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1. Introduction

In mathematics, integral inequalities are a useful tool in solving various problems. Some of the
best known are Chebyshev, Jensen, Hölder, Minkowski, Cauchy-Schwartz and Liapounoff inequalities.
Many generalizations of these types of inequalities (and many others) for different classes of integrals
have been investigated. In paper [6], are given for fuzzy integral and in [2, 7, 11] for Sugeno integral,
in [1, 3, 8] for pseudo-integral.

The main topic of this paper is Liapounoff type inequality. One of its forms is
1∫

0

f (x)s dx


r−t

≤


1∫

0

f (x)t dx


r−s 

1∫
0

f (x)r dx


s−t

,

where 0 < t < s < r and f : [0, 1]→ [0,∞) is an integrable function (see [5]).
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Pseudo-analysis is a part of mathematical analysis where the field of real numbers is replaced with
a closed or semi-closed interval [a, b] ⊂ [−∞,∞], and operations of addition and multiplication of real
numbers are replaced with two new operations, pseudo-addition and pseudo-multiplication, defined
on the considered interval [a, b]. The structure ([a, b],⊕,�), where ⊕ and � are pseudo-addition and
pseudo-multiplications, respectively, is called semiring. There are three classes of semirings [20, 21].
In this paper, the focus is on two classes of semirings on the interval [0,∞]. In the first part of the
investigation the focus is on so-called g-semirings where pseudo-operations are given by a continuous
function g : [0.∞] → [0,∞]. The second part of the investigation is dedicated to idempotent semiring
([0,∞], sup,�) with generated pseudo-multiplication. Tools from pseudo-analysis have applications in
various fields, such as game theory, nonlinear partial differential equations, probability theory, interval
probability theory, etc. (see [13, 21, 27, 28]).

Two generalizations of the Liapounoff type inequality for pseudo-integral are given in [15]. The
first generalization is given for the semiring ([0, 1],⊕,�) when both pseudo-operations are given by the
generator g : [0, 1] → [0, 1] and the second generalization refers to the semiring ([0, 1], sup,�) from
the first class when the pseudo-multiplication is given by an increasing generator g : [0, 1]→ [0, 1].

Based on results from [15] it holds that
⊕∫

[0,1]

f (s) � dµ


(r−t)

�


⊕∫

[0,1]

f (t) � dµ


(r−s)

�


⊕∫

[0,1]

f (r) � dµ


(s−t)

, (1.1)

where 0 < t < s < r, f : [0, 1]→ [0, 1] is a measurable function, ⊕ and � are pseudo-operations given
by generator g : [0, 1] → [0, 1], � is the total order on the considered semiring from the second class
and µ is an ⊕-measure.

In the case when the semiring belongs to the first class, pseudo-addition is sup and pseudo-
multiplication is given by an increasing generator g : [0, 1]→ [0, 1] the Liapounoff type inequality has
the form 

sup∫
[0,1]

f (s) � dµ


(r−t)

≤


sup∫

[0,1]

f (t) � dµ


(r−s)

�


sup∫

[0,1]

f (r) � dµ


(s−t)

, (1.2)

where 0 < t < s < r, f : [0, 1]→ [0, 1] is a measurable function and µ is a complete sup-measure.
One generalization of ordinary functions (single-valued functions) are set-valued functions. The

theory of set-valued functions has application in the mathematical economy and optimal control [12].
The well-known terms for single-valued function, such as continuity, differentiation and integration
are investigated in the field of set-valued functions. The first results of the integration of set-valued
functions are given in [4]. Set-valued functions and their pseudo-integration has been investigated
in [10]. The investigation of pseudo-integral of set-valued function is focused on a special case
of the set-valued function, interval-valued function since the interval-valued function is suitable for
applications. Different integral inequalities for interval-valued functions with respect to pseudo-
integral are proven in [14, 29]. Jensen type and Hölder type inequality for interval-valued Choquet
integrals are given in [14] and inequalities of Liapounoff and Stolarsky type for Choquet-like integrals
with respect to nonmonotonic fuzzy measures are given in [29]. Interval Minkowski’s inequality,
interval Radon’s inequality, and interval Beckenbach’s inequality for Aumann integral are proven
in [24].
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The paper is organized in the following way. The second section contains preliminary notions
needed for the investigation. It contains the definition of semiring and some illustrative examples.
Definition of ⊕-measure and pseudo-integral are also the part of this section as well as definitions of
operations on intervals and interval-valued function and its integration. The third section contains the
main result of the paper, the Liapounoff type inequality for the pseudo-integral of an interval-valued
function and some illustrative examples. The fourth section contains the definition of the interval-
valued central moment of order n and an example where the Liapounoff inequality for pseudo-integral
of interval-valued function is used for estimation of the interval-valued central moment of order n.

2. Preliminary notions

Some basic notions and definitions from pseudo-analysis are presented in this section.

