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1. Introduction

In recent years, many studies have considered the ecological system’s habitat from applied
mathematics [1–4, 6–8, 10–26, 28–36, 39–42]. In these studeies, the fundamental research in
mathematical modeling of the predator-prey model can be seen by Lotka and Volterra in [21, 35],
which opened many new aspects in modeling predator-prey interaction and showed the possibility of
studying and predicting their dynamics.

In describing the habitat of the predator-prey model, functional response represents one of the
essential terms. It shows the manner of interaction between prey and predator. More precisely, it
expresses the attack methods and the quantity of the predator to the prey. In the literature, there are
three forms of functional response: Type I, Type II, and Type III, where the predator consumption rate
increases linear, hyperbolic or sigmoidal, respectively. Several mathematical forms represent this
dynamics of the prey-predator model, which is f (x) = ax of Holling Type I and f (x) = ax/b + x of
Holling Type II, where a, b and x are respectively the maximum predation rate, the half-saturation
constant, and the prey biomass. On the other hand, the multi-species form of prey and their
competition might increase the chance of the predator to attack and hunt them if the predator species
itself is also in cooperation during hunting. Recently, Alves and Hilker [1] included a cooperation
term to the rate of attack of the predator population and proposed the functional response
P(x, y) = (p + by)x, where x and p > 0 are respectively the prey density and the attack rate of the
predator on the prey, while b > 0 describes the predator cooperation in hunting.

In this food chain cycle of the habitat, the fear of the prey started to become an important and
realistic impact in the mathematical model to describe the predator-prey interaction, cooperation of
the predators, and the fear of the prey. Many studies have been conducted to evaluate the effect of
fear on prey population density [24, 31, 42] with different functions of response. However, it is new to
study and examine the fear effect, the interaction of predator-prey, and the cooperation of predators in
a single model.

Our following model considers an expanded form of Mukherjee [25] where we divide the ecological
community into three compartments: y(t) represents the predator, while there are two preys who are in
competition and are denoted as x1(t) and x2(t), respectively. We consider a habitat where one predator
compartment exists, which hunts x1(t) in cooperation, while species x2(t) is hunted individually. Also,
we assume that both preys x1(t) and x2(t) are in competition which allows the predator to attack and
hunt them easier. The collective hunting of predator y(t) to species x1(t) activates a fear effect of the
prey towards the hunter.

Therefore, this scenario is formulated as an ODE system as follows:

dx1

dt
=

(
η +

κ(1 − η)
κ + y

)
r1x1 − (d + a1x1 + β1x2)x1 − (p + by)x1y

dx2

dt
= x2(r2 − β2x1 − a2x2)

dy
dt

= c(p + by)yx1 − my.

(1.1)

We equipped the system (1.1) with the initial condition

x1(0) > 0, x2(0) > 0 and y(0) > 0.
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All the biological description of the parameters are given as below:

Parameter Environmental Interpretation
r1 Rate of the intrinsic growth of the prey
η Minimum cost of fear
κ Level of fear
r2 Rate of intrinsic growth of the competitor for the prey
a1 Coefficient of the intraspecific competition of the prey
a2 Coefficient of the intraspecific competition of the predator
β1 The interspecific competition coefficient of the competitor for the prey
β2 The interspecific competition coefficient of the competitor for the predator
c Efficiency of conversion of consumed prey into new predators
m Rate of death of the predator
d Death rate of the prey

The modeling of prey-predator systems through fractional-order differential equations has many
advantages. The nonlocal property of fractional-order models not only depends on the current state
but also depends on its prior historical states. The transformation of an integer-order model into a
fractional-order model needs to be precise with respect to the order of differentiation α. However, a
small change in α may cause a big change in the behavior of the solutions [41]. Fractional-order
differential equations can model complex biological phenomena with non-linear behavior and
long-term memory, which cannot be represented mathematically by integer-order differential
equations (IDEs). For example, Bozkurt established the glioblastoma multiform (GBM)-immune
system (IS) interaction using a fractional order differential equation system to include the delay time
(memory effect) in [5]. Besides this, in many papers, researchers have proven the importance of
fractional derivatives in modeling biological phenomena such as freedom towards ordering the
derivative, dealing with species memory that has been achieved during their cycle life, genetic
characteristics, and others (see for example [4, 6, 8, 9, 13, 27, 30, 37, 38, 41]). Based on this
information, we modify model (1.1) in a fractional-order form to present the study in a more natural
state that suits the food chain life cycle requirements. Thus, we will consider the fractional-order
ecological model such as

