√
30, c5 = 1

2 + 1
70

√
525 − 70

√
30, c6 =

1
2 + 1

70

√
525 + 70

√
30, and c7 = v7 = 1

2 + 1/14
√

7.
The expressions for the non-zero components of the X and X′ matrices and the coefficients of the

b(θ) and b̄(θ) polynomials are too complicated to present exactly. Here we represent these values in
terms of 20 digit decimal numbers.

The non-zeros of the matrix X are

[x33, . . . , x36] = [.32305531606773849038 × 10−2,−.1250197895719510011 × 10−2,

.599119902841667647 × 10−3,−.16908467308653538 × 10−3],

[x43, . . . , x46] = [.44654739516219931749 × 10−1, .11055161125036900810 × 10−1,

−.1576343913175770142 × 10−2, .3195711253358632771 × 10−3],

[x53, . . . , x56] = [.10477319401975273714, .10928215124631229915,

.11055161125036900810 × 10−1,−.666856745256879005 × 10−3],

[x63, . . . , x66] = [.14960613448280714923, .19642483580315200379,

.83717022845102756843 × 10−1, .32305531606773849038 × 10−2],

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5651

[x71, . . . , x75] = [.56407299162219992243 × 10−2,−.56407299162219991643 × 10−2,

−.12818262090389426184 × 10−1,−.27667766089641676157 × 10−1,

−.66656828962826040579 × 10−1],

[x81, . . . , x85] = [.46987308407158757980 × 10−2,−.14560641740492091960 × 10−2,

−.18777651201651205208 × 10−1,−.41033995097025767855 × 10−1,

−.23431020367989693539 × 10−1],

[x91, . . . , x95] = [.99888010024382092459 × 10−2,−.67461343357715427659 × 10−2,

−.18777651201651205061 × 10−1,−.95324451125056381245 × 10−2,

−.54932570352509823295 × 10−1].

The non-zeros of the matrix X′ are

[x′33, . . . , x
′
36] = [.86963711284363464343 × 10−1,−.26604180084998793304 × 10−1,

.12627462689404724524 × 10−1,−.355514968579568315 × 10−2],

[x′43, . . . , x
′
46] = [.18811811749986807165, .16303628871563653566,

−.27880428602470895218 × 10−1, .6735500594538155512 × 10−2],

[x′53, . . . , x
′
56] = [.16719192197418877317, .35395300603374396654,

.16303628871563653566,−.14190694931141142966 × 10−1],

[x′63, . . . , x
′
66] = [.17748257225452261183, .31344511474186834680,

.35267675751627186462, .86963711284363464343 × 10−1],

[x′71, . . . , x
′
76] = [.12595035543861662683 × 10−1, .27901157992841254519 × 10−1,

.31424458236000028921 × 10−1, .12784556454961043482,

−.24867668578255783089 × 10−1,−.17489854774405759784],

[x′81, . . . , x
′
87] = [−.41944590273292959284 × 10−2,−.16060145828848513267 × 10−2,

.14012820352866098544,−.26472409697747613300 × 10−1,

−.15474899161669444823,−.33179698061006715161 × 10−1,

.80073369457001938508 × 10−1],

[x′91, . . . , x
′
97] = [.73255409726707038846 × 10−2, .99139854171151489343 × 10−2,

.21610386356930788521 × 10−1, .80525407473982583723 × 10−1,

−.47751174444964251771 × 10−1,−.15169751523273691284,

.80073369457001939545 × 10−1].

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5652

The polynomials, b1(θ), . . . , b7(θ), are

b1(θ) = −1.4838054098817121549 θ7 + 6.3599856012526592100 θ6 − 10.677124344467704701 θ5+

8.7095135247042803904 θ4 − 3.4085693716075227451 θ3 + 0.50000000000000000000 θ2,

b2(θ) = 2.0717501456738433973 θ7 − 6.0844588431917852229 θ6 + 6.3228756555322952849 θ5−

2.6793753641846084896 θ4 + 0.36920840617025503042 θ3,

b3(θ) = 2.4008645956962080391 θ7 − 10.051375502307884471 θ6 + 16.198264590214086232 θ5−

12.157487596307555198 θ4 + 3.7715852335674557048 θ3,

b4(θ) = −1.5977758278295572808 θ7 + 6.0738981481079401498 θ6 − 8.3024639918680125568 θ5+

