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Abstract: In this paper, the Ostrowski inequality for s-convex functions in the third sense is studied.
By applying Holder and power mean integral inequalities, the Ostrowski inequality is obtained for the
functions, the absolute values of the powers of whose derivatives are s-convex in the third sense. In
addition, by means of these inequalities, an error estimate for a quadrature formula via Riemann sums
and some relations involving means are given as applications.
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1. Introduction

Convex functions are of great importance in both formal and applied sciences due to their nice
properties associated with solving optimization problems. Especially, advances in mathematics
accompany the progress of new convexity types which are extensions or generalizations of convex
functions such as quasiconvexity, B-convexity, B~!-convexity, p-convexity etc [1,5, 10,17, 19]. s-
convexity is among them, which attracts many researchers and has found application area in fractal
sets [7,9,12]. The basics of s-convexity goes back to the studies on modular spaces and Orclicz
spaces [4, 13]. s-convexity is a generalization of classical convexity obtained by means of changing
the powers of parameters. To clarify, let us recall the classical definitions of convexity.

Let A c R". A is said to be convex if

Ax+uyeA

for all x,y € A and A,u € [0, 1] such that 4 + u = 1. A real valued function f defined on a convex set
A is said to be convex if

SAx + puy) < Af(0) + pf(y),
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for the same variables as before. In [4, 13], s-convex functions are introduced by using sth power
of A and u, where s is called generic class constant and 0 < s < 1. They give two kinds of s-convex
functions, namely, in the first sense and in the second sense. These functions on nonnegative real
numbers are defined as follows.

Let f : [0, 00) — R. The function f is said to be s-convex function in the first sense if

fPx+p’y) S Af(x) + uf(y),

for all x,y € [0, 00) and A, u € [0, 1] such that 2° + u* = 1.
For the function f defined on the same set as above, it is said to be s-convex in the second sense if

fAx +py) < A f(x) + 1’ f(),

for all x,y € [0,0) and A, u € [0, 1] such that A + u = 1. [11] introduces s-convexity in the third sense
by changing the parameters in a similar manner and extending the domain into subsets of R”. In order
to set this kind of s-convexity, the function is defined on p-convex sets which is a generalization of
convex sets and already given in [3, 8].

Let ACR"and p € (0,1]. A is said to be p-convex set if

Ax+uyeA

for all x,y € A and A, u € [0, 1] such that 2”7 + u” = 1. In [11], p-convex sets are called s-convex sets.
For sake of convenience, we use the same. On this set, the third sense s-convex function is given as
follows:

Let A ¢ R" be a s-convex set and f : A — R. The function f is said to be s-convex in the third
sense if

FQx +py) < A5 () + s f),

for all x,y € A and A, u € [0, 1] such that 2* + u* = 1.

In the literature, most of the salient studies on s-convex functions involves the s-convex versions
of the integral inequalities presented for classical convex functions such as Hermite-Hadamard, Fejer,
Griiss inequalities and these versions are given mostly for the first and second senses [2, 6, 15, 16, 18].
The Ostrowski inequality is one of them, which puts a bound for the difference between function and
its average value on an interval. The Ostrowski inequality is stated as follows [14].

Let f : R — R be a differentiable function. If |f'(x)] < M, x € [a, b], then the following inequality
holds for all x € [a, b]:

(b—a)M.

1 b 1 (x—(a+b)/2)?
- [ o] <[+ D

In this work, we state the Ostrowski inequality for functions f having the property that |f’| is s-
convex in the third sense. Also, we obtain some relations relevant to Hermite-Hadamard inequality type
results for s-convex functions in the third sense as special case. Moreover, using the obtained results,
we provide a bound for a quadrature formula and some relations between generalized logarithmic and
arithmetic means.
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Also, let us state the necessary inequalities and formulas to be used throughout the paper. The Beta
function is defined as follows:

1
B(ay,ay) = ff““(l -2 dt for ay,a; > 0,
0
and B(ay, a,) satisfies the properties below:

ay

B(ay, @) = B(as,a;) and B(a; + 1,a,) = B(a;, ay).