Dαx1(t) =
(
η +

κ(1 − η)
κ + y

)
r1x1 − (d + a1x1 + β1x2)x1 − (p + by)x1y

Dαx2(t) = x2(r2 − β2x1 − a2x2)
Dαx3(t) = c(p + by)x1y − my.

(1.2)

2. Preliminaries

In this part, we want to introduce some fundamental properties of fractional-order differential
equations, which will be helpful in the main sections.

Definition 2.1. [7] Caputo fractional derivatives can be given as follows

Dα f (t) = Id−α f d(t), β > 0,
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where Dα is Caputo differential operator of order α, d is the least integer, which is not less than α, and
Iθ is the Riemann-Liouville integral operator of order θ, which is given by

Iθg(t) =
1

Γ(θ)

∫ t

0
(t − τ)θ−1g(τ)dτ, θ > 0,

where Γ(θ) is the Euler’s Gamma function.

Theorem 2.2. [7] Consider the N−dimensional system
dαx
dtα

= Bx,

x(0) = x0,

where B is arbitrary constant N × N matrix and α ∈ (0, 1).

1) x = 0 is asymptotically stable if and only if all eigenvalues λi, i = 1, 2, . . . ,N of B satisfy
|arg(λi)| > απ

2 .
2) x = 0 is stable if and only if all the eigenvalues of B satisfy |arg(λi)| ≥ απ

2 and eigenvalues with
|arg(λi)| = απ

2 have same geometric multiplicity and algebraic multiplicity.

Theorem 2.3. [7] Consider the fractional order system
dαx
dtα

= f (x),

x(0) = x0 with α ∈ (0, 1) and x ∈ Rα.

An equilibrium point x∗ is locally asymptotically stable if all the eigenvalues λi of J =
∂ f (x∗)
∂x satisfy

|arg(λi)| > απ
2 .

3. Non-negativity and boundedness of solution in system (1.2)

This part investigates the existence and uniqueness of the solution in (1.2) and the non-negativity
and boundedness.

Theorem 3.1. System (1.2) shows a unique solution for non-negative initial conditions.

Proof. Let E =
{
(x1, x2, y) ∈ R3; max{|x1|, |x2|, |y| ≤ K}

}
. In this proof, we use Hong et al. approach’s

[13]. Let X = (x1, x2, y) and H(X) = (H1(X),H2(X),H3(X)), where we have
H1(X) =

[
η + κ(1 − η)

κ + y

]
r1x1 − (d + a1x1 + β1x2)x1 − (p + by)x1y

H2(X) = x2(r2 − β2x1 − a2x2)
H3(X) = c(p + by)x1y − my.

(3.1)

For X, X̄ ∈ E, it obvious to see from (3.1) that we get∣∣∣∣∣∣H(X) − H(X̄)
∣∣∣∣∣∣ = |H1(X) − H1(X̄)| + |H2(X) − H2(X̄)| + |H3(X) − H3(X̄)|

≤ [ηr1 + r1κ
2(1 − η) + d + Kr1κ(1 − η) + 2Ka1 + Kβ1

+ K p + Kβ2 + cpK + Kcb]|x1 − x̄1| + [Kβ1 + r2 + Kβ2 + 2Ka2]|x2 − x̄2|

+ [K(r1κ(1 − η)) + K p + 2Ka2 + Kcp + 2Kcb + m]|y − ȳ|

≤ M
∣∣∣∣∣∣X − X̄

∣∣∣∣∣∣,
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where
M = max{ηr1 + r1κ

2(1 − η) + d + K[r1κ(1 − η) + 2a1 + β1 + p + β2 + cp + cb],
Kβ1 + r2 + Kβ2 + 2Ka2,K[(r1κ(1 − η)) + p + 2a2 + cp + 2cb − m]}.