4.4450128192755651476 θ4 − 0.40020561139055488968 θ3,

b5(θ) = −6.0321156342090800130 θ7 + 21.594087470436269686 θ6 − 28.922144091532793184 θ5+

17.193739762616692926 θ4 − 3.7259604661751969129 θ3,

b6(θ) = −3.5901441705395393389 θ7 + 10.917155179517231353 θ6 − 11.659926172782139077 θ5+

5.0666626066202185145 θ4 − 0.72167134110935482879 θ3,

b7(θ) = 8.2312263010898373512 θ7 − 28.809292053814430705 θ6 + 37.040518354904268003 θ5−

20.578065752724593291 θ4 + 4.1156131505449186412 θ3,

and the polynomials, b̄1(θ), . . . , b̄9(θ), are

b̄1(θ) = 118.21553917666580224 θ7 − 450.21272045166368619 θ6 + 677.90745020470247929 θ5−

506.63265771593045627 θ4 + 190.31615074107904624 θ3 − 30.593761954853199618 θ2 + θ,

b̄2(θ) = −60.923872509999145945 θ7 + 249.69188711833036825 θ6 − 401.42828353803587618 θ5+

316.73682438259717901 θ4 − 122.33698407441238897 θ3 + 18.260428621519868725 θ2,

b̄3(θ) = −312.89027249245509522 θ7 + 1182.4848315645309359 θ6 − 1760.0136798995063288 θ5+

1290.0528958373880041 θ4 − 465.90057061724230909 θ3 + 66.440723029853561290 θ2,

b̄4(θ) = −305.59222210601679616 θ7 + 1134.2402328807602768 θ6 − 1652.2852242034705354 θ5+

1181.2977566097015877 θ4 − 415.39180675681081626 θ3 + 58.057336153267600487 θ2,

b̄5(θ) = 61.037789032562035884 θ7 − 278.29971712366852415 θ6 + 497.01008236447030656 θ5−

432.96119140493011893 θ4 + 182.24991389345060854 θ3 − 28.710804184453033999 θ2,

b̄6(θ) = 182.44470556590992181 θ7 − 725.92534732162277999 θ6 + 1143.7888217385069610 θ5−

890.88946104215982562 θ4 + 341.54246348060257557 θ3 − 50.787254998668143015 θ2,

b̄7(θ) = 214.91228070175434723 θ7 − 752.19298245614029494 θ6 + 1032.4385964912278336 θ5−

700.61403508771909033 θ4 + 238.12280701754382498 θ3 − 32.666666666666657629 θ2,

b̄8(θ) = 429.13801384671252243 θ7 − 1603.2561966116421409 θ6 + 2349.7734629640512849 θ5−

1685.4482584736159590 θ4 + 588.91084526808341633 θ3 − 79.117866993589184628 θ2,

b̄9(θ) = −326.34196121513359226 θ7 + 1243.4700124011158454 θ6 − 1887.1912261219461249 θ5+

1428.4581268946686793 θ4 − 537.51281895229395736 θ3 + 79.117866993589188390 θ2.

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5653

5. Numerical results

Here we present results for two test problems. Results for other test problems are given in [27].
Problem 1: The first problem consists of two nonlinear ODEs, one of third order, the other of second
order; it has the form,

f ′′′(x) = γ2 − 2 f ′′(x) f (x) + (f ′(x))2 − g2(x), g′′(x) = 2g(x) f ′(x) − 2 f (x)g′(x),

with boundary conditions

f ′(0) = 0, g(0) = 1, f (0) = 0, g(10) = γ, f ′(10) = 0.

We choose γ = 3.0.
In order to apply the methods developed in this paper, we will rewrite this problem as one first order

ODE and two second order ODEs; letting z1(x) = f (x), z2(x) = f ′(x), z3(x) = g(x), we get,

z′1(x) = z2(x), z′′2 (x) = γ2 − 2z′2(x)z1(x) + z2
2(x) − z2

3(x),

z′′3 (x) = 2z3(x)z2(x) − 2z1(x)z′3(x),

with the boundary conditions,

z2(0) = 0, z3(0) = 1, z1(0) = 0, z3(10) = γ, z2(10) = 0.