) + an

2. Main results

With the help of the following lemma the Ostrowski inequality is stated for functions f on an
interval [a, b] such that |f’| is s-convex in the third sense. Also, by applying Holder and power mean
integral inequalities, we have different bounds expressed in terms of first derivatives of the function.
In addition, as a special case of the obtained inequalities, different upper bounds can be obtained for
the right hand side of the Hermite-Hadamard inequality for functions f such that [f’| is s-convex in the
third sense. To illustrate, we present it only in Corollary 4.

Lemma 1. Let s € (0,1], a,b € Rwitha < b, f : [a,b] — R be a differentiable function and
f' € Lla,b], then the following holds:

1
s(b—a)

1
f (Cx+(-na—a)f @x+1A -0t x—1-0""a|dt
0

1 b
f) = 5 | oy =
1
+ f @b+ (=0 x=b)f b+ =00 [r'b—(1—1)"4] a’t].
0

Proof. The substitutions y = x + (1- t)%a and y = £5b + 1 - t)ﬁx in the integrals at the right hand
side yield

X b
1 ' 1 )
e [o-arod wd o [e-nroa.
—-a b—a
respectively. Lettingu = y—aand u = y — b, f'(y)dy = dv in common for the partial integration on

integrals above, respectively. Then integration by parts yields the conclusion. O

Before presenting the results, we give some auxiliary arguments, which are used in the proofs of
the results.

Lemma 2. Let s € (0,1],1€[0,1], a,b € R witha < b, x € [a,b],
g =tx+(l-n7a-a, g =r"x-(1-0"a,
m@) =b+ (=0 x—b, () =15 — (1 - 1) .
Then, the following inequalities hold:

(D) 1§11 < |xl +lal, A (D] < |x] + |b]
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(ii) |g2()] < 131 + lal , Iha(0)] < Il + 1B,
(D) 18108201 < P67+ Ixllal 5 (1 = ™ + 571 A = )F + 7 + (1 =05 + (1 =57,
@) 1 Oha(0)] < (1= 05 4 Wbl (1= 0+ 657 1 =05 + (=) + 2@ + 1570,

Proof. (i) Using triangle inequality with s <land1—(1 -1 >0, we have

1810l = +lal (1= (1= 0)7) < x|+ al.

1 1
tsx+(1 —t)?a—a‘ =

fx—a(l-(1 —z)%)' < 'z%x

Similarly, it can be easily seen that |h(¢)| < |x| + |b].

(i1) Using triangle inequality with I <land(1-1)s <1, we get
lg2(1)| = ‘t%‘lx -(1- t)ﬁ‘la' < |t%_1x‘ + ‘a(l - t)§‘1| < |x| + |al.
In the same way, it can be shown that |h,(?)| < |x| + |b] .

(iii) From triangle inequality, we have

1 (0&:0] =[x+ (1 = Da - @)t x = (1 - )7 a)|
e R e e (R RS S B ((E B (DR
e R B 1[Gl 6 I K Sty § I ) E S B (R KR RS K}

(iv) It can be easily seen by using the same method in the proof of (iii).
m]

Theorem 3. Let a,b € R witha < b, f : R — R be a differentiable function such that |f’| is integrable
on |a, b] and s-convex in the third sense on R. Then the following inequality holds for all x € [a, b]:

(el + lal* (L " QOl + 1 @) + (i + 1BD*(f " (0] + If'(b)l)]-

1 b s
'f(x)—mj; f@)dY‘Sm[

Proof. Using Lemma 1, triangle inequality, Lemma 2 (i)—(ii), and the s-convexity of |f’|, we have

1 b
‘f(x)—b— f f(y)dy‘
_a a

1 1
<
- s(b—a)j(;

1 Mo . o o N
+S(b_a)f0 '(tsb+(1—t)sx—b)f b+ -ni0) (b - (1 -1} 1x)|dt

1 1
s(b—a) L

(Cx+(I-nra—a)f @ x+1-na) (e x—(1- t)%-la)‘ dt

<

1 1
tsx+(1 —-0sa-— a'

1 1
Al — (1 - t)?_la‘

Frrx+ (1= r)%a)‘dz

1 Y 1 1 1 yo L 1
+ S(b_a)fo b+ (1= 0rx—b|[ b= (1= 0 [ b + (1 - )| ar
1 ! 1 1
< f (x| + laD)*@ 1f 'l + (1 = 0 |f ' (@)))dt
s(b—a) J
1 ! 1 1
+ f (Ixl + D@ 1f /D) + (1 = ) |f ' (x))dt
s(b—-a) J
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s ’ ’ 4 ’
< T = L+ a0+ 1 @D + (4 P @I+ 1G]

O

Applying Theorem 3 for x = ‘”b , we can get a bound for the left side of the Hermite-Hadamard
inequality for functions f such that | f’| is s-convex in the third sense. This result is similar to but
different from the result given in [17].