2.1. Semiring

Let [a, b] be a closed (or semi-closed) subinterval of [−∞,∞] and let � be the total order on the
interval [a, b]. On the interval [a, b] two operations are considered:

i) commutative and associative binary operation ⊕ called pseudo-addition which is non-decreasing
with respect to � and has a neutral element denoted by 0,

ii) commutative and associative binary operation � called pseudo-multiplication which is positively
non-decreasing with respect to �, i.e. x � y implies x � z � y � z for all z ∈ [a, b]+ where
[a, b]+ = {z ∈ [a, b] : 0 � z}. It has a neutral element denoted by 1.

The structure ([a, b],⊕,�) is called a semiring if the following conditions are satisfied:

i) ⊕ : [a, b]2 → [a, b] and � : [a, b]2 → [a, b] are pseudo-addition and pseudo-multiplication,
respectively,

ii) pseudo-multiplication � is distributive over pseudo-addition ⊕, i.e. x � (y ⊕ z) = x � y ⊕ x � z for
all x, y, z ∈ [a, b],

iii) for all x ∈ [a, b] it holds 0 � x = 0.

More about pseudo-operations and semirings can be found in [20–22].
Depending on other properties that pseudo-operations possess, there are three classes of semirings

(see [21, 22]).
The first class consists of semirings where pseudo-addition is an idempotent operation, and pseudo-

multiplication is a non-idempotent operation. The semiring investigated in this paper is ([a, b], sup,�),
where pseudo-addition is x ⊕ y = sup(x, y) and pseudo-multiplication is given by x � y = g−1(g(x)g(y))
and g : [a, b] → [0,∞] is a continuous increasing function. The function g is called generator of
pseudo-multiplication. An example of this type of semiring is ([−∞,∞], sup,+), where the generator
for pseudo-multiplication is g(x) = ex.

The second class consists semirings where both pseudo-operations are strict and defined by a
monotone and continuous function g : [a, b]→ [0,∞], by

x ⊕ y = g−1(g(x) + g(y)) and x � y = g−1(g(x) · g(y)).
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The function g is called generator of pseudo-operations and the semiring is called g-semiring. In this
case, the pseudo-operations are called g-operations.

The third class of semirings are semirings with both idempotent pseudo-operations.
In this investigation the pseudo-multiplication is always defined by a generator g, and in this case

the pseudo-power x(n) is defined by

x(n) = x � x � · · · � x︸            ︷︷            ︸
n

= g−1(gn(x)),

for x ∈ [a, b] and n ∈ N. It can be shown (see [3]) that the pseudo-power x(p) is well defined for all
p ∈ (0,∞) ∩ Q in the same way, i.e.

x(p) = g−1(gp(x)), p ∈ (0,∞) ∩ Q.

Due to the continuity of �, it holds that (see [3])

x(p) = sup{x(r)|r ∈ (0, p), r ∈ Q}, p ∈ R \ Q, p > 0. (2.1)

On the class of g-semirings, the total order on the interval [a, b] is given by x � y if and only if
g(x) ≤ g(y). If g is an increasing generator, the total order � is the usual order ≤ on the real line and if
g is a decreasing generator, the total order � is opposite to the usual order on the real line. If pseudo-
addition is x ⊕ y = sup(x, y), then the total order is defined by x � y if and only if sup(x, y) = y, and
the total order is the usual order ≤ on the real line. Similarly, if ⊕ = min the total order � is the order
opposite to the usual order on the real line.

2.2. Pseudo-integral

One generalization of additive measure from the classical measure theory is so-called ⊕-measure.
Let X be a non-empty set, and let A be the σ-algebra of the subsets of X. A set function µ : A →

[a, b]+ is an ⊕-measure, or a pseudo-additive measure if

i) µ (∅) = 0,

ii) µ
(
∞⋃

i=1
Ai

)
=
∞⊕

i=1
µ(Ai) = lim

n→∞

n⊕
i=1

µ(Ai), where {Ai} is a sequence of pairwise disjoint sets fromA.

If ⊕ is an idempotent operation, the first condition and disjointness of sets from the second condition
can be omitted.

For the g-semiring, the second condition has the form

µ

 ∞⋃
i=1

Ai

 = lim
n→∞

g−1

 n∑
i=1

g ◦ µ(Ai)

 .
The focus of this paper is on two cases of pseudo-integral (see [20]).
Let ([a, b],⊕,�) be a g-semiring. g-integral of a measurable function f : X → [a, b] is of the form

⊕∫
X

f � dµ = g−1


∫
X

(g ◦ f )d(g ◦ µ)

 ,
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where the integral on the right-hand side is the Lebesgue integral. In the special case, when X = [c, d],
A = B([c, d]) is a Borel σ-algebra on [c, d] and g ◦ µ is a Lebesgue measure on [c, d], then

⊕∫
[c,d]

f � dµ = g−1


d∫

c

g( f (x))dx

 .
Let ([a, b], sup,�) be a semiring where pseudo-multiplication is given by an increasing function

g : [a, b]→ [0,∞]. Pseudo-integral of a measurable function f : X → [a, b] is

sup∫
X

f � dµ = sup
x∈X

(
g−1(g( f (x)) g(Ψ(x)))

)
,

where Ψ : [c, d]→ [a, b] is a continuous density which determines sup-decomposable measure µ.
Due to the fact that every semiring ([a, b], sup,�) of the first class can be obtained as a limit of a

family of g-semirings of the second class generated by gλ, i.e.,

lim
λ→∞

x ⊕λ y = lim
λ→∞

(gλ)−1(gλ(x) + gλ(y)) = sup(x, y)

and
x �λ y = (gλ)−1(gλ(x) gλ(y)) = g−1(g(x) g(y)) = x � y,

where g is an increasing generator of pseudo-multiplication � (see [19]), this research is focused on
the class of g-semirings.