This system has no known exact solution; in order to estimate the errors for the approximate
solutions for this test problem, we computed a high-precision numerical solution to this problem using
COLSYS/COLNEW.
Problem 2: The second problem consists of a coupled system of second order BVODEs obtained
from the application of the transverse-method-of-lines with a fixed time step backward Euler method
to discretize the time-dependent terms of the PDE:

zt = zxx − zzx + cos(ωx) + tω2 cos(ωx) − t2 cos(ωx) sin(ωx), (5.1)

where
z(0, t) = t, z(1, t) = t cos(ω), z(x, 0) = 0, ω = 10, tend = 1.

The time step, ∆t, is chosen to give a system of 20 second-order BVODEs; the ith BVODE has the
form

z′′i (x) =
zi+1(x) − zi(x)

∆t
+ zi(x)z′i(x) − cos(ωx) − tiω

2 cos(ωx) + t2
i cos(ωx) sin(ωx),

where zi(x) ≈ z(x, ti) and ti = i · ∆t. The corresponding boundary conditions are

zi(0) = ti, zi(1) = ti cos(ω).

Because it is a second order system, the methods discussed in this paper can be directly applied to this
problem.

For each test problem and for each solution component, the initial solution approximations provided
to COLSYS/COLNEW are a straight line through the boundary conditions, for components with
associated boundary conditions, and zero otherwise.

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5654

5.1. Convergence rates and maximum errors

In order to numerically verify the orders of convergence of the mesh point collocation values,
the continuous collocation solutions, and the SCIs, we compute collocation solutions using
COLSYS/COLNEW on a sequence of fixed uniform meshes. We consider meshes for which, N, the
number of subintervals, is equal to 8, 16, 32, 64, and 128. (This required setting control parameters of
COLSYS/COLNEW so that the mesh refinement capability was disabled.)

We provide numerical results for the cases k = 3 and 4, which are the ones where CPIRKN schemes
are used to obtain the SCIs. We compute collocation solutions using COLSYS/COLNEW and then
augment these to obtain the SCIs, based on the CPIRKN schemes derived earlier in this paper.

We consider numerical experiments in which we compute the maximum error over all solution
components for a given evaluation point. The Mesh Point Solution error is the maximum error over
all mesh point values. The errors for the Collocation Solution and for the Superconvergent Interpolant
are the maximum errors of these continuous approximations over 10000 uniformly distributed sample
points. Table 1 gives results for the k = 3 case, while Table 2 gives results for the k = 4 case.

Table 1. Error ratios (maximum errors), k = 3, Problem 1.

Mesh Point Collocation Superconvergent
N Solution Solution Interpolant
8 - (2.5x10−2) - (4.0x10−2) - (3.2x10−2)

16 52.0(4.8x10−4) 13.1(3.1x10−3) 51.8(6.2x10−4)
32 94.4(5.1x10−6) 12.0(2.6x10−4) 63.8(9.7x10−6)
64 59.0(8.6x10−8) 12.8(2.0x10−5) 62.5(1.6x10−7)

128 64.8(1.3x10−9) 14.0(1.4x10−6) 64.1(2.4x10−9)
Theoretical 64 16 64

Table 2. Error ratios (maximum errors), k = 4, Problem 1.

Mesh Point Collocation Superconvergent
N Solution Solution Interpolant
8 - (7.9x10−4) - (6.1x10−3) - (5.6x10−3)

16 124.8(6.4x10−6) 15.2(4.0x10−4) 191.2(2.9x10−5)
32 383.1(1.7x10−8) 24.6(1.6x10−5) 295.5(9.9x10−8)
64 277.5(6.0x10−11) 30.2(5.4x10−7) 219.3(4.5x10−10)

128 246.4(2.4x10−13) 32.1(1.7x10−8) 260.4(1.7x10−12)
Theoretical 256 32 256

The results demonstrate that the derived schemes achieve experimentally observable rates of
convergence that are consistent with those predicted by the theory. We note that, for k = 3 and for the
finest mesh, the error of the SCI is about three orders of magnitude smaller than that of the continuous
collocation solutions. Similarly, for k = 4 and again for the finest mesh, the error of the SCI is about
four orders of magnitude smaller than that of the continuous collocation solutions, for the finest mesh.

As well, we see that the error of the SCIs, for the finest meshes, is about 2 times larger, for k = 3,

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5655

and about 7 times larger, for k = 4, than the error of the corresponding mesh point collocation solution
values. There are several ways to improve the accuracy of the SCIs. We document these in the final
section, as items for future work.