From the analysis mentioned above, the Lipschitz condition of M satisfies. Thus, we can conclude that
the solution of system (1.2) exists and shows a unique solution. �

Theorem 3.2. The boundedness and non-negative behavior of all solutions of system (1.2) are
permanent in R3

+.

Proof. Let L be the function defined as L(t) = x1(t)+ x2(t)+ 1
c y(t). Thus, for τ = min{dηr1−κ(1−η),m},

and supt→∞x2(t) = r2/a2, we have

DαL(t) + τL(t) = ηr1x1 +

[
κ(1 − η)
κ + y

]
r1x1 − dx1 − a1x2

1 − β1x1x2 + r2x2 − β2x1x2

− a2x2
2 −

m
c

y + τx2(t) + τx1(t) +
τ

c
y(t)

= −a2(x2 −
r2

2a2
)2 +

r2
2

4a2
+ (τ − (d − ηr1 − κ(1 − η)))x1

− (β1 + β2)x1x2 + τx2(t) +
1
c

(τ − m)y(t)

<
r2

a2

(r2

4
+ τ

)
.

By using the comparison theorem in [6], we obtain

L(t) ≤ L(0)Gα(−τ(t)) +
r2

a2

(r2

4
+ τ

)
tαGα,α+1(−τα(t)),

where Gα is the Mittag-Leffler function. Using Lemma 5 and Corollary 6 of [6], we have

L(t) ≤
r2

τa2

(r2

4
+ τ

)
as t → ∞.

Hence, it is proven that all solutions of model (1.2) initiating in R3
+ are in the region Γ, where

Γ = (x1, x2, y) ∈ R3
+ : L ≤

r2

τa2
(
r2

4
+ τ) + ε, ε > 0.

Now, we can see also the non-negativity of all solutions in system (1.2). From the first equation of (1.2)
and Γ we obtain,

Dαx1(t) ≥ qx1,

where
P =

r2

τa2

(r2

4
+ τ

)
,

Q = η +

[
κ(1 − η)
κ + cp

]
r1 − (d + a1P + β1P) − c(p + bP)P.

By using the standard comparison theorem for fractional-order in Choi et al. [6] and the fact that
Gα,1(t) > 0 for any α ∈ (0, 1) in [37], it follows that

x1(t) ≥ x10G(α,1)(qtα); x1(t) ≥ 0.
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Similarly, we can get from the second and third equations of (1.2) the following

x2(t) ≥ x20G(α,1)(−(β2P − a2P)tα),
y(t) ≥ y0G(α,1)(−mtα)y.

Hence, obtain also y(t) ≥ 0 and x2(t) ≥ 0 . �

To analyse the stability conditions for the next section, we need to introduce the Jocabian matrix
J(x1, x2, y) associated to system (1.2), which is given by the following:

J(x1, x2, y) =
η+κ(1−η)
κ+y r1 − (d + 2a1x1 + β1x2) − (p + by)y −β1x1 −

[(
κ(1−η)
(κ+y)2

)
r1 + p + 2by

]
x1

−β2x2 r2 − β2x1 − 2a2x2 0
c(p + by)y 0 cpx1 + 2cbx1y − m

 .
4. Equilibria and their stability

System (1.2) has four equilibria:

1) Trivial equilibrium P0(0, 0, 0), which exists always.
2) Prey equilibrium P1( d−1

a , 0, 0), which exists provided that d > 1.
3) Predator-free equilibrium P2(x̄1, x̄2, 0) where x̄1 = 1

β2
(r2−a2 x̄2) and x̄2 =

a1r1+β2d−β2r1
a1a2−β1β2

, which exists
provided that: a1r1 + β2d > β2r1, a1a2 > β1β2 and r2 > a2 x̄2.