Corollary 4. Let f : R — R be a differentiable function and |f’| be an integrable on [a, b] and s-convex
in the third sense on R. Then

)——ff(y) yl FTEa s

[(3 jal + [bl)? (If'(a)l + ) + (lal + 3 |bl)’ (

a+b

I

,a+b ,
T)\ lf <b>|)] .

Corollary 5. Let f : R — R be a differentiable function and |f’| be an integrable on [a, b] and s-convex
in the third sense on R. If |f'(x)| < M, x € [a, b], then the following inequality holds:

L] Ml + o
o0 -5 [ 0| s

Theorem 6. Let a,b € R witha < b, f : R — R be a differentiable function such that |f’| is integrable
on [a, b] and s-convex in the third sense on R. Then the following inequality holds for all x € [a, b]:

2s 2\ s3s+2) .. .
‘f(x)— — f f6) yl o= O e e g @ @+ I ®))
S / 1 / 2 2 ’ v I 1
+ (Hl)(b_a)lxl lf"(ol (al + 1bl) + GrDO-® (Il @ + b7 + Il (lal If (@) + b1 1 (b)|))B(E,S—)

’ , , 2 1
+ S(2s D= (lf ()| (@ + bH) + 2 (If (@) + |f (b)l)) B(-. )

1 1
I [lal(f" (@] + 1" (oD + 1Bl B + 1" (D] B( St )

(b— a)

Proof. Let g(t), g2(t), h(¢) and h,(¢) functions as in Lemma 2. Using Lemma 1, triange inequality,
Lemma 2 (iii)—(iv), the s-convexity of |f’| and properties of the Beta function, we can write the

following:
1 b
|f(x)—— f f(y)dy‘ <

f ORI /(b + (1 = 1)) x)j dr

dt

s(b

24571 (1 =it 11— pys 31
Ss(b_a)j;[xta a0 =5+ 670 =) + 657

+a(1 =07+ (L= 05 D] (177 + (1= 0% 1f @) de
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1
f [P = bl (L= e =+ (=0

Tb-a J,

B+ D[ 1O+ A= 0F 10l

3 2s 2\ or s(3s+2) 2 o 2 or

= —(2s+1)(b— U O T T D= (@ If @] + B 1 (B)))

s P S PN SRR TN i
(s+1)(b IOl al +16) + ~ s 1 @ + BB, )

/ , 11
Y TG =g Ml @l BISOD B )

4 2 2 2 1
t e @+ P)BGL )

: 2 / v 2 1
TSt )b-a) If" @I +1f' @D B, =)

1 11 1
Ixl (lal 1f" (@)l + 1f (Ollal + 1f (ol bl + 1Bl 1f' (D)) B(=, = + =).
—a) ss s

- s(b
O

Theorem 7. Let a,b € Rwitha < b, p € (1,0), f : R — R be a differentiable function such that |f’|"

is integrable on [a, b] and s-convex in the third sense on R. Then the following inequality holds for all
x € |a, b]:

1 b
‘f(x)—b— f f(y)dy|
s%_l

T2+ Db -a)

[(|x| a2 (IF @) + £ @P)7 + (xl + D2 (f ' + 1 B)P)7

Proof. By making use of Lemma 1, triangle inequality, Lemma 2 (i)—(ii), Holder inequality and the
s-convexity of [f’|”, we can write the following:

1 b
‘f(x)—b— f f(y)dy|

1-fa—a)f ' x+ (1 -03a) (= (1 - z)%—la)‘ dt

f @b+ (=0 x = b)f @b+ (1= 07) (7= (1 = )7 x)| de
0

" s(b—a)
p-1 1

< S(bl 3 (fl (Fx+-nia=—a)(rx-(1-0"a) p‘i]dt) (fl IGERat —t)ia)‘pdt)p
- 0

1 55 1
e S NI

! 1 % pT?l 1 % ’ i2 ’ II)
=S0-a ( fo (x] + la? dr) ( fo (rs '@+ (1 =07 |f (a)lp)dt)
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p—-1