Also, in [19] it is shown that for the semiring ([0,∞], sup,�) with generated pseudo-multiplication
it holds that

sup∫
X

f � dµ = lim
λ→+∞

(gλ)−1


∫
X

(gλ ◦ f )d(g ◦ µ)

 , (2.2)

where µ is a sup-decomposable measure on [0,∞] and f : [0,∞]→ [0,∞] is a continuous function.

2.3. Pseudo-operations on intervals

As this paper deals with interval-valued functions, for further work it is necessary to define pseudo-
multiplication on the class

I = {[x, y] : x ≤ y and [x, y] ⊆ [a, b]+}

of closed sub-intervals of [a, b]+.

The pseudo-product of two intervals A = [l1, r1] and B = [l2, r2] is defined in [16]. Since this paper
only deals with generated pseudo-multiplication, A � B when x � y = g−1(g(x) g(y)) is given below.

If the pseudo-multiplication is given by an increasing generator g, then

A � B = [g−1 (g(l1)g(l2)) , g−1 (g(r1)g(r2))], (2.3)

and when the generator g is a decreasing function, it holds that

A � B = [g−1 (g(r1)g(r2)) , g−1 (g(l1)g(l2))]. (2.4)
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For every family {[li, ri] : [li, ri] ∈ I, i ∈ I} of closed sub-intervals of [a, b]+, where the index set I is
a countable set, based on results from [9] and [25] it holds that

sup
i∈I

[li, ri] = [sup
i∈I

li, sup
i∈I

ri]. (2.5)

Also,
lim
n→∞

[ln, rn] = [ lim
n→∞

ln, lim
n→∞

rn], (2.6)

if lim
n→∞

ln and lim
n→∞

rn exist.

The pseudo-power x(p), p ∈ (0,∞), x ∈ [0,∞] is extended to the pseudo-power A(p) of a set
A ⊂ [0,∞] (see [16]) as

A(p) = {x(p) : x ∈ A}.

In the special case, when A = [c, d], the next lemma is shown in [16].

Lemma 1. Let n,m ∈ N, p ∈ R+ \ Q and pseudo-multiplication � is given by a generator g. Then it
holds that

i) [c, d](n) =
[
c(n), d(n)

]
,

ii) [c, d]( 1
n ) =

[
c( 1

n ), d( 1
n )
]
,

iii) [c, d](
m
n ) =

[
c( m

n ), d( m
n )

]
.

iv) [c, d](p) = sup
{[

c(r), d(r)
]

: r ∈ (0, p) ∩ Q
}
.

Based on (2.1), (2.5) and iv) from Lemma 1 it holds that

[c, d](p) = [c(p), d(p)], p ∈ R \ Q. (2.7)

2.4. The relation “less or equal” on I

The relation “less or equal” for the intervals from I is denoted by �S .

Definition 1. Let A, B ∈ I. A �S B if and only if for all x ∈ A there exists y ∈ B such that x � y and
for all y ∈ B there exists x ∈ A such that x � y.

In paper [17], the relation �S was defined in a more general manner, on the set of all non-empty
subsets of the interval [a, b].

The necessity of introducing the relation �S was illustrated in [17] by an example - if the usual
subset is used instead of �S , for x, y ∈ [a, b]+ such that x � y and x , y, for elements A = [x, x] and
B = [y, y] neither A ⊆ B nor B ⊆ A holds, but it holds that A �S B.

2.5. Pseudo-integral of an interval-valued function

Let X be a non-empty set, ([a, b],⊕,�) a semiring, I a class of closed sub-intervals of [a, b]+ and
F : X → I an interval-valued function.

An interval-valued function F is pseudo-integrably bounded if there exists a function h ∈ L1
⊕(µ)

such that

i)
⊕
α∈F(x)

α � h(x), for the non-idempotent pseudo-addition,

AIMS Mathematics Volume 7, Issue 4, 5444–5462.
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ii) sup
α∈F(x)

α � h(x), for the pseudo-addition given by an increasing generator g,

iii) inf
α∈F(x)

α � h(x), for the pseudo-addition given by a decreasing generator g

holds, where L1
⊕(µ) is the family of functions which are integrable with respect to the pseudo-integral

in the sense of the considered semiring.
Based on results from [10], the pseudo-integral of a pseudo-integrably bounded interval-valued

function F : X → I represented by its border functions Fl, Fr : X → [a, b]+ by F(x) = [Fl(x), Fr(x)]
is defined by

⊕∫
X

F � dµ =


⊕∫

X

Fl � dµ,

⊕∫
X

Fr � dµ

 . (2.8)

If F is a pseudo-integrably bounded function, then F is a pseudo-integrable function. More about the
pseudo-integral of an interval-valued function, its basic properties and application can be found in [10].