4) The positive equilibrium point P∗(x1,
1
b (β2x1−r2), m−cpx1

cpx1
) exists, if β2x1 > r2 and m > cpx1, where

x1 is a root of the following polynomial

A4x4
1 + A3x3

1 + A2x2
1 + A1x1 + A0 = 0. (4.1)

Here, we denote Ai, i = 0, 1, 2, 3, 4 such as

A0 = −bm3

A1 = −(κb − 2m2)cpb

A2 = −mc2b2(d − ηr1) − mc2 p2(3b − 2) − κpmbc2(b − 2) − β1r2mc2b

A3 = ηr1c3b3(κ − 1) + κr1c3b3(1 − η) − κc3b3(κ − 1) + β1r2c3b3(p − κ) + κp2c3b2(1 − p)

+ mac2b2 + β1β2mc2b2

A4 = ac3b3(κ − 1) + β1β2c3b(κb − p).

It is obvious to show that A4 and A1 has positive and negative signs, respectively, under the condition
that we have

2p ≤ κb ≤ bp.

The number of positive real roots of (4.1) can be determined from the signs of A3 and A2. The number
of roots will be revealed using the Descartes Rule. A number of positive roots are illustrated in Table 1.
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Table 1. Number of possible positive roots of the fourth-degree polynomial equation.

Cases A4 A3 A2 A1 A0 Changes in Sign Total Possible Positive Roots

1 + + + - - 1 1
2 + + - - - 1 1
3 + - - - - 1 1
4 + - + - - 3 0,3

Therefore, results can be determined by the following Lemma.

Lemma 4.1. The fractional prey-predator model (1.2) has

1) A unique positive equilibrium point if cases 1–3 are satisfied.
2) More than one positive equilibrium when case 4 is satisfied.

Theorem 4.2. The trivial equilibrium point P0(0, 0, 0) is always unstable.

Proof. The characteristic equation of J at the trivial equilibrium point P0(0, 0, 0) has the following
form

(λ − r1 + d)(λ − r2)(λ + m) = 0.

The eigenvalues are λ1 = r1 − d; λ2 = r2 and λ3 = −m. Thus |arg(λ1)| = 0 < απ
2 , whenever r1 > d and

|arg(λ2)| = 0 < απ
2 , since r2 > 0 and |arg(λ3)| = π > απ

2 . Hence, the convergence of the Mittag-Leffler
function ensures that P0 is always a saddle point. The instability of the trivial equilibrium point ensures
that we do not expect a total extinction of the food chain cycle in the habitat. �

Theorem 4.3. The prey equilibrium point P1( r1−d
a1 , 0, 0) is always unstable.

Proof. The characteristic equation of J at the point P1 has the following form

(λ − r1 + d)
(
λ − r2 +

β2(r1 − d)
a1

) (
λ −

cp(r1 − d)
a1

+ m
)

= 0.

The eigenvalues are λ1 = r1−d; λ2 = r2−
β2(r1−d)

a1
and λ3 =

cp(r1−d)
a1
−m. Now, if r1 < d; r2a1 < β2(r1−d)

and cp(r1 − d) < a1m, then |arg(λ1)| = π > απ
2 ; |arg(λ2)| = π > απ

2 and |arg(λ3)| = π > απ
2 . Hence

the prey equilibrium P1 is locally asymptotically stable if r1 < d; r2a1 < β2(r1 − d) and cp(r1 − d) <
a1m, which is not possible because the condition of existence for this point is r1 > d. Thus, P1 is
unstable. �

Theorem 4.4. The local asymptotic stability of P2(x̄1, x̄2, 0) holds if C1 > 0,C3 > 0 and C1C2 > C3.