T, 1 »
s(b D (f (|x| + (D)1 ldl) (j(; (f‘r2 IF'®IF+0 -1~ |f'(x)|p)dl)

N4

< T [(|x|+|a|) Uf /@I +1F @) + (xl + 6D (L P +1f " BF)? ]
(s + l)p(b - a)

O

Corollary 8. Under the condition of theorem above with |f'(x)] < M for x € [a,b), the following
inequality is obtained:

|f(>——ff<y

Theorem 9. Leta,b € Rwitha < b, g € [1,0), f : R — R be a differentiable function such that |f’|?
is integrable on [a, b] and s-convex in the third sense on R. Then

ZLS%_IM
(s2 + I)P(b a)

[ (el + lal)? + (x] + 167

1 b
s - [ oy

1 1 1
< b—a ho(a) (hi(a) |f" (O + hao(@) |f (@) + ho(D) (hi (D) | f' (X)I? + ha(b) | £ (B)I7)*
where
1 11 1 21
B A A T b
52 2+ 1 1 1 S 11 1
HElC Al e S Yo us sy L G i v o S}
4
i(s) = s B(l,l) 1 _s+1B(11 1

+ R ———
(s+D(s+s2+1) s s s+1 2s+1 s's sz)

1
s s@s+1) 111 , s\

ho) = | —— x> + | ——2 — —B(—, - .
o(») (s+1|x| +( 7 (S,S))IXI|y|+|y| 2) ,

s+1
s? 2 2
) = F——7 B+ wa) D+ wils) I
s 11 s
ha(y) = B(=, =) |x* + + 2
2() GrDGrar D) (5> ) W7+ ws(9) ] GrD2s 1D Iyl

Proof. By making use of Lemma 1, triangle inequality, power mean inequality, Lemma 2 (i)—(ii), the
s-convexity of |f’|? and properties of the Beta function, we have

1 b 1 M 1 1 1_
‘f(x)—mfa f(y)dy‘s S(b_a)fo ‘tsx+(1—t)»va—aHts e (1=1)3 1a‘

1 tib+(1—1)x— b‘ 'ﬁ—lb -(1- t)ﬁ‘lx' 'f’(ﬁb +(1- t)ﬁx)' dt

dt

1

]_
= (1 - r)i-la‘dz)

1

1 1
tsx+(1 —-0tsa—- a'

=]
<
T stb-a)\Jo
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x (fl 't%x+(1 —r)%a—a] 't%—lx— a —t)%-1a| 'f’(t%x+ a —t)ia)|th);
0

1

(f 'z%b +(1=p)ix— b‘ 't%—lb —(- t)%-1x| dt)l_q
0

+

s(b—a)

1
8 (f b+ (= rx—b|| - -0 [+ (- ;)ix)|th)
0

1 -1
< s(b — a) (L (t|x| +( - (1- t)%)lal) (t%_llxl + (1 - t)%_l |a|) dt) X

1

q

1
(fo (1l + (1 = (1 = pDlal) (571l + (1 = 05 al) | £+ (1 = )| dt)

1
s(b—a)

-
(fl (a — )b+ (1 =1 1x1) (t%—l bl + (1 —£)s! |x|>dt) %
0

+

1

1 q
(f (=) 160+ (1= D) lad) (57 ]+ (1 = )5 ] f’(tib+(1—t)ix)‘qdz)
0

1=-1
q

<

1
" s(b-a) (L (ﬁ Il + (ﬁ_l(l —(I=0)+u1 - l)rl) Ixllal + (1 = (1 =)5)(1 = 1) |a|2) dt)

1
q

1
x ( fo (rlx + (1 = (1 = y)al) (£ + (1 = 1)> " |al) (r @+ (1= 1) If’(a)lq)dt)

1
S(bl_ a) (f(; (((1 - t)%—l —t(1- t)%—l) |X|2

(-t e A= = (=) Bl + (07 = ) |b|2)d;)1_5

+

! :
X ( fo (=) 1bl+ @ = 1d) (57" bl + (1= 1) 1) (t £/ + (1= 1) If’(x)lq)dt)