3. Liapounoff type pseudo-integral inequality of interval-valued function

The main result of this paper, the Liapounoff type inequality for pseudo-integral of an interval-
valued function is presented in this section.

Obviously, the Liapounoff type inequalities from [15] hold for a g-semiring ([0,∞],⊕,�) with
an increasing generating function g : [0,∞] → [0,∞] and a semiring ([0,∞], sup,�) and pseudo-
multiplication given by an increasing generator g : [0,∞] → [0,∞]. In those cases, Liapounoff type
inequalities deal with a measurable function f : [0, 1] → [0,∞) and then g ◦ f : [0, 1] → [0,∞],
i.e. (1.1) and (1.2) hold. Based on this fact, in this investigation the interval [0,∞] is considered,
instead of the interval [0, 1] observed in [15].

Let us consider a g-semiring ([0,∞],⊕,�) with generator g : [0,∞] → [0,∞] or a semiring
([0,∞], sup,�) where � is given by an increasing generator g : [0,∞] → [0,∞] and an interval-
valued function F : [0, 1] → I represented by its border functions Fl, Fr : [0, 1] → [0,∞) as
F(x) = [Fl(x), Fr(x)].

Lemma 2. Let α ∈ R \ Q or β ∈ R \ Q. Then it holds that
⊕∫

[0,1]

F(α) � dµ


(β)

=



⊕∫

[0,1]

F(α)
l � dµ


(β)

,


⊕∫

[0,1]

F(α)
r � dµ


(β) .

Proof. If α ∈ R \ Q or β ∈ R \ Q, based on (2.5), (2.7) and (2.8) it holds that
⊕∫

[0,1]

F(α) � dµ


(β)

=


⊕∫

[0,1]

[Fl, Fr](α) � dµ


(β)

=


⊕∫

[0,1]

[F(α)
l , F(α)

r ] � dµ


(β)

=


⊕∫

[0,1]

F(α)
l � dµ,

⊕∫
[0,1]

F(α)
r � dµ


(β)

=



⊕∫

[0,1]

F(α)
l � dµ


(β)

,


⊕∫

[0,1]

F(α)
r � dµ


(β) .
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�

Theorem 1. Let ([0,∞],⊕,�) be a g-semiring with generator g : [0,∞] → [0,∞]. For a pseudo-
integrably bounded interval-valued function F(x) = [Fl(x), Fr(x)], where the border functions Fl, Fr :
[0, 1]→ [0,∞) are measurable, t, s, r ∈ R and 0 < t < s < r, holds

⊕∫
[0,1]

F(s) � dµ


(r−t)

�S


⊕∫

[0,1]

F(t) � dµ


(r−s)

�


⊕∫

[0,1]

F(r) � dµ


(s−t)

. (3.1)

Proof. Let all pseudo-powers in (3.1) be rational numbers.
From (2.8) and Lemma 1 for the left-hand side of inequality (3.1) it holds that
⊕∫

[0,1]

F(s) � dµ


(r−t)

=


⊕∫

[0,1]

[Fl, Fr](s) � dµ


(r−t)

=


⊕∫

[0,1]

[F(s)
l , F

(s)
r ] � dµ


(r−t)

=


⊕∫

[0,1]

F(s)
l � dµ,

⊕∫
[0,1]

F(s)
r � dµ


(r−t)

=



⊕∫

[0,1]

F(s)
l � dµ


(r−t)

,


⊕∫

[0,1]

F(s)
r � dµ


(r−t) .

Similarly, for the right-hand side of inequality (3.1) from Lemma 1, definition of pseudo-multiplication
on [0,∞] and definition of pseudo-multiplication on I it follows that

⊕∫
[0,1]

F(t) � dµ


(r−s)

�


⊕∫

[0,1]

F(r) � dµ


(s−t)

=


⊕∫

[0,1]

F(t)
l � dµ,

⊕∫
[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ,

⊕∫
[0,1]

F(r)
r � dµ


(s−t)

=



⊕∫

[0,1]

F(t)
l � dµ


(r−s)

,


⊕∫

[0,1]

F(t)
r � dµ


(r−s) �



⊕∫

[0,1]

F(r)
l � dµ


(s−t)

,


⊕∫

[0,1]

F(r)
r � dµ


(s−t) .

Let the generator g be an increasing function. Based on (2.3) it holds that
⊕∫

[0,1]

F(t) � dµ


(r−s)

�


⊕∫

[0,1]

F(r) � dµ


(s−t)

=



⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

,


⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t) .
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Since the generator g is an increasing function the total order � is the usual order on the real line.