Proof. The characteristic equation of the Jacobian matrix J at P2(x̄1, x̄2, 0) is given by

λ3 + C1λ
2 + C2λ + C3 = 0,

where C1 = −J11 − J33 − J22,C2 = J22J33 + J11J33 + J12J21 + J13J31 + J11J22,C3 = −J11J22J33 −

J12J21J33 − J13J31J22, J11 = r1 − (d + 2ax1 + β1x2), J12 = −β1x1, J13 = [(1 − η)/κr1 + p]x1, J21 =

−β2x2, J22 = r2−β2x1−a2x2, J31 = c(p+by)y and J33 = cpx1−m. The above equation has three values
|arg(λ1)| = π > απ

2 , |arg(λ2)| = π > απ
2 , |arg(λ3)| = π > απ

2 , if C1 > 0,C3 > 0 and C1C2 > C3 holds. �
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Theorem 4.5. The positive equilibrium point P∗ is conditionally locally asymptotically stable.

Proof. The characteristic equation associated with J = [ρi j]i: j=1,2,3 around the positive equilibrium
point P∗ is

ψ(λ) = λ3 + A1λ
2 + A2λ + A3 = 0,

where
A1 = −(ρ11 + ρ22 + ρ33)

A2 = ρ11ρ33 + ρ22ρ33 + ρ11ρ33 + ρ11ρ22 − ρ12ρ21 − ρ31ρ13

A3 = ρ12ρ21ρ33 + ρ31ρ13ρ22 − ρ11ρ22ρ33.

Let D(ψ) be the discriminant of ψ(λ), it can be given as
1 A1 A2 A3 0
0 1 A1 A2 A3

3 2A1 A2 0 0
0 3 2A1 A2 0
0 0 3 2A1 A2


.

Then, we have
D(ψ) = 18A1A2A3 + (A1A2)2 − 4A3A2

1 − 4A3
2 − 27A2

3.

The positive equilibrium point P∗ is locally asymptotically stable provided one of the following satisfy:

1) D(ψ) > 0, A1 > 0, A1A2 > A3 and A3 > 0.
2) D(ψ) < 0, A1 ≥ 0, A3 > 0, A2 ≥ 0 and θ < 2/3.
3) D(ψ) < 0, A1 > 0, A1A2 = A3, A2 > 0 and for all θ ∈ (0, 1).

�

Theorem 4.6. The positive equilibrium point P∗ is conditionally globally asymptotically stable.

Proof. Let V be the Lyapunov function defined such as

V(t) =

(
x1 − x∗1 − x∗1ln

x1

x∗1

)
+ w1

(
x2 − x∗2 − x∗2ln

x2

x∗2

)
+ w2

(
y − y∗ − y∗ln

y
y∗

)
,

where w1 and w2 are non-negative constants. Taking fractional-order derivative on both sides, we have

DαV(t) = (x1 − x∗1)
[
α(1 − η)r1

{ 1
y + α

−
1

α + y∗

}
− a(x1 − x∗1) − β1(x2 − x∗2)

− b(y2 − y∗2) − p(y − y∗)
]

+ w1(x2 − x∗2)[−a2(x2 − x∗2) − β2(x1 − x∗1)]

+ w2(y − y∗)[cp(x1 − x∗1) + cb(x1y − x∗1y∗)].

Calculations show that we obtain

DαV(t) = −w1b(x2 − x∗2)2 − a(x1 − x∗1)2 − w2cbx∗1(y − y∗)2 −
α(1 − η)r1(x1 − x∗1)

(α + y∗)(α + y)
+ (β1 − β2w1)(x2 − x∗2)(x1 − x∗1) − p(1 − cw2)(x1 − x∗1)(y − y∗)
− b(y − y∗)(x1 − x∗1){y(1 − cw2) + y∗}.
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If we choose now w1 =
β1
β2

and w2 = 1
c , then it is seen that we have

DαV(t) = −
bβ1

β2
(x2 − x∗2)2 − a(x1 − x∗1)2 − bx∗1(y − y∗)2 −

α(1 − η)r1(x1 − x∗1)
(α + y∗)(α + y)

− b(y − y∗)(x1 − x∗1).

Considering the ecological, environmental event, we assumed that all the parameters are positive and
in addition, if η < 1, x1 > x∗1 and y > y∗1 , then we have DαV(t) ≤ 0. This completes the proof. �

5. Bifurcation analysis

5.1. Neimark-Sacker bifurcation

In this part, the Neimark-Sacker bifurcation conditions of the Caputo fractional order model are
investigated. Now, let us take the following Caputo fractional-order model

Dαy = g(a, y), where α ∈ (0, 1), y ∈ R3.