5.2. Relative costs of the collocation and SCI computations

Let n be the number of differential equations and k be the number of collocation points. A typical
computation requires that several intermediate collocation solutions be computed on a sequence of
meshes of sizes N1,N2, . . . ,N`, where ` is the total number of meshes that are required. The total
cost associated with obtaining the collocation solution is O(N1q1(kn)3 + N2q2(kn)3 + · · · + N`q`(kn)3),
where q j is the number of Newton iterations required to obtain convergence for the computation of
the jth intermediate collocation solution on the mesh of N j subintervals. On the other hand, the cost
associated with constructing an SCI in a post-processing step is O(N`nk2). From these costs, we can
see that the cost of constructing the SCI in a post-processing step, compared to the cost of computing
the collocation solution, is quite small.

Table 3. Timing results in seconds, k = 3, Problem 2.

tol COLSYS/COLNEW SCI-SETUP APPSLN SCI-INTERP

10−2 0.579 1.9×10−3 1.3×10−3 3.2×10−3

10−3 0.933 3.7×10−3 1.3×10−3 3.0×10−3

10−4 1.34 5.8×10−3 1.1×10−3 2.3×10−3

10−5 1.40 5.4×10−3 1.1×10−3 2.4×10−3

10−6 2.38 1.1×10−2 1.0×10−3 2.3×10−3

10−7 4.43 2.0×10−2 1.1×10−3 2.5×10−3

10−8 4.73 2.1×10−2 1.0×10−3 2.3×10−3

10−9 9.79 4.2×10−2 9.9×10−4 2.2×10−3

10−10 19.8 8.3×10−2 9.4×10−4 2.1×10−3

Table 4. Timing results in seconds, k = 4, Problem 2.

tol COLSYS/COLNEW SCI-SETUP APPSLN SCI-INTERP

10−2 0.532 1.2×10−3 1.6×10−3 3.2×10−3

10−3 0.866 1.9×10−3 1.6×10−3 3.3×10−3

10−4 1.33 2.9×10−3 1.6×10−3 3.2×10−3

10−5 1.27 2.7×10−3 1.2×10−3 2.4×10−3

10−6 2.53 5.6×10−3 1.2×10−3 2.4×10−3

10−7 3.14 8.2×10−3 1.2×10−3 2.4×10−3

10−8 4.45 1.5×10−2 1.3×10−3 2.4×10−3

10−9 7.74 2.2×10−2 1.2×10−3 2.4×10−3

10−10 7.48 2.3×10−2 1.2×10−3 2.4×10−3

Tables 3 and 4 give timing results in seconds for Problem 2, with ω = 100, for k = 3 and 4, and for
a range of tolerances, tol = 10−2, . . . , 10−10. We report the cost of the computation of the collocation

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5656

solution with COLSYS/COLNEW and the cost of the call to the SCI-SETUP routine, which computes
the extra stages that are needed for the SCI. We also report the cost of evaluating the collocation
solution, using the COLSYS/COLNEW APPSLN routine, and the cost of evaluating the SCI, using
the SCI-INTERP routine, at a 1000 uniformly spaced points across the problem domain. From these
tables we see that the SCI setup cost is less than 0.5% of the cost of computing the collocation solution
and that the cost of evaluating the SCI is about 2 to 3 times the cost of evaluating the collocation
solution, with both of these costs being negligible compared to the cost of computing the collocation
solution itself.

6. Summary, conclusions, and future work

In this paper we have shown how to generalize the approach considered in [13] to develop SCIs for
Gaussian collocation solutions of mixed first and second order BVODE systems. These new methods
can substantially improve the accuracy of the returned approximate solution leading to significant gains
in the efficiency.

The approach involves augmenting the superconvergent collocation mesh point values with
interpolants that have the same superconvergent order of accuracy. For the low order cases (k = 1, 2),
Hermite interpolants can be employed on each subinterval to obtain the SCIs. For the k = 3 and 4
cases, a more general approach based on the use of a generalization of the continuous Runge-Kutta-
Nyström methods can be employed. These methods can be used to obtain SCIs of orders 2, 4, 6, and
8, corresponding to k = 1, 2, 3, and 4. Thus the range of orders of SCIs provided in this paper is
comparable to the range of orders provided by COLSYS/COLNEW.