For every x ∈


⊕∫

[0,1]

F(s) � dµ


(r−t)

it holds that x ≤


⊕∫

[0,1]

F(s)
r � dµ


(r−t)

. From inequality (1.1) applied

to the function Fr : [0, 1]→ [0,∞) it follows that
⊕∫

[0,1]

F(s)
r � dµ


(r−t)

≤


⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t)

.

Let

y =


⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t)

.

It holds that

y ∈



⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

,


⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t) .

Therefore, for every x ∈


⊕∫

[0,1]

F(s) � dµ


(r−t)

holds x ≤ y.

For every

y ∈



⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

,


⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t)

holds 
⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

≤ y.

From (1.1) applied to the function Fl : [0, 1]→ [0,∞) it follows that
⊕∫

[0,1]

F(s)
l � dµ


(r−t)

≤


⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

,

so that for x =


⊕∫

[0,1]

F(s)
l � dµ


(r−t)

holds x ∈


⊕∫

[0,1]

F(s) � dµ


(r−t)

and x ≤ y.

Now the inequality (3.1) holds by Definition 1.
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Let the generator g be a decreasing function. Based on (2.4) it holds that
⊕∫

[0,1]

F(t) � dµ


(r−s)

�


⊕∫

[0,1]

F(r) � dµ


(s−t)

=



⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t)

,


⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t) .

Since the generator g is a decreasing function the total order � is the order opposite to the usual order
on the real line.

For every x ∈


⊕∫

[0,1]

F(s) � dµ


(r−t)

it holds that


⊕∫

[0,1]

F(s)
l � dµ


(r−t)

≤ x. Based on inequality (1.1)

applied to the function Fl : [0, 1]→ [0,∞) it follows that
⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

≤


⊕∫

[0,1]

F(s)
l � dµ


(r−t)

.

Let

y =


⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

.

Then it holds that

y ∈



⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t)

,


⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

and for every x ∈


⊕∫

[0,1]

F(s) � dµ


(r−t)

it holds that y ≤ x.

For every

y ∈



⊕∫

[0,1]

F(t)
r � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
r � dµ


(s−t)

,


⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

holds

y ≤


⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

.
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From inequality (1.1) applied to the function Fl : [0, 1]→ [0,∞) it holds that
⊕∫

[0,1]

F(t)
l � dµ


(r−s)

�


⊕∫

[0,1]

F(r)
l � dµ


(s−t)

≤


⊕∫

[0,1]

F(s)
l � dµ


(r−t)

,

so for x =


⊕∫

[0,1]

F(s)
l � dµ


(r−t)

holds x ∈


⊕∫

[0,1]

F(s) � dµ


(r−t)

and y ≤ x.

Now, inequality (3.1) holds by Definition 1.
If at least one of the pseudo-powers in (3.1) is not a rational number, the proof of the inequality (3.1)

is similar, using Lemma 2 and iv) from Lemma 1. �

Remark 1. For g(x) = x Theorem 1 is Liapounoff type inequality for Aumann integral.

Since the proof of Theorem 1 is based on pseudo-multiplication of sub-intervals from I and pseudo-
power of elements from I, based on results from [15] and [19] it is obvious that the next theorem holds.

Theorem 2. Let ([0,∞], sup,�) be a semiring from the first class where pseudo-multiplication � is
given by an increasing generator g : [0,∞] → [0,∞] and µ is a sup-decomposable measure on
B([0, 1]), given by µ(A) = ess sup(Ψ(x) : x ∈ A), where Ψ : [0, 1] → [0,∞] is a continuous density.
For a pseudo-integrably bounded interval-valued function F = [Fl, Fr], where the border functions
Fl, Fr : [0, 1]→ [0,∞) are measurable, t, s, r ∈ R and 0 < t < s < r holds

sup∫
[0,1]

F(s) � dµ


(r−t)

�S


sup∫

[0,1]

F(t) � dµ


(r−s)

�


sup∫

[0,1]

F(r) � dµ


(s−t)

. (3.2)

Remark 2. Theorem 1 holds if any g-semiring ([a, b],⊕,�) is considered, where [a, b] ⊆ [0,∞],
for F(x) = [Fl(x), Fr(x)] holds Range(Fl) ⊆ [a, b] and Range(Fr) ⊆ [a, b]. The similar holds for
Theorem 2, for the semirings of the third class with generated pseudo-multipplication.

Examples

For the interval-valued function F(x) = [Fl(x), Fr(x)], from (2.8), the definition of g-integral and
properties of interval-valued pseudo-integral (see [10]), for any generator g follows

⊕∫
[0,1]

F � dµ =

g−1


∫

[0,1]

(g ◦ Fl)d(g ◦ µ)

 , g−1


∫

[0,1]

(g ◦ Fr)d(g ◦ µ)


 . (3.3)

Now, the left-hand side of inequality (3.1) has the form


⊕∫

[0,1]

F(s) � dµ


(r−t)

= g−1 ◦ gr−t

g−1


∫

[0,1]

(gs ◦ Fl) d(g ◦ µ)

 , g−1


∫

[0,1]

(gs ◦ Fr) d(g ◦ µ)


 .