We suppose that E∗ is an equilibrium point of system (1.2). Then (1.2) undergoes a Neimark-Sacker
bifurcation around the point E∗ concerning the parameter a at a = a∗ provided that the following
conditions are satisfied:

(i) the Jacobian matrix of system (1.2) at the equilibrium point E∗ has a pair of complex conjugate
eigenvalues λ1,2 = α j ± iω j become purely imaginary at a = a∗.

(ii) ξ1,2 (α, a∗) = 0.
(iii) ∂ξ1,2

∂a

∣∣∣∣
a=a∗
, 0.

where ξi(α, a) = −mini=1,2

∣∣∣arg (λi(a))
∣∣∣ + απ

2 .
The fractional-order derivative has an important role in increasing the stability of the considered

model. Therefore, the conditions for which the system (1.2) undergoes Neimark-Sacker bifurcation
concerning α is established as follows:

(i) the Jacobian matrix of system (1.2) at E∗ has a pair of complex conjugate eigenvalues λ1,2 =

α j ± iω j become purely imaginary at α = α∗.
(ii) φ1,2 (α∗) = 0.

(iii) ∂φ1,2

∂α

∣∣∣∣
α=α∗
, 0 where φi(α) = απ

2 −mini=1,2

∣∣∣arg (λi(α))
∣∣∣.

5.2. Neimark-Sacker bifurcation with discretization

The discretization of system (1.2) is as follows

Dαx1 = (η +
κ(1−η)

κ+y([ t
x ]x) )r1x1([ t

x ]x) − (d + a1x1([ t
x ]x) + β1x2([ t

x ]x))x1([ t
x ]x)

−(p + by([ t
x ]x))x1([ t

x ]x)y([ t
x ]x)

Dαx2 = x2([ t
x ]x)(r2 − β2x1([ t

x ]x) − a2x2([ t
x ]x))

Dαy = c(p + by([ t
x ]x))y([ t

x ]x)x1([ t
x ]x) − my([ t

x ]x).

 (5.1)
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Then the solution of system (1.2) for t ∈ [0, h), t
h ∈ [0, 1) is given by

x1(1) = x1(0) + tα
Γ(α+1) [(η +

κ(1−η)
κ+y(0) )r1x1(0) − (d + a1x1(0) + β1x2(0))x1(0)

−(p + by(0))x1(0)y(0)]
x2(1) = x2(0) + tα

Γ(α+1) [x2(0)(r2 − β2x1(0) − a2x2(0))]
y(1) = y(0) + tα

Γ(α+1) [c(p + by(0))y(0)x1(0) − my(0)].

 (5.2)

If we repeat the discretization process n times, it is obtained that

x1(n + 1) = x1(n) +
(t−nh)α

Γ(α+1) [(η +
κ(1−η)
κ+y(n) )r1x1(n) − (d + a1x1(n) + β1x2(n))x1(n)

−(p + by(n))x1(n)y(n)]
x2(n + 1) = x2(n) +

(t−nh)α

Γ(α+1) [x2(n)(r2 − β2x1(n) − a2x2(n))]
y(n + 1) = y(n) +

(t−nh)α

Γ(α+1) [c(p + by(n))y(n)x1(n) − my(n)].

 (5.3)

Now for t ∈ [nh, (n + 1)h) and t → (n + 1)h while α→ 1, it is obtained that

x1(n + 1) = x1(n) + hα
Γ(α+1) [(η +

κ(1−η)
κ+y(n) )r1x1(n) − (d + a1x1(n) + β1x2(n))x1(n)

−(p + by(n))x1(n)y(n)]
x2(n + 1) = x2(n) + hα

Γ(α+1) [x2(n)(r2 − β2x1(n) − a2x2(n))]
y(n + 1) = y(n) + hα

Γ(α+1) [c(p + by(n))y(n)x1(n) − my(n)].