Our numerical results show that
(i) it is possible to obtain SCIs that are substantially more accurate than the corresponding continuous
collocation solutions,
(ii) the SCIs have experimentally observable orders of accuracy that are consistent with the expected
orders, based on the theoretical framework that was used to derive them, and,
(iii) the computational cost associated with setting up an SCI is a small fraction of the cost associated
with computing the collocation solution upon which the SCI is based.

As mentioned earlier, additional work could be done in order to improve the accuracy of the
CPIRKN methods upon which the SCIs are based. One possibility could be to optimize of the choice
of the free coefficients that arise during the derivations to attempt to minimize the magnitude of the
leading order term in the error of each scheme. Another possibility could involve the use of CPIRKN
methods that, for each k, are one order of accuracy higher than those derived in this paper. A third
possibility could involve expressing the weight polynomials in a Barycentric Lagrange form rather
than in terms of a monomial basis. The paper [19] shows that the use of a Barycentric Lagrange
representation can lead to less interference from round-off error.

A major task for future work is to extend the work reported in [1] in order to incorporate the schemes
described in this paper to allow COLNEWSC to directly treat mixed first and second order BVODE
systems, leading to improved user convenience, numerical solutions with higher continuity, and a more
efficient computation.

The collection of BVODEs given in [4] involves differential equations with solution derivatives
of orders 1 to 4, and COLSYS/COLNEW is able to directly treat mixed order systems across this

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5657

range of orders. This suggests another direction for future work which would involve extending the
approach considered in this paper to derive methods leading to SCIs for mixed order systems involving
derivatives of orders 1 to 4. The primary challenge will be to extend the CPIRKN methods to develop
methods for differential equations in which derivatives of orders 3 and 4 appear. With this goal in mind,
we have developed general forms for generalizations of CPIRKN methods for systems of differential
equations involving derivatives of orders 3 and 4 - see the Appendix of this paper.

Finally, as mentioned earlier in this paper, because the boundary value differential-algebraic system
solver COLDAE [5] is based on Gaussian collocation and the BACOL family of error control solvers
for 1D PDEs (see [17, 32] and references within) makes use of Gaussian collocation for the spatial
discretization of the PDEs, it may be worthwhile to investigate if it is possible to extend the ideas from
the current paper to develop SCIs for the collocation solutions computed by these solvers.

Acknowledgments

(i) Funding sources: NSERC, Saint Mary’s University.
(ii) The authors wish to thank the referees and the editor for many helpful comments.

Conflict of interest

All authors declare that they have no conflicts of interest in this paper.

References

1. M. Adams, C. Tannahill, P. H. Muir, Error control Gaussian collocation software for boundary
value ODEs and 1D time-dependent PDEs, Numer. Algorithms, 81 (2019), 1505–1519.
https://doi.org/10.1007/s11075-019-00738-2

2. U. M. Ascher, J. Christiansen, R. D. Russell, A collocation solver for mixed order systems of
boundary value problems, Math. Comp., 33 (1979), 659–679. https://doi.org/10.1090/S0025-
5718-1979-0521281-7

3. U. M. Ascher, J. Christiansen, R. D. Russell, Collocation software for boundary value ODEs, ACM
Trans. Math. Softw., 7 (1981), 209–222. https://doi.org/10.1145/355945.355950

4. U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations, Classics in Applied Mathematics Series, Philadelphia: Society
for Industrial and Applied Mathematics, 1995.

5. U. M. Ascher, R. J. Spiteri, Collocation software for boundary value differential-algebraic
equations, SIAM J. Sci. Comp., 15 (1994), 938–952. https://doi.org/10.1137/0915056

6. G. Bader, U. M. Ascher, A new basis implementation for a mixed order boundary value ODE
solver, SIAM J. Sci. Stat. Comp., 8 (1987), 483–500. https://doi.org/10.1137/0908047

7. K. Burrage, F. H. Chipman, P. H. Muir, Order results for mono-implicit Runge-Kutta methods,
SIAM J. Numer. Anal., 31 (1994), 876–891. https://doi.org/10.1137/0731047

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

http://dx.doi.org/https://doi.org/10.1007/s11075-019-00738-2
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-1979-0521281-7
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-1979-0521281-7
http://dx.doi.org/https://doi.org/10.1145/355945.355950
http://dx.doi.org/https://doi.org/10.1137/0915056
http://dx.doi.org/https://doi.org/10.1137/0908047
http://dx.doi.org/https://doi.org/10.1137/0731047