2

<
24+ s5+1

]’lo(a) X ([

I + wa(s) lal x| + wi(s) |a|2] IOl +
s(b—a)

3

s s
(s+1)R2s+1

(s+1D(s+s2+1)

1
* a0

2

; |a|2] If’(a)lq)q
3

(s+1)2s+1

11
B(=, ) Ix* + ws(s) |al x| +

s

2
B
A (s+D(s+s>+1)

11
(=, =) + wa(s)lbllx| +
s s

)|b2|] 1@

1

s+ s2+1

x> + wa(s)Ibllx] + Wl(s)lbzl] If’(X)I")q

1 , )
= o-a [ho(a) (@1 f' @I + ha(a@) | f (@I7)7 + ho(b) (b (D) | (0| + hy(b) | f'(b)rf)q]

O

Corollary 10. Under the conditions of Theorem 9 above with |f’(x)| < M for x € [a, b], the following
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inequality is obtained:

[10(@) (@) + ha(@))* + ho(b) (i (b) + ha(b))1

1 b
-5 [ o)<

3. Applications
It is stated in [11] that f(x) = —x+ is an s-convex function in the third sense on [0, o). Using

this fact and the results, we obtain some mean inequalities. Let us recall some special means, namely,
arithmetic, geometric, Heronian, generalized logarithmic means given, respectively, as follows:

b oh 1
A(a,b) = a+ , G(a,b) = Vab, H(a,b) = §(a+ \ab + b),
a ,if a=b
Lp(a’ b) = ( ap — bp )1/(P—1)
, a#¥b,p+0,1
pla—Db) P

Proposition 11. Let s € (0, 1] and a,b € R, with a < b then the following inequality holds:

15H(a?,b%) + G*(a,b) s + 1 bt

'[A(a, by - [L§+2(cz,la)]%Jrl <

- (b-a) s2+1
Proof. Let us take f(x) = —Sj_lx%“ on [a,b] and x = % in Theorem 3. Since |f’(x)| < bi, we can
write 1
1 (a+b\ s piogiv| 200|445ty
s+1\ 2 (s+1DR2s+1) b-a 2+ DH(b-a)

Making some algebraic manipulations and using the definitions of means, we obtain the required
inequality. O

Moreover, we can find an upper bound for the error of a quadrature formula involving Riemann
sums of functions f for which |f’| is s-convex in the third sense.

Let f be an integrable function on [a, b] and P be a partition of the interval [a, b], i.e., P : a = xy <
Xp < oo < X1 < X, = b, Axjyy = X541 —x;and fori = 0,1,...,n—1, ¢; € [x;, x;41]. We denote the
Riemann sums as follows:

n—1
Ru(f, Pryc) = ) fle)Axi.
i=0

Then we have the following theorem stating an upper bound for a quadrature formula:

Theorem 12. Let M € (0,0) and f : R — R be differentiable function such that |f’| is integrable on
[a, b] with |f'(x)| < M for x € [a,b] and |f’| is a s-convex function in the third sense. Suppose that P, c;
fori=0,...n—1isas above. Then

b
ff(x)d-x = Rn(fan,c) + Qn(f’ Pn,C)

AIMS Mathematics Volume 7, Issue 4, 5605-5615.



5614

where Q,(f, P,, c) is the remainder and

n—1

(s2+ 1) IZ:O: [(Ci + xi)2 + (c; + x,~+1)2],

1Qn(f, Pns 0)] <

Proof. We apply Theorem 3 to the interval [x;, x;;] and to the point x = ¢; and get

Xit+1

f(c)Axip —ff(x)dx <

Xi

2 2
(ci +xi)” + (¢ci + Xxiz1) ] .

2Ms [
(s2+1)
By using triangle inequality and summing up the previous estimate for i = 0, ...,n — 1 we obtain

Xi+1 n—1

S oM
10u(fs P ) < D | Fe)AX1 — f F@dx < 3= (e 0 + (e + ).
i=0 A

gy (s2+1)

Xi

If we use midpoints as the points ¢;, we have the following inequality:

it X .
Corollary 13. Under the conditions of the theorem above and c; = %, the following holds:
Ms &S
101 Par O < gy 2 (5% + 65kt + 5
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