 (5.4)

The Jacobian matrix of system (5.1) around the interior equilibrium point E∗ is given by

J =


J11 J12 J13

J21 J22 0
J31 0 J33

 , (5.5)

where

J11 = 1 +
hα

Γ(α + 1)
[(η +

κ(1 − η)
κ + y∗

)r1 − d − 2a1x∗1 − β1x∗2 − py∗ − by∗2], J12 = −
hαβ1x∗1

Γ(α + 1)

J13 = −
hα

Γ(α + 1)

[r1κ(1 − η)x∗1
(κ + y∗)2 + px∗1 + 2bx∗1y∗

]
, J21 = −

hαβ2x∗2
Γ(α + 1)

J22 = 1 +
hα

Γ(α + 1)
[r2 − β2x∗1 − 2a2x∗2], J31 =

hα

Γ(α + 1)
[c(p + by∗)y∗]

J33 = 1 +
hα

Γ(α + 1)
[cpx∗1 + 2cbx∗1y∗ − m].

While the characteristic equation of the Jacobian matrix (5.5) is given by

λ3 + B1λ
2 + B2λ + B3 = 0, (5.6)

where
B1 = −J11 − J22 − J33, B2 = J11J22 + J11J33 + J22J33 − J12J21 − J13J31,

B3 = J12J21J33 + J13J31J22 − J11J22J33.
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Now, using the Jury condition [9], the unique positive equilibrium (x∗1, x
∗
2, y
∗) is locally

asymptotically stable if the following conditions are satisfied

|B1 + B3| < 1 + B2, |B1 + 3B3| < 3 − B2 and B2
3 + B2 − B1B3 < 1.

To study the Neimark-Sacker bifurcation in the system (5.1), we need the following explicit criterion
of Hopf bifurcation.

Lemma 5.3. (See [38]) Consider an n-dimensional discrete dynamical system Yk+1 = fµ(Yk) where
µ ∈ R is the bifurcation parameter. Let Y∗ be a fixed point of fµ and the characteristic polynomial for
Jacobian matrix J(Y∗) = (bi j)n×n of the n-dimensional map fµ is given by

Qµ(λ) = λn + b1λ
n−1 + b2λ

n−2 + .... + bn−1λ + bn. (5.7)

where bi = bi(µ, u), i = 1, 2, ..., n and u is a control parameter to be determined. Let ∆±0 (µ, u) =

1,∆±1 (µ, u), ...,∆±n (µ, u) be a sequence of determinants defined by ∆±i (µ, u) = det(N1 ± N2), i = 1, 2, ..., n
where

N1 =


1 b1 b2 ... bi−1

0 1 b1 ... bi−2

0 0 1 ... bi−3

... ... ... ... ...

0 0 0 ... 1


and N2 =


bn−i+1 bn−i+2 ... bn−1 bn

bn−i+2 bn−i+3 ... bn 0
... ... ... ... ...

bn−1 bn ... 0 0
bn 0 ... 0 0


.

Moreover, the following conditions hold:

(H1) Eigenvalue assignment: ∆−n−1(µ0, u) = 0,∆+
n−1(µ0, u) > 0,Qµ0(1) > 0, (−1)nQµ0(−1) >

0,∆±i (µ0, u) > 0, i = n − 3, n − 5, ..., 1(or2) when n is even or odd respectively.
(H2) Transversality condition: [( d

dµ )(∆−n−1(µ, u))]µ=µ0 , 0.
(H3) Nonresonance condition: cos(2π/ j) , φ or resonance condition cos(2π/ j) = φ for j = 3, 4, 5, ....

and φ = −1 + 0.5Qµ0(1)∆−n−3(µ0, u)/∆+
n−2(µ0, u). Then Neimark-Sacker bifurcation happen if we

take µ as a bifurcation parameter.

Theorem 5.4. The unique interior equilibrium point of model (5.4) undergoes Neimark-Sacker
bifurcation if the following conditions hold:

1 − B2 + B3(B1 − B3) = 0,

1 + B2 − B3(B1 + B3) > 0,

1 + B1 + B2 + B3 > 0,

1 − B1 + B2 − B3 > 0,

where B1, B2, B3 are described in Eq (5.6).