5658

8. J. R. Cash, A. Singhal, Mono-implicit Runge-Kutta formulae for the numerical
integration of stiff differential systems, IMA J. Numer. Anal., 2 (1982), 211–227.
https://doi.org/10.1093/imanum/2.2.211

9. J. F. L. Duval, E. Rotureau, Dynamics of metal uptake by charged soft biointerphases: impacts
of depletion, internalisation, adsorption and excretion, Phys. Chem. Chem. Phys., 16 (2014),
7401–7416. https://doi.org/10.1039/C4CP00210E

10. W. H. Enright, K. R. Jackson, S. P. Nørsett, P. G. Thomsen, Interpolants for Runge-Kutta formulas,
ACM Trans. Math. Softw., 12 (1986), 193–218. https://doi.org/10.1145/7921.7923

11. W. H. Enright, P. H. Muir, Efficient classes of Runge-Kutta methods for two-point boundary value
problems, Computing, 37 (1986), 315–334. https://doi.org/10.1007/BF02251090

12. W. H. Enright, P. H. Muir, A Runge-Kutta Type Boundary Value ODE Solver with Defect Control,
Technical Report 93-267, Department of Computer Science, University of Toronto, Toronto, 1993.

13. W. H. Enright, P. H. Muir, Superconvergent interpolants for the collocation solution of
boundary value ordinary differential equations, SIAM J. Sci. Comp., 21 (1999), 227–254.
https://doi.org/10.1137/S1064827597329114

14. W. H. Enright, R. Sivasothinathan, Superconvergent interpolants for collocation methods
applied to mixed order BVODEs, ACM Trans. Math. Softw., 26 (2000), 323–351.
https://doi.org/10.1145/358407.358410

15. J. M. Fine, Interpolants for Runge-Kutta-Nyström methods, Computing, 39 (1987), 27–42.
https://doi.org/10.1007/BF02307711

16. A. D. Garnadi, P. D. R. Lestari, Modeling hot water bath treatment of fruit using lateral method of
lines in SCILAB, Preprint 2020060054, 2020. https://doi.org/10.20944/preprints202006.0054.v1

17. K. R. Green, R. J. Spiteri, Extended BACOLI: Solving one-dimensional multiscale parabolic
PDE systems with error control, ACM Trans. Math. Softw., 45 (2019), 1–19.
https://doi.org/10.1145/3301320

18. E. Hairer, S. P., Nörsett, G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems,
Second edition, Springer Series in Computational Mathematics, 8, Berlin: Springer-Verlag, 1993.

19. N. J. Higham, The numerical stability of Barycentric Lagrange interpolation, IMA J. Numer. Anal.,
24 (2004), 547–556. https://doi.org/10.1093/imanum/24.4.547

20. H. Jin, S. Pruess, Uniformly superconvergent approximations for linear two-
point boundary value problems, SIAM J. Numer. Anal., 35 (1998), 363–375.
https://doi.org/10.1137/S0036142996297205

21. S. Karlin, J. M. Karon, On Hermite-Birkhoff interpolation, J. Approx. Theory, 6 (1972), 90–115.
https://doi.org/10.1016/0021-9045(72)90085-8

22. Z. Li, P. Muir, B-Spline Gaussian collocation software for two-dimensional parabolic PDEs, Adv.
Appl. Math. Mech., 5 (2013), 528–547. https://doi.org/10.4208/aamm.13-13S09

23. A. Marthinsen, Continuous extensions to Nyström methods for second order initial value problems,
BIT, 36 (1996), 309–332. https://doi.org/10.1007/BF01731986

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

http://dx.doi.org/https://doi.org/10.1093/imanum/2.2.211
http://dx.doi.org/https://doi.org/10.1039/C4CP00210E
http://dx.doi.org/https://doi.org/10.1145/7921.7923
http://dx.doi.org/https://doi.org/10.1007/BF02251090
http://dx.doi.org/https://doi.org/10.1137/S1064827597329114
http://dx.doi.org/https://doi.org/10.1145/358407.358410
http://dx.doi.org/https://doi.org/10.1007/BF02307711
http://dx.doi.org/https://doi.org/10.20944/preprints202006.0054.v1
http://dx.doi.org/https://doi.org/10.1145/3301320
http://dx.doi.org/https://doi.org/10.1093/imanum/24.4.547
http://dx.doi.org/https://doi.org/10.1137/S0036142996297205
http://dx.doi.org/https://doi.org/10.1016/0021-9045(72)90085-8
http://dx.doi.org/https://doi.org/10.4208/aamm.13-13S09
http://dx.doi.org/https://doi.org/10.1007/BF01731986