AIMS Mathematics Volume 7, Issue 4, 5444–5462.



5455

Similarly, for the right-hand side of inequality (3.1) it holds that


⊕∫

[0,1]

F(t) � dµ


(r−s)

�


⊕∫

[0,1]

F(r) � dµ


(s−t)

= g−1

gr−s


g−1


∫

[0,1]

(gt ◦ Fl) d(g ◦ µ)

 , g−1


∫

[0,1]

(gt ◦ Fr) d(g ◦ µ)





· gs−t


g−1


∫

[0,1]

(gr ◦ Fl) d(g ◦ µ)

 , g−1


∫

[0,1]

(gr ◦ Fr) d(g ◦ µ)




 .

Therefore, the inequality (3.1) has the form

g−1 ◦ gr−t

g−1


∫

[0,1]

(gs ◦ Fl) d(g ◦ µ)

 , g−1


∫

[0,1]

(gs ◦ Fr) d(g ◦ µ)




�S g−1

gr−s


g−1


∫

[0,1]

(gt ◦ Fl) d(g ◦ µ)

 , g−1


∫

[0,1]

(gt ◦ Fr) d(g ◦ µ)





· gs−t


g−1


∫

[0,1]

(gr ◦ Fl) d(g ◦ µ)

 , g−1


∫

[0,1]

(gr ◦ Fr) d(g ◦ µ)




 .

Example 1. Since indefinite integral
∫

sin x2dx cannot be expressed in terms of elementary functions,
1∫

0
sin x2dx will be estimated using the Liapounoff type inequality for the pseudo-integral of an interval-

valued function.
Let ([0,∞],⊕,�) be the g-semiring with generator g(x) = x2. The interval-valued function F(x) =

[
√

sin x2, x] will be used for estimation of integral
1∫

0
sin x2dx. In this case the left-hand side of the

inequality (3.1) has the form



⊕∫

[0,1]

(
√

sin x2)(s)d(g ◦ µ)


(r−t)

,


⊕∫

[0,1]

x(s)d(g ◦ µ)


(r−t)

and the right-hand side of the inequality (3.1) has the form
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⊕∫

[0,1]

(
√

sin x2)(t)d(g ◦ µ)


(r−s)

�


⊕∫

[0,1]

(
√

sin x2)(r)d(g ◦ µ)


(s−t)

,


⊕∫

[0,1]

x(t)d(g ◦ µ)


(r−s)

�


⊕∫

[0,1]

x(r)d(g ◦ µ)


(s−t) .

From Definition 1 and Theorem 1 follows
⊕∫

[0,1]

(
√

sin x2)(s)d(g ◦ µ)


(r−t)

≤


1∫

0

x(t) dx


(r−s)

�


1∫

0

x(r) dx


(s−t)

.

Now, for the chosen parameters t = 1
2 , s = 1 and r = 3

2 from the fact that g is an increasing function
it follows that

1∫
0

sin x2dx ≤

√
2

4
.

Example 2. Let ([0,∞],⊕,�) be the g-semiring with generator g(x) = ln(1+x). For the interval-valued
function F(x) = [Fl(x), Fr(x)], the left side of inequality (3) has the forme

 1∫
0

(lns(1+Fl(x))dx

r−t

− 1, e

 1∫
0

(lns(1+Fr(x))dx

r−t

− 1

 ,
and the right side of inequality (3) has the forme

 1∫
0

lnt(1+Fl(x))dx

r−s

·

 1∫
0

(lnr(1+Fl(x))dx

s−t

− 1, e

 1∫
0

lnt(1+Fr(x))dx

r−s

·

 1∫
0

(lnr(1+Fr(x))dx

s−t

− 1

 .
Therefore,

α1 · e

 1∫
0

(lns(1+Fl(x))dx

r−t

+ β1 · e

 1∫
0

(lns(1+Fr(x))dx

r−t

≤ α2 · e

 1∫
0

lnt(1+Fl(x))dx

r−s

·

 1∫
0

(lnr(1+Fl(x))dx

s−t

+ β2 · e

 1∫
0

lnt(1+Fr(x))dx

r−s

·

 1∫
0

(lnr(1+Fr(x))dx

s−t

,

for every α1, β1, α2, β2 ∈ [0, 1] such that α1 + β1 = 1 and α2 + β2 = 1.

The following example is based on an example from [26].

Example 3. Let ([0,∞], sup,�) be the semiring from the first class where pseudo-multiplication is
generated by g(x) = x. Let µ be a sup-measure on ([0,∞],B([0,∞])) with density function Ψ(x) = x.

Let us consider the interval-valued function F(x) = [Fl(x), 2x], where Fl(x) ≤ 2x, x ∈ [0, 1].
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sup∫

[0,1]

(2x)(s) � dµ


(r−t)

=

 lim
n→∞

⊕n∫
[0,1]

(2x)(s) � dµn


(r−t)

=

 lim
n→∞

1∫
0

(2x)s · x · dx


r−t

=

2s lim
n→∞

(
1

sn + n + 1

) 1
n


r−t

= 2s(r−t).