Proof. According to Lemma 1 for n = 3 we have in Eq (5.6), the characteristic polynomial of
system (5.4) evaluated at this positive interior equilibrium. In this case, we obtain the following
conclusions:

∆−2 (µ) = 1 − B2 + B3(B1 − B3) = 0, ∆+
2 (µ) = 1 + B2 − B3(B1 + B3) > 0,

Qµ(1) = 1 + B1 + B2 + B3 > 0, (−1)3Qµ(−1) = 1 − B1 + B2 − B3 > 0.

�
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6. Numerical simulations

In this part, we plot some simulations to support the previous results. We take α = 1.0, 0.9 and 0.7,
to show the effect of the fractional-order derivatives on the dynamics of the proposed model. The
system’s initial conditions are chosen as (0.14, 0.25, 0.37). The system parameter values are
summarized in Table 2.

By analyzing the obtained figures, we reached some numerical fndings. In Figures 1–6, we have
implemented the dynamics of the three species concerning time t. The behaviors of x1, x2 and y
populations are investigated with different parameter values listed in Table 2. We have also plotted
the evolution of x1, x2 and y concerning the fractional-order derivatives α = 1.0, 0.9 and 0.7. From
Figure 1, we observe the stability of the prey equilibrium point for the parameter values of 2. 2 shows
the existence of oscillations in the dynamics of the three species. In Figures 3 and 4, we take the fair
parameter k = 0.2 and k = 2. It was obvious that the fair changed the behaviors of the species. In
Figures 5 and 6, we choose the order of the fractional derivative α = 1, α = 0.9 and α = 0.7. We
noticed that the approach of the fractional-order derivative α to 0 showed stability in the dynamical
behavior of the three species.

Table 2. Parameter values of the system.

Parameter Value
r1 0.200
η 0.700
r2 0.100
a1 0.010
a2 0.040
β1 0.381
β2 0.300
c 0.040
m 0.500
p 0.050
b 0.020
d 0.100

Figure 1. Stability of prey equilibrium point with parameter values of Table 2 and k = 0.

AIMS Mathematics Volume 7, Issue 4, 5463–5479.
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Figure 2. Unstable dynamics of the system equilibrium point with parameter values of the
Table 2 except r1 = 0.3, d = 0.01, c = 0.4, p = 0.5 and for α = 1 and k = 0 (without fear
effect).

Figure 3. Behavior of the three species x2(t), x1(t) and y(t) with the same set of parameters
used in Figure 2 except k = 0.2 (with fear effect).

Figure 4. Trajectories of system (1.1) with the same set of parameters used in Figure 2 except
k = 2 (with fear effect).
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Figure 5. Fractional-order derivative impact on the behavior of x1 and x2.

Figure 6. Fractional-order derivative impact on the dynamics of y.

7. Conclusions

This work dealt with an ecological food chain cycle of a fractional-order predator-prey system.
Both preys competed, while the single predator species showed cooperation in hunting species x1.
This collective strategy leads to a fear effect in the x1 compartment. The second prey species x2 was
hunted individually so that an extreme change could not be noticed on this site. We used the Caputo
fractional-order derivative considering the historical state of memory effect in the system. This study
shows that fractional-order derivatives had a crucial role in controlling the stability of solutions in the
three species. Furthermore, it affected the dynamics of solution, as can be seen in Figures 5 and 6.
We observe from these figures that the approach to zero of the fractional-order derivative increases
stability in the system of the three species x1, x2 and y. Moreover, the change of fair parameter k
showed infuence in temporal behaviors of the three species. In Figures 1 and 4, one can see that
the fear of x1 is effective when the population density of the predator increases. In this stage, the
density of x1 decreases. The case of predator-free equilibrium point shows that the compartment of x1

increases the population’s carrying capacity without any fear. However, x2 is below the threshold of its
compartment, and therefore it is extinct. y doesn’t have enough food in the habitat and shrinks.
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