5659

24. A. Marunovic, M. Murkovic, A novel black hole mimicker: a boson star and a global
monopole nonminimally coupled to gravity, Class. Quantum Grav., 31 (2014), 045010.
https://doi.org/10.1088/0264-9381/31/4/045010

25. P. Muir, B. Owren, Order barriers and characterizations for continuous mono-implicit Runge-Kutta
schemes, Math. Comp., 61 (1993), 675–699. https://doi.org/10.1090/S0025-5718-1993-1195425-
8

26. P. H. Muir, M. Adams, Mono-implicit Runge-Kutta-Nyström methods with application to boundary
value ordinary differential equations, BIT, 41 (2001), 776–799.

27. P. H. Muir, M. Adams, J. Finden, P. Phoncharon, Improving the Accuracy of Collocation Solutions
of Mixed First and Second Order Boundary Value ODE Systems through the use of Superconvergent
Interpolants, Technical Report 2019 002, Department of Mathematics and Computing Science,
Saint Mary’s University, 2019.

28. B. Owren, M. Zennaro, Order barriers for continuous explicit Runge-Kutta methods, Math. Comp.,
56 (1991), 645–661. https://doi.org/10.1090/S0025-5718-1991-1068811-2

29. B. Owren, M. Zennaro, Derivation of optimal continuous explicit Runge-Kutta methods, SIAM J.
Sci. Stat. Comp., 13 (1992), 1488–1501. https://doi.org/10.1137/0913084

30. F. M. Pereira, S. C. Oliveira, Occurrence of dead core in catalytic particles containing immobilized
enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods,
Bioprocess Biosyst. Eng., 39 (2016), 1717–1727. https://doi.org/10.1007/s00449-016-1647-0

31. N. Petit, A. Sciarretta, Optimal drive of electric vehicles using an inversion-based trajectory
generation approach, Proceedings of the 18th World Congress, The International Federation of
Automatic Control, Milano, Italy, (2011), 14519–14526. https://doi.org/10.3182/20110828-6-IT-
1002.01986

32. J. Pew, Z. Li, C. Tannahill, P. Muir, G. Fairweather, Performance analysis of error-control B-
spline Gaussian collocation software for PDEs, Comput. Math. Appl., 77 (2019), 1888–1901.
https://doi.org/10.1016/j.camwa.2018.11.025

33. S. Pruess, Interpolation schemes for collocation solutions of two point boundary value problems,
SIAM J. Sci. Stat. Comp., 7 (1986), 322–333. https://doi.org/10.1137/0907021

34. S. Pruess, H. Jin, A stable high-order interpolation scheme for superconvergent data, SIAM J. Sci.
Comp., 17 (1996), 714–724. https://doi.org/10.1137/S1064827593257481

35. M. Shakourifar, W. H. Enright, Superconvergent interpolants for collocation methods
applied to Volterra integro-differential equations with delay, BIT, 52 (2012), 725–740.
https://doi.org/10.1007/s10543-012-0373-5

36. J. H. Verner, Differentiable interpolants for high-order Runge-Kutta methods, SIAM J. Numer.
Anal., 30 (1993), 1446–1466. https://doi.org/10.1137/0730075

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

http://dx.doi.org/https://doi.org/10.1088/0264-9381/31/4/045010
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-1993-1195425-8
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-1993-1195425-8
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-1991-1068811-2
http://dx.doi.org/https://doi.org/10.1137/0913084
http://dx.doi.org/https://doi.org/10.1007/s00449-016-1647-0
http://dx.doi.org/https://doi.org/10.3182/20110828-6-IT-1002.01986
http://dx.doi.org/https://doi.org/10.3182/20110828-6-IT-1002.01986
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.11.025
http://dx.doi.org/https://doi.org/10.1137/0907021
http://dx.doi.org/https://doi.org/10.1137/S1064827593257481
http://dx.doi.org/https://doi.org/10.1007/s10543-012-0373-5
http://dx.doi.org/https://doi.org/10.1137/0730075