Similarly, 
sup∫

[0,1]

F(s)
l � dµ


(r−t)

= lim
n→∞


1∫

0

F sn
l xndx


r−t
n

,

and 
sup∫

[0,1]

F(t)
l � dµ


(r−s)

�


sup∫

[0,1]

F(r)
l � dµ


(s−t)

= lim
n→∞


1∫

0

F tn
l xndx


r−s
n

·


1∫

0

Frn
l xndx


s−t
n

,

and 
sup∫

[0,1]

(2x)(t) � dµ


(r−s)

�


sup∫

[0,1]

(2x)(r) � dµ


(s−t)

= 2s(r−t).

For the interval-valued function F(x) = [Fl(x), 2x], where Fl(x) ≤ 2x, x ∈ [0, 1], based on (3.2)
and (2.6) it holds that

lim
n→∞




1∫
0

F sn
l xndx


r−t
n

, 2s(r−t)

 �S lim
n→∞




1∫
0

F tn
l xndx


r−s
n

·


1∫

0

Frn
l xndx


s−t
n

, 2s(r−t)

 .

4. Liapounoff inequality for interval-valued central g-moments of order n

In this part, the interval Liapounoff inequality is applied for estimation of interval-valued central
g-moment of order n for interval-valued functions in a g-semiring.

Let ([a, b],⊕,�) be a g-semiring such that µ([a, b]) = 1, where 1 is neutral element for the given
pseudo-multiplication and µ is an ⊕-measure. It is known that in the case when µ([a, b]) = 1, pseudo-
additive measure µ is called pseudo-probability measure and it is given by µ = g−1 ◦ P, where g is a
generator of pseudo-operations and P is a probability measure (see [18]).

Based on the result from [18] the central g-moment of order n > 0 for a measurable function
f : [0, 1]→ [a, b] is given by

Eg,n[ f ] = g−1


1∫

0

gn ◦ f (x) dx

 . (4.1)
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One representation of the Liapounoff inequality for pseudo-integral (1.1) in terms of the central
g-moment of order n is given in the following Lemma.

Lemma 3. Let ([a, b],⊕,�) be a g-semiring such that µ([a, b]) = 1. For a measurable function f :
[0, 1]→ [0,∞) and central g-moment of order n it holds that

g−1 ◦ gr−t (Eg,s[ f ]) � g−1 (
gr−s (Eg,t[ f ]

)
· gs−t (Eg,r[ f ])

)
. (4.2)

Proof. For a measurable function f , the left-hand side of the Liapounoff inequality for pseudo-integral
given in (1.1) is

⊕∫
[0,1]

f (s) � dµ


(r−t)

= g−1 ◦ gr−t

g−1


1∫

0

(gs ◦ f ) d(g ◦ µ)


 = g−1 ◦ gr−t (Eg,s[ f ]) .

The right-hand side of the same inequality is
⊕∫

[0,1]

f (t) � dµ


(r−s)

�


⊕∫

[0,1]

f (r) � dµ


(s−t)

= g−1

gr−s ◦ g−1


1∫

0

(gt ◦ f ) d(g ◦ µ)

 · gs−t ◦ g−1


1∫

0

(gr ◦ f ) d(g ◦ µ)




= g−1 (
gr−s (Eg,t[ f ]

)
· gs−t (Eg,r[ f ])

)
,

so that the inequality (4.2) holds. �

The following definition is one new generalization of the central g-moment of order n in the sense
of the interval-valued functions.

Definition 2. Let ([0,∞],⊕,�) be a g-semiring and F = [Fl, Fr] be an interval-valued function where
the border functions Fl, Fr : [0, 1]→ [0,∞) are measurable. The interval-valued central g-moment of
order n > 0 for the interval-valued function F = [Fl, Fr], is

Eg,n
I [F] = [Eg,n[Fl], Eg,n[Fr]].

Theorem 3. Let ([0,∞],⊕,�) be a g-semiring and let F = [Fl, Fr] be an interval-valued function where
the border functions Fl, Fr : [0, 1]→ [0,∞) are measurable. For interval-valued central g-moment of
order n it holds that

g−1
(
gr−t

(
Eg,s

I [F]
))
�S g−1

(
gr−s(Eg,t

I [F]) · gs−t
(
Eg,r

I [F]
))
. (4.3)

Proof. From (4.1) 0 < t < s < r, for the left-hand side of inequality (3.1) holds

AIMS Mathematics Volume 7, Issue 4, 5444–5462.



5459


⊕∫

[0,1]

F(s) � dµ


(r−t)

= g−1 ◦ gr−t


g−1


1∫

0

(gs ◦ Fl) d(g ◦ µ)

 , g−1


1∫

0

(gs ◦ Fr) d(g ◦ µ)





= g−1 (
gr−t ([Eg,s[Fl], Eg,s[Fr]])

)
= g−1

(
gr−t

(
Eg,s

I [F]
))
,

and for the right-hand side of the same inequality holds
⊕∫

[0,1]

F(t) � dµ


(r−s)

�


⊕∫

[0,1]

F(r) � dµ


(s−t)

= g−1

gr−s


g−1


1∫

0

(gt ◦ Fl) d(g ◦ µ)

 , g−1


1∫

0

(gt ◦ Fr) d(g ◦ µ)





· gs−t


g−1


1∫

0

(gr ◦ Fl) d(g ◦ µ)

 , g−1


1∫

0

(gr ◦ Fr) d(g ◦ µ)






= g−1 (
gr−s ([Eg,t[Fl], Eg,t[Fr]

])
· gs−t ([Eg,r[Fl], Eg,r[Fr]])

)
= g−1

(
gr−s(Eg,t

I [F]) · gs−t
(
Eg,r

I [F]
))
.

Now, from (3) follows the inequality (4.3). �

Example 4. Let ([0,∞),⊕,�) be a g-semiring with generator g(x) = x
1
n , n > 1. The inverse function is

g−1(x) = xn, and the pseudo operation are given by x ⊕ y = ( n√x + n
√

y)n and x � y = xy.
Let F = [Fl, Fr] be an interval-valued function with measurable border functions, t = n − 1, s = n

and r = n + 1, n > 1.
Since g is an increasing generator from (4.2) for function Fl holds

g2 (Eg,n[Fl]) ≤ g
(
Eg,n−1[Fl]

)
· g

(
Eg,n+1[Fl]

)
(

n
√

Eg,n[Fl]
)2
≤

n
√

Eg,n−1[Fl] ·
n
√

Eg,n+1[Fl]

Eg,n[Fl] ≤
√

Eg,n−1[Fl] · Eg,n+1[Fl]. (4.4)

Analogously, for function Fr it follows that

Eg,n[Fr] ≤
√

Eg,n−1[Fr] · Eg,n+1[Fr]. (4.5)
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For all x ∈ [Eg,n[Fl], Eg,n[Fr]] holds x ≤ Eg,n[Fr]. From (4.5) holds

x ≤
√

Eg,n−1[Fr] · Eg,n+1[Fr].

Also, for all y ∈
[ √

Eg,n−1[Fl] · Eg,n+1[Fl],
√

Eg,n−1[Fr] · Eg,n+1[Fr]
]

holds the inequality√
Eg,n−1[Fl] · Eg,n+1[Fl] ≤ y, and from (4.4) it follows that

Eg,n[Fl] ≤ y.

From Definition 1 it follows that

[Eg,n[Fl], Eg,n[Fr]] �S

[ √
Eg,n−1[Fl] · Eg,n+1[Fl],

√
Eg,n−1[Fr] · Eg,n+1[Fr]

]
,

so one estimation of interval-valued central g-moment of order n is

Eg,n
I [F] �S

√[
Eg,n−1[Fl] · Eg,n+1[Fl], Eg,n−1[Fr] · Eg,n+1[Fr]

]
. (4.6)

Note that in inequality (4.6), the estimation of interval-valued central g-moment of order n is obtained
using interval-valued central g-moment of order n − 1 and interval-valued central g-moment of order
n + 1.

5. Conclusions

In this paper, we have proven two generalizations of the Liapounoff inequality for pseudo-integral of
interval-valued function. Also, the Liapounoff inequality for central g-moment of order n for a function
f and the Liapounoff inequality for interval-valued central g-moment of order n for an interval-valued
function F are proven.

The first step in the future investigation will be the generalization of theorems about the convergence
of a sequence of random variables using the inequality (4.2) for the central g-moment of order n
in the pseudo-probability space. The second step will be the generalization of theorems about the
convergence of a sequence of interval-valued random sets using the inequality (4.3) for interval-valued
central g-moment of order n, in the pseudo-probability space.
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pseudo-integrals with respect to interval-valued ⊕-measures, Fuzzy Set. Syst., 304 (2016), 110–
130. https://doi.org/10.1016/j.fss.2015.11.014

AIMS Mathematics Volume 7, Issue 4, 5444–5462.

http://dx.doi.org/https://doi.org/10.1016/j.na.2009.11.017
http://dx.doi.org/https://doi.org/10.1016/j.fss.2009.10.007
http://dx.doi.org/https://doi.org/10.1016/j.amc.2011.03.100
http://dx.doi.org/https://doi.org/10.1016/j.na.2010.07.013
http://dx.doi.org/https://doi.org/10.1016/j.fss.2009.12.006
http://dx.doi.org/https://doi.org/10.1016/j.fss.2011.08.005
http://dx.doi.org/https://doi.org/10.1016/j.fss.2018.03.009
http://dx.doi.org/https://doi.org/10.1016/j.ins.2011.01.038
http://dx.doi.org/https://doi.org/10.1016/j.na.2011.07.046
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.05.006
http://dx.doi.org/https://doi.org/10.1109/SISY.2014.6923599
http://dx.doi.org/https://doi.org/10.1016/j.fss.2015.11.014


5462
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