5660

Appendix

A. Generalized CPIRK schemes for third order ODEs

In this subsection we give the general form for a generalized CPIRK method that can be applied
directly to an ODE of the form,

y′′′(t) = f
(
t, y(t), y′(t), y′′(t)

)
,

to provide SCIs for this problem class. The general form for these methods is,

yi+1 = yi + θhiy′i +
θ2h2

i

2
y′′i + h3

i

s∑
r=1

br(θ)kr,

y′i+1 = y′i + θhiy′′i + h2
i

s∑
r=1

b̄r(θ)kr,

y′′i+1 = y′′i + hi

s∑
r=1

b̃r(θ)kr,

where

kr = f (t̂r, ŷr, ŷ′r, ŷ
′′
r), t̂r = ti + crhi,

ŷr = (1 − vr)yi + vryi+1 + hi
(
(cr − vr − wr)y′i + wry′i+1

)
+

h2
i

((
c2

r

2
−

vr

2
− wr − ur

)
y′′i + ury′′i+1

)
+ h3

i

s∑
j=1

xr jk j,

ŷ′r = (1 − v′r)y
′
i + v′ryi+1+hi

(
(cr − v′r − w′r)y

′′
i + w′ry

′′
i+1

)
+ h2

i

s∑
j=1

x′r jk j,

ŷ′′r = (1 − v′′r)y′′i + v′′r y′′i+1 + hi

s∑
j=1

x′′r jk j.

B. Generalized CPIRK schemes for fourth order ODEs

The methods presented in this subsection are generalizations of the methods presented in the
previous subsection to allow for the direct treatment of BVODEs of the form,

y′′′′(t) = f (t, y(t), y′(t), y′′(t), y′′′(t)).

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

5661

The general form for these methods is,

yi+1 = yi + θhiy′i +
θ2h2

i

2
y′′i +

θ3h3
i

6
y′′′i + h4

i

s∑
r=1

br(θ)kr,

y′i+1 = y′i + θhiy′′i +
θ2h2

i

2
y′′′i + h3

i

s∑
r=1

b̄r(θ)kr,

y′′i+1 = y′′i + θhiy′′′i + h2
i

s∑
r=1

b̃r(θ)kr,

y′′′i+1 = y′′′i + hi

s∑
r=1

b̂r(θ)kr,

where
kr = f (t̂r, ŷr, ŷ′r, ŷ

′′
r , ŷ

′′′
r), t̂r = ti + crhi,

ŷr = (1 − vr)yi + vryi+1 + hi
(
(cr − vr − wr)y′i + wry′i+1

)
+

h2
i

((
c2

r

2
−

vr

2
− wr − ur

)
y′′i + ury′′i+1

)
+

h3
i

((
c3

r

6
−

vr

6
−

wr

2
− ur − zr

)
y′′′i + zry′′′i+1

)
+ h4

i

s∑
j=1

xr jk j,

ŷ′r = (1 − v′r)y
′
i−1 + v′ryi+1 + hi

(
(cr − v′r − w′r)y

′′
i + w′ry

′′
i+1

)
+

h2
i

((
c2

r

2
−

v′r
2
− w′r − u′r

)
y′′′i + u′ry

′′′
i+1

)
+ h3

i

s∑
j=1

x′r jk j,

ŷ′′r = (1 − v′′r)y′′i + v′′r y′i+1+hi
(
(cr − v′′r − w′′r)y′′′i + w′′r y′′′i+1

)
+ h2

i

s∑
j=1

x′′r jk j,

ŷ′′′r = (1 − v′′′r)y′′′i + v′′′r y′′′i+1 + hi

s∑
j=1

x′′′r j k j.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 5634–5661.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Superconvergent interpolants for collocation solutions
	SCIs for mixed first/second order BVODE systems

	Collocation methods in RK/RKN form
	CRKN methods, Hermite interpolants, and CPIRKN methods
	Discrete and continuous RK and RKN methods
	Hermite interpolants
	CPIRKN methods
	CPIRKN methods for SCIs

	Derivation of CPIRKN methods for SCIs
	Collocation with k=1
	Collocation with k=2
	Collocation with k=3
	Collocation with k=4

	Numerical results
	Convergence rates and maximum errors
	Relative costs of the collocation and SCI computations

	Summary, conclusions, and future work
	Generalized CPIRK schemes for third order ODEs
	Generalized CPIRK schemes for fourth order ODEs

